skip to content

Department of Computer Science and Technology

 

2024

  • Nivron, O., Wischik, DJ., Vrac, M. and Shuckburgh, E., 2024. A Temporal Bias Correction using a Machine Learning Attention model. CoRR, v. abs/2402.14169
  • Wilkins, G., Keshav, S. and Mortier, R., 2024. Offline Energy-Optimal LLM Serving: Workload-Based Energy Models for LLM Inference on Heterogeneous Systems ACM SIGEnergy Energy Informatics Review, v. 4
    Doi: 10.1145/3727200.3727217
  • Rau, E-P., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release Carbon Management, v. 15
    Doi: 10.1080/17583004.2024.2390854
  • Rau, E-P., Gross, J., Coomes, DA., Swinfield, T., Madhavapeddy, A., Balmford, A. and Keshav, S., 2024. Research data supporting “Mitigating risk of credit reversal in nature-based climate solutions by optimally anticipating carbon release”
    Doi: 10.17863/CAM.110933
  • Jaffer, S., Dales, MW., Ferris, P., Sorensen, D., Swinfield, T., Message, R., Keshav, S. and Madhavapeddy, A., 2024. Global, robust and comparable digital carbon assets 2024 IEEE International Conference on Blockchain and Cryptocurrency Icbc 2024,
    Doi: 10.1109/ICBC59979.2024.10634343
  • Jaffer, S., Dales, MW., Ferris, P., Sorensen, D., Swinfield, T., Message, R., Keshav, S. and Madhavapeddy, A., 2024. Global, robust and comparable digital carbon assets. ICBC,
  • Swinfield, T., Shrikanth, S., Bull, JW., Madhavapeddy, A. and zu Ermgassen, SOSE., 2024. Nature-based credit markets at a crossroads Nature Sustainability, v. 7
    Doi: 10.1038/s41893-024-01403-w
  • Millar, J., Sethi, S., Haddadi, H. and Madhavapeddy, A., 2024. Poster: Towards Low-Power Comprehensive Biodiversity Monitoring Sensys 2024 Proceedings of the 2024 ACM Conference on Embedded Networked Sensor Systems,
    Doi: 10.1145/3666025.3699400
  • 2023 (No publication date)

  • Rouse, R., 2023 (No publication date). Machine Learning Approaches to Assessing Future Flood & Storm Risk
    Doi: http://doi.org/10.17863/CAM.100642
  • 2023

  • Virdee, M., Kaiser, M., Ek, CH., Shuckburgh, E. and Kazlauskaite, I., 2023. A locally time-invariant metric for climate model ensemble predictions of extreme risk Environmental Data Science, v. 2
    Doi: http://doi.org/10.1017/eds.2023.13
  • Ghasemitaheri, S., Holcomb, A., Golab, L. and Keshav, S., 2023. On the Data Quality of Remotely Sensed Forest Maps Ceur Workshop Proceedings, v. 3462
  • Meijers, AJS., Meredith, MP., Shuckburgh, EF., Kent, EC., Munday, DR., Firing, YL., King, B., Smyth, TJ., Leng, MJ., George Nurser, AJ., Hewitt, HT., Povl Abrahamsen, E., Weiss, A., Yang, M., Bell, TG., Alexander Brearley, J., Boland, EJD., Jones, DC., Josey, SA., Owen, RP., Grist, JP., Blaker, AT., Biri, S., Yelland, MJ., Pimm, C., Zhou, S., Harle, J. and Cornes, RC., 2023. Finale: impact of the ORCHESTRA/ENCORE programmes on Southern Ocean heat and carbon understanding. Philos Trans A Math Phys Eng Sci, v. 381
    Doi: 10.1098/rsta.2022.0070
  • Holcomb, A., Mathis, SV., Coomes, DA. and Keshav, S., 2023. Computational tools for assessing forest recovery with GEDI shots and forest change maps Science of Remote Sensing, v. 8
    Doi: 10.1016/j.srs.2023.100106
  • Debnath, R., Creutzig, F., Sovacool, BK. and Shuckburgh, E., 2023. Harnessing human and machine intelligence for planetary-level climate action. NPJ Clim Action, v. 2
    Doi: http://doi.org/10.1038/s44168-023-00056-3
  • Furner, R., Haynes, P., Jones, DI., Munday, D., Paige, B. and Shuckburgh, E., 2023. An iterative data-driven emulator of an ocean general circulation model
    Doi: http://doi.org/10.5194/egusphere-egu23-3340
  • Balmford, A., Brancalion, PHS., Coomes, D., Filewod, B., Groom, B., Guizar-Coutiño, A., Jones, JPG., Keshav, S., Kontoleon, A., Madhavapeddy, A., Malhi, Y., Sills, EO., Strassburg, BBN., Venmans, F., West, TAP., Wheeler, C. and Swinfield, T., 2023. Credit credibility threatens forests. Science, v. 380
    Doi: 10.1126/science.adh3426
  • Holcomb, A., Tong, L. and Keshav, S., 2023. Robust Single-Image Tree Diameter Estimation with Mobile Phones Remote Sensing, v. 15
    Doi: 10.3390/rs15030772
  • Balmford, A., Keshav, S., Venmans, F., Coomes, D., Groom, B., Madhavapeddy, A. and Swinfield, T., 2023. Realizing the social value of impermanent carbon credits Nature Climate Change, v. 13
    Doi: 10.1038/s41558-023-01815-0
  • Bhundar, HS., Golab, L. and Keshav, S., 2023. Using EV charging control to provide building load flexibility. Energy Inform, v. 6
    Doi: 10.1186/s42162-023-00261-8
  • Tarkhani, Z. and Madhavapeddy, A., 2023. Information Flow Tracking for Heterogeneous Compartmentalized Software ACM International Conference Proceeding Series,
    Doi: 10.1145/3607199.3607235