skip to content

Department of Computer Science and Technology

 

2024

  • Nivron, O., Wischik, DJ., Vrac, M. and Shuckburgh, E., 2024. A Temporal Bias Correction using a Machine Learning Attention model. CoRR, v. abs/2402.14169
  • Wilkins, G., Keshav, S. and Mortier, R., 2024. Offline Energy-Optimal LLM Serving: Workload-Based Energy Models for LLM Inference on Heterogeneous Systems ACM SIGEnergy Energy Informatics Review, v. 4
    Doi: 10.1145/3727200.3727217
  • Rau, E-P., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release Carbon Management, v. 15
    Doi: 10.1080/17583004.2024.2390854
  • Rau, E-P., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Research data supporting “Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release”
    Doi: http://doi.org/10.17863/CAM.110933
  • Swinfield, T., Shrikanth, S., Bull, JW., Madhavapeddy, A. and zu Ermgassen, SOSE., 2024. Nature-based credit markets at a crossroads Nature Sustainability, v. 7
    Doi: 10.1038/s41893-024-01403-w
  • Millar, J., Sethi, S., Haddadi, H. and Madhavapeddy, A., 2024. Poster: Towards Low-Power Comprehensive Biodiversity Monitoring Sensys 2024 Proceedings of the 2024 ACM Conference on Embedded Networked Sensor Systems,
    Doi: 10.1145/3666025.3699400
  • Vijayakumar, S., Madhavapeddy, A. and Kalyvianaki, E., 2024. Scheduling for Reduced Tail Task Latencies in Highly Utilized Datacenters Socc 2024 Proceedings of the 2024 ACM Symposium on Cloud Computing,
    Doi: 10.1145/3698038.3698522
  • Rau, EP., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release Carbon Management, v. 15
    Doi: 10.1080/17583004.2024.2390854
  • Rau, E-P., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release Carbon Management, v. 15
    Doi: 10.1080/17583004.2024.2390854
  • Berkes, A. and Keshav, S., 2024. SPAGHETTI: a synthetic data generator for post-Covid electric vehicle usage Energy Informatics, v. 7
    Doi: 10.1186/s42162-024-00314-6
  • Millar, J., Sethi, S., Haddadi, H. and Madhavapeddy, A., 2024. Terracorder: Sense Long and Prosper. CoRR, v. abs/2408.02407
  • Holcomb, A., Burns, P., Keshav, S. and Coomes, DA., 2024. Repeat GEDI footprints measure the effects of tropical forest disturbances Remote Sensing of Environment, v. 308
    Doi: 10.1016/j.rse.2024.114174
  • Berkes, A. and Keshav, S., 2024. SOPEVS: Sizing and Operation of PV-EV-Integrated Modern Homes The 15th ACM International Conference on Future and Sustainable Energy Systems,
    Doi: 10.1145/3632775.3661941
  • Wilkins, G., Keshav, S. and Mortier, R., 2024. Hybrid Heterogeneous Clusters Can Lower the Energy Consumption of LLM Inference Workloads The 15th ACM International Conference on Future and Sustainable Energy Systems,
    Doi: 10.1145/3632775.3662830
  • Lisaius, MC., Blake, A., Keshav, S. and Atzberger, C., 2024. Using Barlow Twins to Create Representations From Cloud-Corrupted Remote Sensing Time Series IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 17
    Doi: 10.1109/JSTARS.2024.3426044
  • Rau, EP., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release Carbon Management, v. 15
    Doi: 10.1080/17583004.2024.2390854
  • 2023 (No publication date)

  • Rouse, R., 2023 (No publication date). Machine Learning Approaches to Assessing Future Flood & Storm Risk
    Doi: http://doi.org/10.17863/CAM.100642
  • 2023

  • Meijers, AJS., Meredith, MP., Shuckburgh, EF., Kent, EC., Munday, DR., Firing, YL., King, B., Smyth, TJ., Leng, MJ., George Nurser, AJ., Hewitt, HT., Povl Abrahamsen, E., Weiss, A., Yang, M., Bell, TG., Alexander Brearley, J., Boland, EJD., Jones, DC., Josey, SA., Owen, RP., Grist, JP., Blaker, AT., Biri, S., Yelland, MJ., Pimm, C., Zhou, S., Harle, J. and Cornes, RC., 2023. Finale: impact of the ORCHESTRA/ENCORE programmes on Southern Ocean heat and carbon understanding. Philos Trans A Math Phys Eng Sci, v. 381
    Doi: 10.1098/rsta.2022.0070
  • Ghasemitaheri, S., Holcomb, A., Golab, L. and Keshav, S., 2023. On the Data Quality of Remotely Sensed Forest Maps Ceur Workshop Proceedings, v. 3462
  • Holcomb, A., Mathis, SV., Coomes, DA. and Keshav, S., 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps Science of Remote Sensing, v. 8
    Doi: 10.1016/j.srs.2023.100106