skip to content

Department of Computer Science and Technology

  • Research Associate

Biography

Dr. Stefanos Bakirtzis received the Diploma degree in electrical and computer engineering from the National Technical University of Athens, Athens, Greece, in 2017,  the M.A.Sc. degree in electrical and computer engineering from the University of Toronto, Toronto, ON, Canada, in 2020. and the Ph.D. degree in Computer Science from the University of Cambridge, Cambridge, U.K, where he is currently a research associate.

He has received the Marie Sklodowska-Curie Actions-Innovative Training Networks Fellowship, the Onassis Foundation Scholarship, the IEEE AP-S C.J. Reddy Travel Grant, the Foundation for Education and European Culture Grant, and the  UKRI EPSRC IAA Strategic Impact Partnership Fund 2025

Research

Artificial Intelligence, Scientific Machine Learning, Wireless Communications, Mobile Networks, Radio Propagation Modelling, Computational Sciences

Publications

Theses / dissertations

  • Bakirtzis, SS., 2024 (No publication date). Applications of Artificial Intelligence to Electromagnetism and Indoor Wireless Networks
    Doi: 10.17863/CAM.113346
  • Conference proceedings

  • Bakirtzis, S., Fiore, M. and Wassell, I., 2024 (Accepted for publication). Towards Physics-Informed Graph Neural Network-based Computational Electromagnetics
    Doi: 10.17863/CAM.108313
  • Bakirtzis, S., Fiore, M. and Wassell, I., 2024. Towards Physics-Informed Graph Neural Network-based Computational Electromagnetics IEEE Antennas and Propagation Society, AP-S International Symposium (Digest),
    Doi: 10.1109/AP-S/INC-USNC-URSI52054.2024.10686000
  • Bakirtzis, S., Zanella, AF., Rubrichi, S., Ziemlicki, C., Smoreda, Z., Wassell, I., Zhang, J. and Fiore, M., 2023. Characterizing Mobile Service Demands at Indoor Cellular Networks Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC,
    Doi: 10.1145/3618257.3624807
  • Qiu, K., Bakirtzis, S., Wassell, IJ., Song, H., Lin, K. and Zhang, J., 2023. IRDM: A Generative Diffusion Model for Indoor Radio Map Interpolation. GLOBECOM,
  • Qiu, K., Bakirtzis, S., Song, H., Wassell, IJ. and Zhang, J., 2023. Deep Learning-Based Path Loss Prediction for Outdoor Wireless Communication Systems. ICASSP,
  • Bakirtzis, S., Wassell, IJ., Fiore, M. and Zhang, J., 2022. Stochastic Evaluation of Indoor Wireless Network Performance with Data-Driven Propagation Models. GLOBECOM,
  • Bakirtzis, S., Wassell, I., Fiore, M. and Zhang, J., 2022. Stochastic Evaluation of Indoor Wireless Network Performance with Data-Driven Propagation Models Proceedings - IEEE Global Communications Conference, GLOBECOM,
    Doi: 10.1109/GLOBECOM48099.2022.10001717
  • Bakirtzis, S., Qiu, K., Zhang, J. and Wassell, I., 2021 (Accepted for publication). DeepRay: Deep Learning Meets Ray-Tracing 2022 16th European Conference on Antennas and Propagation, EuCAP 2022,
    Doi: 10.23919/EuCAP53622.2022.9769203
  • Journal articles

  • Bakirtzis, S., Wassell, I., Fiore, M. and Zhang, J., 2024. AI-Assisted Indoor Wireless Network Planning With Data-Driven Propagation Models IEEE Network, v. 38
    Doi: 10.1109/MNET.2024.3397801
  • Ferreira, GO., Zanella, AF., Bakirtzis, S., Ravazzi, C., Dabbene, F., Calafiore, GC., Wassell, I., Zhang, J. and Fiore, M., 2024. A Joint Optimization Approach for Power-Efficient Heterogeneous OFDMA Radio Access Networks IEEE Journal on Selected Areas in Communications,
    Doi: 10.1109/JSAC.2024.3431524
  • Bakirtzis, S., Chen, J., Qiu, K., Zhang, J. and Wassell, I., 2022. EM DeepRay: An Expedient, Generalizable and Realistic Data-Driven Indoor Propagation Model IEEE Transactions on Antennas and Propagation,
    Doi: 10.1109/tap.2022.3172221
  • Bakirtzis, S., Qiu, K., Wassell, I., Fiore, M. and Zhang, J., 2022. Deep Learning-based Multivariate Time Series Classification for Indoor/Outdoor Detection IEEE Internet of Things Journal,
    Doi: 10.1109/jiot.2022.3190555
  • Qiu, K., Bakirtzis, S., Song, H., Zhang, J. and Wassell, I., 2022. Pseudo Ray-Tracing: Deep Leaning Assisted Outdoor mm-Wave Path Loss Prediction IEEE Wireless Communications Letters, v. 11
    Doi: 10.1109/LWC.2022.3175091
  • Datasets

  • Bakirtzis, S., Qiu, K., Wassell, I., Fiore, M. and Zhang, J., 2022. Research data supporting ''Deep Learning-based Multivariate Time Series Classification for Indoor Outdoor Detection"
    Doi: 10.17863/CAM.82668
  • Contact Details

    Room: 
    SN21
    Email: 

    ssb45@cam.ac.uk