Journal articles
Sathyanarayanan, A., Mueller, TT., Ali Moni, M., Schueler, K., ECNP TWG Network members, , Baune, BT., Lio, P., Mehta, D., Baune, BT., Dierssen, M., Ebert, B., Fabbri, C., Fusar-Poli, P., Gennarelli, M., Harmer, C., Howes, OD., Janzing, JGE., Lio, P., Maron, E., Mehta, D., Minelli, A., Nonell, L., Pisanu, C., Potier, M-C., Rybakowski, F., Serretti, A., Squassina, A., Stacey, D., van Westrhenen, R. and Xicota, L., 2023. Multi-omics data integration methods and their applications in psychiatric disorders. Eur Neuropsychopharmacol, v. 69
Doi: http://doi.org/10.1016/j.euroneuro.2023.01.001
Waqas, M., Aziz, S., Liò, P., Khan, Y., Ali, A., Iqbal, A., Khan, F. and Almajhdi, FN., 2023. Immunoinformatics design of multivalent epitope vaccine against monkeypox virus and its variants using membrane-bound, enveloped, and extracellular proteins as targets. Front Immunol, v. 14
Doi: http://doi.org/10.3389/fimmu.2023.1091941
Islam, MS., Hasan, KF., Sultana, S., Uddin, S., Lio', P., Quinn, JMW. and Moni, MA., 2023. HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Neural Netw, v. 162
Doi: 10.1016/j.neunet.2023.03.004
Del Duca, S., Semenzato, G., Esposito, A., Liò, P. and Fani, R., 2023. The Operon as a Conundrum of Gene Dynamics and Biochemical Constraints: What We Have Learned from Histidine Biosynthesis. Genes (Basel), v. 14
Doi: http://doi.org/10.3390/genes14040949
Bongini, P., Scarselli, F., Bianchini, M., Dimitri, GM., Pancino, N. and Lio, P., 2023. Modular Multi-Source Prediction of Drug Side-Effects With DruGNN. IEEE/ACM Trans Comput Biol Bioinform, v. 20
Doi: 10.1109/TCBB.2022.3175362
Buterez, D., Janet, JP., Kiddle, SJ. and Liò, P., 2023. MF-PCBA: Multifidelity High-Throughput Screening Benchmarks for Drug Discovery and Machine Learning. J Chem Inf Model, v. 63
Doi: 10.1021/acs.jcim.2c01569
Charoenkwan, P., Pipattanaboon, C., Nantasenamat, C., Hasan, MM., Moni, MA., Lio', P. and Shoombuatong, W., 2023. PSRTTCA: A new approach for improving the prediction and characterization of tumor T cell antigens using propensity score representation learning. Comput Biol Med, v. 152
Doi: http://doi.org/10.1016/j.compbiomed.2022.106368
Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Liò, P., Maggini, M. and Melacci, S., 2023. Logic Explained Networks Artificial Intelligence, v. 314
Doi: http://doi.org/10.1016/j.artint.2022.103822
Yang, J., Li, X-X., Liu, F., Nie, D., Lio, P., Qi, H. and Shen, D., 2023. Fast Multi-Contrast MRI Acquisition by Optimal Sampling of Information Complementary to Pre-Acquired MRI Contrast. IEEE Trans Med Imaging, v. 42
Doi: 10.1109/TMI.2022.3227262
Petrović, A., Nikolić, M., Bugarić, U., Delibašić, B. and Lio, P., 2023. Controlling highway toll stations using deep learning, queuing theory, and differential evolution Engineering Applications of Artificial Intelligence, v. 119
Doi: http://doi.org/10.1016/j.engappai.2022.105683
Lu, X., Liao, Y., Liu, C., Lio, P. and Hui, P., 2022. Heterogeneous Model Fusion Federated Learning Mechanism Based on Model Mapping IEEE Internet of Things Journal, v. 9
Doi: 10.1109/JIOT.2021.3110908
Charoenkwan, P., Schaduangrat, N., Hasan, MM., Moni, MA., Lió, P. and Shoombuatong, W., 2022. Empirical comparison and analysis of machine learning-based predictors for predicting and analyzing of thermophilic proteins. EXCLI J, v. 21
Doi: 10.17179/excli2022-4723
Lio, P., Simpson, E., Pierce, E., Cronin, A., McLean, R., Dave, SS., Kovacik, AJ., Feely, M. and Silverberg, J., 2022. 33273 Impact of atopic dermatitis lesion locations on patient burden: A real-world study Journal of the American Academy of Dermatology, v. 87
Doi: 10.1016/j.jaad.2022.06.727
Barbero, F., Bodnar, C., Borde, HSDO., Bronstein, M., Veličković, P. and Liò, P., 2022. Sheaf Neural Networks with Connection Laplacians
Charoenkwan, P., Schaduangrat, N., Lio', P., Moni, MA., Shoombuatong, W. and Manavalan, B., 2022. Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework. iScience, v. 25
Doi: http://doi.org/10.1016/j.isci.2022.104883
Chen, Y., Schonlieb, CB., Lio, P., Leiner, T., Dragotti, PL., Wang, G., Rueckert, D., Firmin, D. and Yang, G., 2022. AI-Based Reconstruction for Fast MRI-A Systematic Review and Meta-Analysis Proceedings of the IEEE, v. 110
Doi: 10.1109/JPROC.2022.3141367
Liu, L., Huang, Z., Liò, P., Schönlieb, C-B. and Aviles-Rivero, AI., 2022. PC-SwinMorph: Patch Representation for Unsupervised Medical Image
Registration and Segmentation
Tullos, KZ., Barta, K., Lio, P. and Winders, T., 2022. 171 International survey: Effects of cumulative exposure to corticosteroids in patients with eczema, including topical steroid withdrawal syndrome (TSWS) Journal of Investigative Dermatology, v. 142
Doi: 10.1016/j.jid.2022.05.178
Huang, J., Fang, Y., Nan, Y., Wu, H., Wu, Y., Gao, Z., Li, Y., Wang, Z., Lio, P., Rueckert, D., Eldar, YC. and Yang, G., 2022. Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers
Yi, K., Chen, J., Wang, YG., Zhou, B., Liò, P., Fan, Y. and Hamann, J., 2022. Approximate Equivariance SO(3) Needlet Convolution
Azevedo, T., Bethlehem, RAI., Whiteside, D., Swaddiwudhipong, N., Rowe, J., Lió, P. and Rittman, T., 2022. Identifying healthy individuals with Alzheimer neuroimaging phenotypes in the UK Biobank
Doi: 10.1101/2022.01.05.22268795
Charoenkwan, P., Schaduangrat, N., Lio', P., Moni, MA., Manavalan, B. and Shoombuatong, W., 2022. NEPTUNE: A novel computational approach for accurate and large-scale identification of tumor homing peptides. Comput Biol Med, v. 148
Doi: 10.1016/j.compbiomed.2022.105700
Shadbahr, T., Roberts, M., Stanczuk, J., Gilbey, J., Teare, P., Dittmer, S., Thorpe, M., Torne, RV., Sala, E., Lio, P., Patel, M., Collaboration, AIX-COVNET., Rudd, JHF., Mirtti, T., Rannikko, A., Aston, JAD., Tang, J. and Schönlieb, C-B., 2022. Classification of datasets with imputed missing values: does imputation
quality matter?
Wang, Y., Wang, YG., Hu, C., Li, M., Fan, Y., Otter, N., Sam, I., Gou, H., Hu, Y., Kwok, T., Zalcberg, J., Boussioutas, A., Daly, RJ., Montúfar, G., Liò, P., Xu, D., Webb, GI. and Song, J., 2022. Cell graph neural networks enable the precise prediction of patient survival in gastric cancer. NPJ Precis Oncol, v. 6
Doi: http://doi.org/10.1038/s41698-022-00285-5
Dimitri, GM., Spasov, S., Duggento, A., Passamonti, L., Lió, P. and Toschi, N., 2022. Multimodal and multicontrast image fusion via deep generative models Information Fusion, v. 88
Doi: http://doi.org/10.1016/j.inffus.2022.07.017
Dhillon, SK., Ganggayah, MD., Sinnadurai, S., Lio, P. and Taib, NA., 2022. Theory and Practice of Integrating Machine Learning and Conventional Statistics in Medical Data Analysis. Diagnostics (Basel), v. 12
Doi: http://doi.org/10.3390/diagnostics12102526
Lu, M., Christensen, C., Weber, J., Konno, T., Läubli, N., Scherer, K., Avezov, E., Lio, P., Lapkin, A., Kaminski Schierle, G. and Kaminski, C., 2022. ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology for video-rate super-resolution imaging
Doi: 10.1101/2022.05.17.492189
Chaturvedi, A., Tiwari, A., Chaturvedi, S. and Lio, P., 2022. System Neural Network: Evolution and Change Based Structure Learning IEEE Transactions on Artificial Intelligence, v. 3
Doi: http://doi.org/10.1109/TAI.2022.3143778
Charoenkwan, P., Chumnanpuen, P., Schaduangrat, N., Lio', P., Moni, MA. and Shoombuatong, W., 2022. Improved prediction and characterization of blood-brain barrier penetrating peptides using estimated propensity scores of dipeptides. J Comput Aided Mol Des, v. 36
Doi: http://doi.org/10.1007/s10822-022-00476-z
Zafeiriou, S., Bronstein, M., Cohen, T., Vinyals, O., Song, L., Leskovec, J., Lio, P., Bruna, J. and Gori, M., 2022. Guest Editorial: Non-Euclidean Machine Learning IEEE Transactions on Pattern Analysis and Machine Intelligence, v. 44
Doi: 10.1109/TPAMI.2021.3129857
Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Jamnik, M. and Lio, P., 2022. Encoding Concepts in Graph Neural Networks
Charoenkwan, P., Schaduangrat, N., Moni, MA., Lio', P., Manavalan, B. and Shoombuatong, W., 2022. SAPPHIRE: A stacking-based ensemble learning framework for accurate prediction of thermophilic proteins. Comput Biol Med, v. 146
Doi: http://doi.org/10.1016/j.compbiomed.2022.105704
Aslam, AA., Baksh, RA., Pape, SE., Strydom, A., Gulliford, MC., Chan, LF. and GO-DS21 Consortium, , 2022. Diabetes and Obesity in Down Syndrome Across the Lifespan: A Retrospective Cohort Study Using U.K. Electronic Health Records. Diabetes Care, v. 45
Doi: 10.2337/dc22-0482
Dodson, J. and Lio, PA., 2022. Biologics and Small Molecule Inhibitors: an Update in Therapies for Allergic and Immunologic Skin Diseases. Curr Allergy Asthma Rep,
Doi: http://doi.org/10.1007/s11882-022-01047-w
Pisanu, C., Severino, G., De Toma, I., Dierssen, M., Fusar-Poli, P., Gennarelli, M., Lio, P., Maffioletti, E., Maron, E., Mehta, D., Minelli, A., Potier, M-C., Serretti, A., Stacey, D., van Westrhenen, R., Xicota, L., European College of Neuropsychopharmacology (ECNP) Pharmacogenomics & Transcriptomics Network, , Baune, BT. and Squassina, A., 2022. Transcriptional biomarkers of response to pharmacological treatments in severe mental disorders: A systematic review. Eur Neuropsychopharmacol, v. 55
Doi: 10.1016/j.euroneuro.2021.12.005
Rafidi, B., Kondapi, K., Beestrum, M., Basra, S. and Lio, P., 2022. Psychological Therapies and Mind-Body Techniques in the Management of Dermatologic Diseases: A Systematic Review. Am J Clin Dermatol, v. 23
Doi: http://doi.org/10.1007/s40257-022-00714-y
Azevedo, T., Campbell, A., Romero-Garcia, R., Passamonti, L., Bethlehem, RAI., Liò, P. and Toschi, N., 2022. A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional MRI data. Med Image Anal, v. 79
Doi: http://doi.org/10.1016/j.media.2022.102471
Charoenkwan, P., Chiangjong, W., Nantasenamat, C., Moni, MA., Lio', P., Manavalan, B. and Shoombuatong, W., 2022. SCMTHP: A New Approach for Identifying and Characterizing of Tumor-Homing Peptides Using Estimated Propensity Scores of Amino Acids. Pharmaceutics, v. 14
Doi: 10.3390/pharmaceutics14010122
Barta, K., Fonacier, LS., Hart, M., Lio, P., Tullos, K., Sheary, B. and Winders, TA., 2022. Corticosteroid exposure and cumulative effects in patients with eczema: Results from a patient survey. Ann Allergy Asthma Immunol,
Doi: 10.1016/j.anai.2022.09.031
Zago, E., Dal Molin, A., Dimitri, GM., Xumerle, L., Pirazzini, C., Bacalini, MG., Maturo, MG., Azevedo, T., Spasov, S., Gómez-Garre, P., Periñán, MT., Jesús, S., Baldelli, L., Sambati, L., Calandra-Buonaura, G., Garagnani, P., Provini, F., Cortelli, P., Mir, P., Trenkwalder, C., Mollenhauer, B., Franceschi, C., Liò, P., Nardini, C. and PROPAG-AGEING Consortium, , 2022. Early downregulation of hsa-miR-144-3p in serum from drug-naïve Parkinson's disease patients. Sci Rep, v. 12
Doi: http://doi.org/10.1038/s41598-022-05227-6
Tong, C., Rocheteau, E., Veličković, P., Lane, N. and Liò, P., 2022. Predicting Patient Outcomes with Graph Representation Learning Studies in Computational Intelligence, v. 1013
Doi: 10.1007/978-3-030-93080-6_20
Oykhman, P., Dookie, J., Al-Rammahy, H., de Benedetto, A., Asiniwasis, RN., LeBovidge, J., Wang, J., Ong, PY., Lio, P., Gutierrez, A., Capozza, K., Martin, SA., Frazier, W., Wheeler, K., Boguniewicz, M., Spergel, JM., Greenhawt, M., Silverberg, JI., Schneider, L. and Chu, DK., 2022. Dietary Elimination for the Treatment of Atopic Dermatitis: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract, v. 10
Doi: http://doi.org/10.1016/j.jaip.2022.06.044
Charoenkwan, P., Ahmed, S., Nantasenamat, C., Quinn, JMW., Moni, MA., Lio', P. and Shoombuatong, W., 2022. AMYPred-FRL is a novel approach for accurate prediction of amyloid proteins by using feature representation learning. Sci Rep, v. 12
Doi: http://doi.org/10.1038/s41598-022-11897-z
Bodnar, C., Giovanni, FD., Chamberlain, BP., Liò, P. and Bronstein, MM., 2022. Neural Sheaf Diffusion: A Topological Perspective on Heterophily and
Oversmoothing in GNNs
Reich, K., Lio, PA., Bissonnette, R., Alexis, AF., Lebwohl, MG., Pink, AE., Kabashima, K., Boguniewicz, M., Nowicki, RJ., Valdez, H., Zhang, F., DiBonaventura, M., Cameron, MC. and Clibborn, C., 2022. Magnitude and Time Course of Response to Abrocitinib for Moderate-to-Severe Atopic Dermatitis. J Allergy Clin Immunol Pract,
Doi: http://doi.org/10.1016/j.jaip.2022.08.042
Yang, J., Küstner, T., Hu, P., Liò, P. and Qi, H., 2022. End-to-End Deep Learning of Non-rigid Groupwise Registration and Reconstruction of Dynamic MRI. Front Cardiovasc Med, v. 9
Doi: http://doi.org/10.3389/fcvm.2022.880186
Coggan, H., Andres Terre, H. and Liò, P., 2022. A novel interpretable machine learning algorithm to identify optimal parameter space for cancer growth. Front Big Data, v. 5
Doi: 10.3389/fdata.2022.941451
Lu, X., Xue, A., Lio, P. and Hui, P., 2022. Intelligent Decision Making Based on the Combination of Deep Reinforcement Learning and an Influence Map Applied Sciences (Switzerland), v. 12
Doi: http://doi.org/10.3390/app122211458
Patel, S., Patel, S., Shah, RM., Shah, S., Doshi, S. and Lio, PA., 2022. Engagement in sun-protective practices based on health insurance coverage: A cross-sectional analysis. J Am Acad Dermatol,
Doi: http://doi.org/10.1016/j.jaad.2022.07.031
Charoenkwan, P., Schaduangrat, N., Lio, P., Moni, MA., Chumnanpuen, P. and Shoombuatong, W., 2022. iAMAP-SCM: A Novel Computational Tool for Large-Scale Identification of Antimalarial Peptides Using Estimated Propensity Scores of Dipeptides. ACS Omega, v. 7
Doi: 10.1021/acsomega.2c04465
Patel, S., Patel, S., Shah, RM., Doshi, S., Shah, S. and Lio, PA., 2022. Effects of sun protection on serum vitamin D deficiency. Photodermatol Photoimmunol Photomed,
Doi: http://doi.org/10.1111/phpp.12838
Buffelli, D., Liò, P. and Vandin, F., 2022. SizeShiftReg: a Regularization Method for Improving Size-Generalization
in Graph Neural Networks
Lu, X., Yang, F., Zou, L., Lio, P. and Hui, P., 2022. An LTE Authentication and Key Agreement Protocol Based on the ECC Self-Certified Public Key IEEE/ACM Transactions on Networking,
Doi: http://doi.org/10.1109/TNET.2022.3207360
Ahamad, MM., Aktar, S., Uddin, MJ., Rashed-Al-Mahfuz, M., Azad, AKM., Uddin, S., Alyami, SA., Sarker, IH., Khan, A., Liò, P., Quinn, JMW. and Moni, MA., 2022. Adverse Effects of COVID-19 Vaccination: Machine Learning and Statistical Approach to Identify and Classify Incidences of Morbidity and Postvaccination Reactogenicity. Healthcare (Basel), v. 11
Doi: http://doi.org/10.3390/healthcare11010031
Christensen, CN., Lu, M., Ward, EN., Lio, P. and Kaminski, CF., 2022. Spatio-temporal Vision Transformer for Super-resolution Microscopy
Yang, AF., Chun, KS., Yu, L., Walter, JR., Kim, D., Lee, JY., Jeong, H., Keller, MC., Seshadri, DR., Olagbenro, MO., Bae, JW., Reuther, W., Wu, E., Okamoto, K., Ikoma, A., Lio, PA., Fishbein, AB., Paller, AS. and Xu, S., 2022. Validation of a hand-mounted wearable sensor for scratching movements in adults with atopic dermatitis. J Am Acad Dermatol,
Doi: http://doi.org/10.1016/j.jaad.2022.09.032
Schaduangrat, N., Anuwongcharoen, N., Moni, MA., Lio', P., Charoenkwan, P. and Shoombuatong, W., 2022. StackPR is a new computational approach for large-scale identification of progesterone receptor antagonists using the stacking strategy. Sci Rep, v. 12
Doi: http://doi.org/10.1038/s41598-022-20143-5
Ayorinde, JOO., Citterio, F., Landrò, M., Peruzzo, E., Islam, T., Tilley, S., Taylor, G., Bardsley, V., Liò, P., Samoshkin, A. and Pettigrew, GJ., 2022. Artificial Intelligence You Can Trust: What Matters Beyond Performance When Applying Artificial Intelligence to Renal Histopathology? J Am Soc Nephrol, v. 33
Doi: http://doi.org/10.1681/ASN.2022010069
Charoenkwan, P., Nantasenamat, C., Hasan, MM., Moni, MA., Lio', P., Manavalan, B. and Shoombuatong, W., 2022. StackDPPIV: A novel computational approach for accurate prediction of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides. Methods, v. 204
Doi: 10.1016/j.ymeth.2021.12.001
Ahmad, S., Charoenkwan, P., Quinn, JMW., Moni, MA., Hasan, MM., Lio', P. and Shoombuatong, W., 2022. SCORPION is a stacking-based ensemble learning framework for accurate prediction of phage virion proteins. Sci Rep, v. 12
Doi: http://doi.org/10.1038/s41598-022-08173-5
Kwatra, SG., De Bruin-Weller, M., Lio, P., Deleuran, M., Ofori, S., Teixeira, HD., Calimlim, B., Liu, Y. and Weidinger, S., 2022. 33152 Targeted combined endpoint improvement in patient and disease domains in atopic dermatitis (AD) among adults with moderate-to-severe AD treated with upadacitinib Journal of the American Academy of Dermatology, v. 87
Doi: 10.1016/j.jaad.2022.06.864
Dimitri, GM., Meoni, G., Tenori, L., Luchinat, C. and Lió, P., 2022. NMR Spectroscopy Combined with Machine Learning Approaches for Age Prediction in Healthy and Parkinson’s Disease Cohorts through Metabolomic Fingerprints Applied Sciences (Switzerland), v. 12
Doi: http://doi.org/10.3390/app12188954
Borgheresi, R., Barucci, A., Colantonio, S., Aghakhanyan, G., Assante, M., Bertelli, E., Carlini, E., Carpi, R., Caudai, C., Cavallero, D., Cioni, D., Cirillo, R., Colcelli, V., Dell'Amico, A., Di Gangi, D., Erba, PA., Faggioni, L., Falaschi, Z., Gabelloni, M., Gini, R., Lelii, L., Liò, P., Lorito, A., Lucarini, S., Manghi, P., Mangiacrapa, F., Marzi, C., Mazzei, MA., Mercatelli, L., Mirabile, A., Mungai, F., Miele, V., Olmastroni, M., Pagano, P., Paiar, F., Panichi, G., Pascali, MA., Pasquinelli, F., Shortrede, JE., Tumminello, L., Volterrani, L., Neri, E. and NAVIGATOR Consortium Group, , 2022. NAVIGATOR: an Italian regional imaging biobank to promote precision medicine for oncologic patients. Eur Radiol Exp, v. 6
Doi: http://doi.org/10.1186/s41747-022-00306-9
Buterez, D., Bica, I., Tariq, I., Andrés-Terré, H. and Liò, P., 2022. CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks. Bioinformatics, v. 38
Doi: 10.1093/bioinformatics/btab804
Viñas, R., Joshi, CK., Georgiev, D., Dumitrascu, B., Gamazon, ER. and Liò, P., 2022. Hypergraph factorisation for multi-tissue gene expression imputation
Doi: 10.1101/2022.07.31.502211
Meoni, G., Tenori, L., Schade, S., Licari, C., Pirazzini, C., Bacalini, MG., Garagnani, P., Turano, P., PROPAG-AGEING Consortium, , Trenkwalder, C., Franceschi, C., Mollenhauer, B. and Luchinat, C., 2022. Metabolite and lipoprotein profiles reveal sex-related oxidative stress imbalance in de novo drug-naive Parkinson's disease patients. NPJ Parkinsons Dis, v. 8
Doi: http://doi.org/10.1038/s41531-021-00274-8
Lio, P., Anjuwon, S., Grivet-Seyve, M. and Emesiani, C., 2022. 33954 Efficacy, tolerability, and acceptability of a balm formulated with dimethicone 1% in type II diabetes patients with dry, cracked skin Journal of the American Academy of Dermatology, v. 87
Doi: 10.1016/j.jaad.2022.06.684
Goh, CWJ., Bodnar, C. and Liò, P., 2022. Simplicial Attention Networks
Deasy, J., Simidjievski, N. and Liò, P., 2021. Heavy-tailed denoising score matching
Azevedo, T., Dimitri, GM., Lió, P. and Gamazon, ER., 2021. Multilayer modelling of the human transcriptome and biological mechanisms of complex diseases and traits. NPJ Syst Biol Appl, v. 7
Doi: http://doi.org/10.1038/s41540-021-00186-6
Zhu, M., Lio, P. and Moss, J., 2021. Modular Neural Ordinary Differential Equations
van Der Schaar, M., Alaa, AM., Floto, A., Gimson, A., Scholtes, S., Wood, A., McKinney, E., Jarrett, D., Lio, P. and Ercole, A., 2021. How artificial intelligence and machine learning can help healthcare systems respond to COVID-19 Machine Learning, v. 110
Doi: http://doi.org/10.1007/s10994-020-05928-x
Weber, JM., Lindenmeyer, CP., Liò, P. and Lapkin, AA., 2021. Teaching sustainability as complex systems approach: a sustainable development goals workshop International Journal of Sustainability in Higher Education, v. 22
Doi: http://doi.org/10.1108/IJSHE-06-2020-0209
Islam, MR., Moni, MA., Islam, MM., Rashed-Al-Mahfuz, M., Islam, MS., Hasan, MK., Hossain, MS., Ahmad, M., Uddin, S., Azad, A., Alyami, SA., Ahad, MAR. and Lio, P., 2021. Emotion Recognition From EEG Signal Focusing on Deep Learning and Shallow Learning Techniques IEEE Access, v. 9
Doi: 10.1109/ACCESS.2021.3091487
Ma, Z., Xuan, J., Wang, YG., Li, M. and Liò, P., 2021. tion Processing Systems vol 33 ed H Larochelle, M Ranzato, R Hadsell, M F Balcan and H Lin (New York: Curran Associates) pp 16421–33. ... Journal of Statistical Mechanics: Theory and Experiment, v. 2021
Doi: 10.1088/1742-5468/ac3ae4
Corso, G., Ying, R., Pandy, M., Veličković, P., Leskovec, J. and Lio, P., 2021. Neural Distance Embeddings for Biological Sequences Advances in Neural Information Processing Systems, v. 22
Lio, P., Eichenfield, L., Guttman, E., Piguet, V. and Simpson, E., 2021. 28081 Strategies to improve quality of atopic dermatitis care in North America: Results from the Atopic Dermatitis Quality of Care (ADQoC) initiative Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.705
Castiglione, F., Deb, D., Srivastava, AP., Liò, P. and Liso, A., 2021. From Infection to Immunity: Understanding the Response to SARS-CoV2 Through In-Silico Modeling. Front Immunol, v. 12
Doi: 10.3389/fimmu.2021.646972
Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I. and Liò, P., 2021. Cosmonet: An r package for survival analysis using screening-network methods Mathematics, v. 9
Doi: http://doi.org/10.3390/math9243262
Agnihotri, G., Lio, PA. and Lee, KC., 2021. 27880 Differences in pediatric vs adult clinical trial designs for atopic dermatitis Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.671
Vecchio, AD., Deac, A., Liò, P. and Veličković, P., 2021. Neural message passing for joint paratope-epitope prediction
Amor, A., Lio', P., Singh, V., Torné, RV. and Terre, HA., 2021. Graph Representation Learning on Tissue-Specific Multi-Omics
Lu, X., Wang, F., Jiang, C. and Lio, P., 2021. A universal malicious documents static detection framework based on feature generalization Applied Sciences (Switzerland), v. 11
Doi: 10.3390/app112412134
Lio, P., Soung, J., Cather, J., Casillas, M., Ding, Y., De Lozier, AM., Chen, Y-F. and Simpson, E., 2021. 26691 Rapid and concurrent improvements in the signs and symptoms of atopic dermatitis with baricitinib in the phase 3 study, BREEZE-AD5 Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.470
Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M. and Melacci, S., 2021. Entropy-based Logic Explanations of Neural Networks In Proceedings of the AAAI Conference on Artificial Intelligence, v. 36
Magister, LC., Kazhdan, D., Singh, V. and Liò, P., 2021. GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph
Neural Networks
Stärk, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Günnemann, S. and Liò, P., 2021. 3D Infomax improves GNNs for Molecular Property Prediction 39th International Conference on Machine Learning (ICML 2022),
Lio, PA., Spergel, JM., Cork, MJ., Blaiss, MS., Kessel, A., Cantrell, WC., Werth, JL., O’Connell, MA., Zang, C. and Takiya, L., 2021. 26304 Efficacy and safety of crisaborole in patients with mild-to-moderate atopic dermatitis with and without comorbid allergies or asthma Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.406
Bodnar, C., Frasca, F., Otter, N., Wang, YG., Liò, P., Montúfar, G. and Bronstein, M., 2021. Weisfeiler and Lehman Go Cellular: CW Networks Advances in Neural Information Processing Systems, v. 4
Pirazzini, C., Azevedo, T., Baldelli, L., Bartoletti-Stella, A., Calandra-Buonaura, G., Dal Molin, A., Dimitri, GM., Doykov, I., Gómez-Garre, P., Hägg, S., Hällqvist, J., Halsband, C., Heywood, W., Jesús, S., Jylhävä, J., Kwiatkowska, KM., Labrador-Espinosa, MA., Licari, C., Maturo, MG., Mengozzi, G., Meoni, G., Milazzo, M., Periñán-Tocino, MT., Ravaioli, F., Sala, C., Sambati, L., Schade, S., Schreglmann, S., Spasov, S., Tenori, L., Williams, D., Xumerle, L., Zago, E., Bhatia, KP., Capellari, S., Cortelli, P., Garagnani, P., Houlden, H., Liò, P., Luchinat, C., Delledonne, M., Mills, K., Mir, P., Mollenhauer, B., Nardini, C., Pedersen, NL., Provini, F., Strom, S., Trenkwalder, C., Turano, P., Bacalini, MG., Franceschi, C. and PROPAG-AGEING Consortium, , 2021. A geroscience approach for Parkinson's disease: Conceptual framework and design of PROPAG-AGEING project. Mech Ageing Dev, v. 194
Doi: http://doi.org/10.1016/j.mad.2020.111426
Lio, P., Han, G., Lain, E., Maari, C., Ball, S., Sun, L., DeLozier, AM., Buchanan, A., Ding, Y. and Eichenfield, LF., 2021. 26053 Improvement in sleep is associated with improved quality of life in adult patients with moderate-to-severe atopic dermatitis: Results from a phase 3 trial of baricitinib therapy Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.080
Day, B., Viñas, R., Simidjievski, N. and Liò, P., 2021. Attentional Meta-learners for Few-shot Polythetic Classification
Opolka, FL., Zhi, Y-C., Liò, P. and Dong, X., 2021. Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets
Lio, PA., Fantus, PP., Eichenbrenner, PJ., Nelson, M., Fajardo, KI., Simone, LC. and Carter, JD., 2021. 25407 Atopic dermatitis web apps: Tethered tools to support patients and providers in shared decision-making, self-management, and therapy access Journal of the American Academy of Dermatology, v. 85
Doi: 10.1016/j.jaad.2021.06.051
Fanfani, V., Vinas Torne, R., Lio', P. and Stracquadanio, G., 2021. Discovering cancer driver genes and pathways using stochastic block model graph neural networks
Doi: 10.1101/2021.06.29.450342
Caccuri, F., D'Ursi, P., Uggeri, M., Bugatti, A., Mazzuca, P., Zani, A., Filippini, F., Salmona, M., Ribatti, D., Slevin, M., Orro, A., Lu, W., Liò, P., Gallo, RC. and Caruso, A., 2021. Evolution toward beta common chain receptor usage links the matrix proteins of HIV-1 and its ancestors to human erythropoietin. Proc Natl Acad Sci U S A, v. 118
Doi: http://doi.org/10.1073/pnas.2021366118
Nain, Z., Rana, HK., Liò, P., Islam, SMS., Summers, MA. and Moni, MA., 2021. Pathogenetic profiling of COVID-19 and SARS-like viruses. Briefings Bioinform., v. 22
Doi: 10.1093/bib/bbaa173
Ciravegna, G., Barbiero, P., Giannini, F., Gori, M., Lió, P., Maggini, M. and Melacci, S., 2021. Logic Explained Networks Artificial Intelligence, 103822, 2022,
D'Agostino, D., Liò, P., Aldinucci, M. and Merelli, I., 2021. Advantages of using graph databases to explore chromatin conformation capture experiments. BMC Bioinformatics, v. 22
Doi: http://doi.org/10.1186/s12859-020-03937-0
Sivesind, TE., Maghfour, J., Rietcheck, HR., Rundle, C., Dellavalle, R., Lio, P., Dunnick, C., Fernandez, J. and Yardley, H., 2021. 492 Safety profile of topical cannabidiol and palmitoylethanolamide: A compilation of clinical and in vitro studies Journal of Investigative Dermatology, v. 141
Doi: 10.1016/j.jid.2021.02.516
Zheng, X., Zhou, B., Gao, J., Wang, YG., Lio, P., Li, M. and Montufar, G., 2021. How Framelets Enhance Graph Neural Networks INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, v. 139
Chen, K., Xu, H., Lei, Y., Lio, P., Li, Y., Guo, H. and Ali Moni, M., 2021. Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance. Brief Bioinform, v. 22
Doi: 10.1093/bib/bbab100
Jamasb, AR., Day, B., Cangea, C., Liò, P. and Blundell, TL., 2021. Deep Learning for Protein-Protein Interaction Site Prediction. Methods Mol Biol, v. 2361
Doi: http://doi.org/10.1007/978-1-0716-1641-3_16
Bagnoli, F., Lorini, D. and Lió, P., 2021. Modeling Social Groups, Policies and Cognitive Behavior in COVID-19 Epidemic Phases. Basic Scenarios Substantia, v. 4
Doi: 10.13128/Substantia-914
Zhou, B., Liu, X., Liu, Y., Huang, Y., Liò, P. and Wang, Y., 2021. Spectral Transform Forms Scalable Transformer
Day, B., Norcliffe, A., Moss, J. and Liò, P., 2021. Meta-learning using privileged information for dynamics
Georgiev, D., Barbiero, P., Kazhdan, D., Veličković, P. and Liò, P., 2021. Algorithmic Concept-based Explainable Reasoning
Lu, X., Fu, S., Jiang, C. and Lio, P., 2021. A Fine-Grained IoT Data Access Control Scheme Combining Attribute-Based Encryption and Blockchain Security and Communication Networks, v. 2021
Doi: 10.1155/2021/5308206
Yang, J., Li, X-X., Liu, F., Nie, D., Lio, P., Qi, H. and Shen, D., 2021. Fast T2w/FLAIR MRI Acquisition by Optimal Sampling of Information
Complementary to Pre-acquired T1w MRI
Rashed-Al-Mahfuz, M., Moni, MA., Lio', P., Islam, SMS., Berkovsky, S., Khushi, M. and Quinn, JMW., 2021. Deep convolutional neural networks based ECG beats classification to diagnose cardiovascular conditions Biomed Eng Lett, v. 11
Doi: 10.1007/s13534-021-00185-w
Qendro, L., Campbell, A., Liò, P. and Mascolo, C., 2021. High Frequency EEG Artifact Detection with Uncertainty via Early Exit
Paradigm
Shankar, V., Tibshirani, R. and Zare, RN., 2021. MassExplorer: a computational tool for analyzing desorption electrospray ionization mass spectrometry data. Bioinformatics,
Doi: 10.1093/bioinformatics/btab282
Zhu, J., Tan, C., Yang, J., Yang, G. and Lio', P., 2021. Arbitrary Scale Super-Resolution for Medical Images. Int J Neural Syst, v. 31
Doi: 10.1142/S0129065721500374
Baldelli, L., Schade, S., Jesús, S., Schreglmann, SR., Sambati, L., Gómez-Garre, P., Halsband, C., Calandra-Buonaura, G., Adarmes-Gómez, AD., Sixel-Döring, F., Zenesini, C., Pirazzini, C., Garagnani, P., Bacalini, MG., Bhatia, KP., Cortelli, P., Mollenhauer, B., Franceschi, C., PROPAG-AGEING consortium, , Mir, P., Trenkwalder, C. and Provini, F., 2021. Heterogeneity of prodromal Parkinson symptoms in siblings of Parkinson disease patients. NPJ Parkinsons Dis, v. 7
Doi: http://doi.org/10.1038/s41531-021-00219-1
Zhu, J., Tan, C., Yang, J., Yang, G. and Lio', P., 2021. MIASSR: An Approach for Medical Image Arbitrary Scale Super-Resolution
Azevedo, T., Campbell, A., Romero-Garcia, R., Passamonti, L., Bethlehem, RAI., Liò, P. and Toschi, N., 2020. A Deep Graph Neural Network Architecture for Modelling Spatio-temporal Dynamics in resting-state functional MRI Data
Doi: 10.1101/2020.11.08.370288
Blaiss, M., Cork, M., Lio, P., Kessel, A., Takiya, L., Werth, J., O'Connell, M., Zang, C. and Spergel, J., 2020. P302 EFFICACY OF CRISABOROLE IN PATIENTS WITH MILD-TO-MODERATE ATOPIC DERMATITIS WITH AND WITHOUT FOOD ALLERGIES Annals of Allergy, Asthma & Immunology, v. 125
Doi: 10.1016/j.anai.2020.08.138
Nain, Z., Rana, HK., Liò, P., Islam, SMS., Summers, MA. and Moni, MA., 2020. Pathogenetic profiling of COVID-19 and SARS-like viruses. Briefings in Bioinformatics,
Doi: http://doi.org/10.1093/bib/bbaa173
Rocheteau, E., Liò, P. and Hyland, S., 2020. Predicting Length of Stay in the Intensive Care Unit with Temporal
Pointwise Convolutional Networks
Spergel, J., Blaiss, M., Lio, P., Kessel, A., Takiya, L., Werth, J., O'Connell, M., Zang, C. and Cork, M., 2020. P500 EFFICACY OF CRISABOROLE IN PATIENTS WITH MILD-TO-MODERATE ATOPIC DERMATITIS WITH AND WITHOUT COMORBID ALLERGIC RHINITIS Annals of Allergy, Asthma & Immunology, v. 125
Doi: 10.1016/j.anai.2020.08.158
John, MS., Nagoth, JA., Ramasamy, KP., Ballarini, P., Mozzicafreddo, M., Mancini, A., Telatin, A., Liò, P., Giuli, G., Natalello, A., Miceli, C. and Pucciarelli, S., 2020. Horizontal gene transfer and silver nanoparticles production in a new Marinomonas strain isolated from the Antarctic psychrophilic ciliate Euplotes focardii. Scientific Reports, v. 10
Doi: http://doi.org/10.1038/s41598-020-66878-x
Rollins, CPE., Garrison, JR., Arribas, M., Seyedsalehi, A., Li, Z., Chan, RCK., Yang, J., Wang, D., Liò, P., Yan, C., Yi, Z-H., Cachia, A., Upthegrove, R., Deakin, B., Simons, JS., Murray, GK. and Suckling, J., 2020. Evidence in cortical folding patterns for prenatal predispositions to hallucinations in schizophrenia. Transl Psychiatry, v. 10
Doi: http://doi.org/10.1038/s41398-020-01075-y
Lu, X., Liao, Y., Lio, P. and Pan, H., 2020. An Asynchronous Federated Learning Mechanism for Edge Network Computing Jisuanji Yanjiu yu Fazhan/Computer Research and Development, v. 57
Doi: 10.7544/issn1000-1239.2020.20190754
Deasy, J., Rocheteau, E., Kohler, K., Stubbs, D., Barbiero, P., Liò, P. and Ercole, A., 2020. Forecasting ultra-early intensive care strain from COVID-19 in England medrxiv,
Doi: http://doi.org/10.1101/2020.03.19.20039057
Di Stefano, A., Scatá, M., Attanasio, B., La Corte, A., Lió, P. and Das, SK., 2020. A Novel Methodology for designing Policies in Mobile Crowdsensing Systems Pervasive and Mobile Computing, v. 67
Doi: http://doi.org/10.1016/j.pmcj.2020.101230
Baldwin, H., Aguh, C., Andriessen, A., Benjamin, L., Ferberg, A., Hooper, D., Jarizzo, J., Lio, P., Tlougan, B., Woolery-Lloyd, H. and Zeichner, J., 2020. Atopic Dermatitis and the Role of the Skin Microbiome in Choosing Prevention, Treatment, and Maintenance Options Journal of Drugs in Dermatology, v. 19
Doi: 10.36849/jdd.2020.5393
Ahamad, MM., Aktar, S., Rashed-Al-Mahfuz, M., Uddin, S., Liò, P., Xu, H., Summers, MA., Quinn, JMW. and Moni, MA., 2020. A machine learning model to identify early stage symptoms of SARS-Cov-2 infected patients. Expert Systems with Applications, v. 160
Doi: http://doi.org/10.1016/j.eswa.2020.113661
Del Prete, E., Facchiano, A. and Liò, P., 2020. Bioinformatics methodologies for coeliac disease and its comorbidities. Brief Bioinform, v. 21
Doi: 10.1093/bib/bby109
Scherer, P. and Lio, P., 2020. Learning distributed representations of graphs with Geo2DR
Lu, X., Wang, X., Lio, P. and Hui, P., 2020. DADIM: A distance adjustment dynamic influence map model Future Generation Computer Systems, v. 112
Doi: 10.1016/j.future.2020.06.020
Spasov, SE. and Liò, P., 2020. Dynamic neural network channel execution for efficient training 30th British Machine Vision Conference 2019, BMVC 2019,
Cangea, C., Velickovic, P. and Liò, P., 2020. XFlow: Cross-Modal Deep Neural Networks for Audiovisual Classification. IEEE Trans. Neural Networks Learn. Syst., v. 31
Doi: 10.1109/TNNLS.2019.2945992
Tan, C., Zhu, J. and Lio’, P., 2020. Arbitrary scale super-resolution for brain MRI images IFIP Advances in Information and Communication Technology, v. 583 IFIP
Doi: 10.1007/978-3-030-49161-1_15
Rollins, CPE., Garrison, J., Arribas, M., Seyedsalehi, A., Li, Z., Chan, RCK., Yang, J., Wang, D., Lio, P., Yan, C., Yi, Z-H., Cachia, A., Upthegrove, R., Deakin, B., Simons, J., Murray, G. and Suckling, J., 2020. The neurodevelopment of anomalous perception: Evidence in cortical folding patterns for prenatal predispositions to hallucinations in schizophrenia
Doi: 10.1101/2020.06.04.20122424
Flood, PDL., Viñas, R. and Liò, P., 2020. Investigating Estimated Kolmogorov Complexity as a Means of
Regularization for Link Prediction
Wichitwechkarn, V., Day, B., Bodnar, C., Wales, M. and Liò, P., 2020. The Role of Isomorphism Classes in Multi-Relational Datasets
Jamasb, A., Viñas, R., Ma, E., Harris, C., Huang, K., Hall, D., Lió, P. and Blundell, T., 2020. Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures and Interaction Networks
Doi: http://doi.org/10.1101/2020.07.15.204701
Spasov, S., Stefano, AD., Lio, P. and Tang, J., 2020. GRADE: Graph Dynamic Embedding
Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now You See Me (CME): Concept-based Model Extraction. CoRR, v. abs/2010.13233
Stankevičiūtė, K., Azevedo, T., Campbell, A., Bethlehem, R. and Liò, P., 2020. Population Graph GNNs for Brain Age Prediction
Doi: 10.1101/2020.06.26.172171
Müller, TT. and Lio, P., 2020. PECLIDES Neuro: A Personalisable Clinical Decision Support System for Neurological Diseases. Front Artif Intell, v. 3
Doi: 10.3389/frai.2020.00023
Day, B., Cangea, C., Jamasb, AR. and Liò, P., 2020. Message Passing Neural Processes
Lu, X., Liao, Y., Lio, P. and Hui, P., 2020. Privacy-preserving asynchronous federated learning mechanism for edge network computing IEEE Access, v. 8
Doi: 10.1109/ACCESS.2020.2978082
Zhao, Y., Wang, D., Bates, D., Mullins, R., Jamnik, M. and Lio, P., 2020. Learned Low Precision Graph Neural Networks
Rana, HK., Akhtar, MR., Islam, MB., Ahmed, MB., Lió, P., Huq, F., Quinn, JMW. and Moni, MA., 2020. Machine Learning and Bioinformatics Models to Identify Pathways that Mediate Influences of Welding Fumes on Cancer Progression. Sci Rep, v. 10
Doi: http://doi.org/10.1038/s41598-020-57916-9
Kazhdan, D., Shams, Z. and Lio, P., 2020. MARLeME: A Multi-Agent Reinforcement Learning Model Extraction Library Proceedings of the International Joint Conference on Neural Networks,
Doi: 10.1109/IJCNN48605.2020.9207564
Wang, D., Jamnik, M. and Lio, P., 2020. ABSTRACT DIAGRAMMATIC REASONING WITH MULTIPLEX GRAPH NETWORKS 8th International Conference on Learning Representations, ICLR 2020,
Maria, ED., Despeyroux, J., Felty, A., Liò, P., Olarte, C. and Bahrami, A., 2020. Computational Logic for Biomedicine and Neurosciences
Scherer, P., Trȩbacz, M., Simidjievski, N., Shams, Z., Terre, HA., Liò, P. and Jamnik, M., 2020. Incorporating network based protein complex discovery into automated
model construction
Merelli, I., Liò, P., Kotenko, I. and D'Agostino, D., 2020. Latest advances in parallel, distributed, and network-based processing Concurrency and Computation: Practice and Experience, v. 32
Doi: 10.1002/cpe.5683
Yeghikyan, G., Opolka, FL., Nanni, M., Lepri, B. and Lio', P., 2020. Learning Mobility Flows from Urban Features with Spatial Interaction
Models and Neural Networks
Moss, J. and Lió, P., 2020. Gene Regulatory Network Inference with Latent Force Models
Karavias, V., Day, B. and Liò, P., 2020. Uncertainty in Neural Relational Inference Trajectory Reconstruction
Kazhdan, D., Dimanov, B., Jamnik, M. and Liò, P., 2020. MEME: Generating RNN Model Explanations via Model Extraction
Lu, X., Zhang, S., Hui, P. and Lio, P., 2020. Continuous authentication by free-text keystroke based on CNN and RNN Computers and Security, v. 96
Doi: 10.1016/j.cose.2020.101861
Campbell, A. and Liò, P., 2020. tvGP-VAE: Tensor-variate Gaussian Process Prior Variational Autoencoder
Stefano, AD., Scatà, M., Attanasio, B., Corte, AL., Lió, P. and Das, SK., 2020. A Novel Methodology for designing Policies in Mobile Crowdsensing Systems. Pervasive Mob. Comput., v. 67
Doi: 10.1016/j.pmcj.2020.101230
Buterez, D., Bica, I., Tariq, I., Andrés-Terré, H. and Liò, P., 2020. CellVGAE: An unsupervised scRNA-seq analysis workflow with graph attention networks
Doi: 10.1101/2020.12.20.423645
Georgiev, D. and Liò, P., 2020. Neural Bipartite Matching
Barbiero, P., Torné, RV. and Lió, P., 2020. Graph representation forecasting of patient’s medical conditions: towards a digital twin Frontiers in Genetics,
Scata, M., Di Stefano, A., La Corte, A. and Lio, P., 2020. A Multiplex Social Contagion Dynamics Model to shape and discriminate D2D content dissemination IEEE Transactions on Cognitive Communications and Networking, v. 7
Doi: 10.1109/TCCN.2020.3027697
Barbiero, P., Viñas Torné, R. and Lió, P., 2020. Graph representation forecasting of patient’s medical conditions: towards a digital twin
Doi: 10.1101/2020.09.19.20197764
Lio, PA., Mosnaim, G., Codispoti, CD., Fajardo, K., Simone, L., Carter, J. and Sapir, T., 2020. 18008 Chart-based assessment of atopic dermatiti treatment decision making among dermatology and allergy teams in two health care systems Journal of the American Academy of Dermatology, v. 83
Doi: 10.1016/j.jaad.2020.06.445
Lu, X., Zhou, X., Wang, W., Lio, P. and Hui, P., 2020. Domain-oriented topic discovery based on features extraction and topic clustering IEEE Access, v. 8
Doi: 10.1109/ACCESS.2020.2994516
Lio, P., Nosbaum, A., Cardillo, T., DeLozier, A., Gamalo, M., Ball, SG. and Bieber, T., 2020. 15054 Impact of baricitinib on patient-reported skin symptoms, itch, and quality of life in adult patients with moderate to severe atopic dermatitis and an inadequate response to topical therapies from phase 3 trials BREEZE-AD1 and BREEZE-AD2 Journal of the American Academy of Dermatology, v. 83
Doi: 10.1016/j.jaad.2020.06.198
Viñas, R., Azevedo, T., Gamazon, E. and Liò, P., 2020. Gene Expression Imputation with Generative Adversarial Imputation Nets
Doi: 10.1101/2020.06.09.141689
Bardozzo, F., Lió, P. and Tagliaferri, R., 2020. Signal metrics analysis of oscillatory patterns in bacterial multi-omic networks. Bioinformatics, v. 37
Doi: 10.1093/bioinformatics/btaa966
Azevedo, T., Passamonti, L., Liò, P. and Toschi, N., 2020. Towards a predictive spatio-temporal representation of brain data
Drexel, C., Turell, W., Lio, PA. and Eftekhari, S., 2020. 17015 Missed opportunities for shared decision making among patients with atopic dermatitis and their clinicians Journal of the American Academy of Dermatology, v. 83
Doi: 10.1016/j.jaad.2020.06.847
Azevedo, T., Dimitri, GM., Lio, P. and Gamazon, E., 2020. Multilayer modelling and analysis of the human transcriptome
Doi: 10.1101/2020.05.21.109082
Glass, S., Spasov, S. and Liò, P., 2020. RicciNets: Curvature-guided Pruning of High-performance Neural Networks
Using Ricci Flow
Deac, A., Huang, Y-H., Veličković, P., Liò, P. and Tang, J., 2019. Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Di Stefano, A., Scatà, M., Vijayakumar, S., Angione, C., La Corte, A. and Liò, P., 2019. Social dynamics modeling of chrono-nutrition. PLoS Comput Biol, v. 15
Doi: http://doi.org/10.1371/journal.pcbi.1006714
Scherer, P., Andres-Terre, H., Lio, P. and Jamnik, M., 2019. Decoupling feature propagation from the design of graph auto-encoders
Nguyen, M., Zhao, J., Tegtmeyer, K., Maloney, NJ. and Lio, P., 2019. 180 Skin health practices and skin risk behaviors of youth sexual minorities Journal of Investigative Dermatology, v. 139
Doi: 10.1016/j.jid.2019.03.256
Vignani, R., Liò, P. and Scali, M., 2019. How to integrate wet lab and bioinformatics procedures for wine DNA admixture analysis and compositional profiling: Case studies and perspectives. PLoS One, v. 14
Doi: http://doi.org/10.1371/journal.pone.0211962
Yang, J., Wang, D., Rollins, C., Leming, M., Liò, P., Suckling, J., Murray, G., Garrison, J. and Cachia, A., 2019. Volumetric Segmentation and Characterisation of the Paracingulate Sulcus on MRI Scans
Doi: http://doi.org/10.1101/859496
Shin, M., Tegtmeyer, K., Zhao, J., Maloney, NJ. and Lio, P., 2019. 241 Association between patient medical complexity and time spent at dermatology office visits in the national ambulatory medical care survey Journal of Investigative Dermatology, v. 139
Doi: 10.1016/j.jid.2019.03.317
Atassi, G., Tegtmeyer, K., Zhao, J. and Lio, P., 2019. 220 County-level associations between climate factors and cutaneous melanoma incidence in the US Journal of Investigative Dermatology, v. 139
Doi: 10.1016/j.jid.2019.03.296
Zhu, J., Yang, G. and Lio, P., 2019. Lesion focused super-resolution Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 10949
Doi: http://doi.org/10.1117/12.2512576
Azevedo, T., Passamonti, L., Lió, P. and Toschi, N., 2019. A machine learning tool for interpreting differences in cognition using brain features
Doi: 10.1101/558403
Tegtmeyer, K., Atassi, G., Zhao, J. and Lio, P., 2019. 178 Association of melanoma mortality rates and geographic density of dermatology and hematology-oncology specialists Journal of Investigative Dermatology, v. 139
Doi: 10.1016/j.jid.2019.03.254
Smith, HL., Stevens, A., Minogue, B., Sneddon, S., Shaw, L., Wood, L., Adeniyi, T., Xiao, H., Lio, P., Kimber, SJ. and Brison, DR., 2019. Systems based analysis of human embryos and gene networks involved in cell lineage allocation. BMC Genomics, v. 20
Doi: http://doi.org/10.1186/s12864-019-5558-8
Andrés-Terré, H. and Lió, P., 2019. Perturbation theory approach to study the latent space degeneracy of
Variational Autoencoders
Bartoszek, K. and Liò, P., 2019. Modelling trait-dependent speciation with approximate Bayesian computation Acta Physica Polonica B, Proceedings Supplement, v. 12
Doi: 10.5506/APhysPolBSupp.12.25
Eichenfield, LF., Gadkari, A., Armstrong, AW., Guttman-Yassky, E., Lio, P., Chen, C., Hines, DM., McGuinness, C., Fenton, MC., Miao, R., Chen, Z., Kaur, M., Korotzer, A. and Mallya, UG., 2019. 692 Real-world effectiveness of dupilumab based on Investigator Global Assessment (IGA) and peak Pruritus Numerical Rating Scale (PNRS) scores Journal of Investigative Dermatology, v. 139
Doi: 10.1016/j.jid.2019.03.768
Wang, D., Jamnik, M. and Lio, P., 2019. Unsupervised and interpretable scene discovery with
Discrete-Attend-Infer-Repeat
Singh, V. and Lio', P., 2019. Towards Probabilistic Generative Models Harnessing Graph Neural Networks
for Disease-Gene Prediction
Pernice, S., Follia, L., Balbo, G., Milanesi, L., Sartini, G., Totis, N., Lió, P., Merelli, I., Cordero, F. and Beccuti, M., 2019. Integrating Petri Nets and Flux Balance Methods in Computational Biology Models: A Methodological and Computational Practice Fundamenta Informaticae, v. 171
Doi: 10.3233/FI-2020-1888
Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres-Terre, H., Shams, Z., Jamnik, M. and Liò, P., 2019. Variational autoencoders for cancer data integration: design principles and computational practice
Doi: 10.1101/719542
Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres Terre, H., Shams, Z., Jamnik, M. and Liò, P., 2019. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet, v. 10
Doi: 10.3389/fgene.2019.01205
Luzhnica, E., Day, B. and Lio', P., 2019. Clique pooling for graph classification
Akter, T., Shahriare Satu, M., Khan, MI., Ali, MH., Uddin, S., Lio, P., Quinn, JMW. and Moni, MA., 2019. Machine Learning-Based Models for Early Stage Detection of Autism Spectrum Disorders IEEE Access, v. 7
Doi: 10.1109/ACCESS.2019.2952609
Parmar, V. and Lió, P., 2019. Multi-omic network regression: Methodology, tool and case study Studies in Computational Intelligence, v. 813
Doi: 10.1007/978-3-030-05414-4_49
Rana, HK., Akhtar, MR., Ahmed, MB., Liò, P., Quinn, JMW., Huq, F. and Moni, MA., 2019. Genetic effects of welding fumes on the progression of neurodegenerative diseases. Neurotoxicology, v. 71
Doi: http://doi.org/10.1016/j.neuro.2018.12.002
Rana, HK., Akhtar, MR., Islam, MB., Ahmed, MB., Liò, P., Quinn, JMW., Huq, F. and Moni, MA., 2019. Genetic effects of welding fumes on the development of respiratory system diseases. Comput Biol Med, v. 108
Doi: http://doi.org/10.1016/j.compbiomed.2019.04.004
Tangherloni, A., Spolaor, S., Rundo, L., Nobile, MS., Cazzaniga, P., Mauri, G., Liò, P., Merelli, I. and Besozzi, D., 2019. GenHap: a novel computational method based on genetic algorithms for haplotype assembly. BMC Bioinform., v. 20-S
Doi: 10.1186/s12859-019-2691-y
Xiaofeng, L., Fangshuo, J., Xiao, Z., Shengwei, Y., Jing, S. and Lio, P., 2019. ASSCA: API sequence and statistics features combined architecture for malware detection Computer Networks, v. 157
Doi: 10.1016/j.comnet.2019.04.007
Haider, S., Yao, CQ., Sabine, VS., Grzadkowski, M., Stimper, V., Starmans, MHW., Wang, J., Nguyen, F., Moon, NC., Lin, X., Drake, C., Crozier, CA., Brookes, CL., van de Velde, CJH., Hasenburg, A., Kieback, DG., Markopoulos, CJ., Dirix, LY., Seynaeve, C., Rea, DW., Kasprzyk, A., Lambin, P., Lio', P., Bartlett, JMS. and Boutros, PC., 2018. Pathway-based subnetworks enable cross-disease biomarker discovery. Nat Commun, v. 9
Doi: http://doi.org/10.1038/s41467-018-07021-3
Karazija, L., Velickovic, P. and Liò, P., 2018. Automatic Inference of Cross-modal Connection Topologies for X-CNNs. CoRR, v. abs/1805.00987
He, P., Nakano, T., Mao, Y., Lio, P., Liu, Q. and Yang, K., 2018. Stochastic Channel Switching of Frequency-Encoded Signals in Molecular Communication Networks IEEE Communications Letters, v. 22
Doi: 10.1109/LCOMM.2017.2768537
Cangea, C., Grauslys, A., Liò, P. and Falciani, F., 2018. Structure-Based Networks for Drug Validation
Dimitri, GM., Agrawal, S., Young, A., Donnelly, J., Liu, X., Smielewski, P., Hutchinson, P., Czosnyka, M., Lio, P. and Haubrich, C., 2018. Simultaneous Transients of Intracranial Pressure and Heart Rate in Traumatic Brain Injury: Methods of Analysis. Acta Neurochirurgica: Supplementum, v. 126
Doi: http://doi.org/10.1007/978-3-319-65798-1_31
Tordini, F., Aldinucci, M., Viviani, P., Merelli, I. and Liò, P., 2018. Scientific Workflows on Clouds with Heterogeneous and Preemptible Instances Advances in Parallel Computing, v. 32
Doi: 10.3233/978-1-61499-843-3-605
Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I. and Liò, P., 2018. Combining Pathway Identification and Breast Cancer Survival Prediction via Screening-Network Methods. Front Genet, v. 9
Doi: http://doi.org/10.3389/fgene.2018.00206
Mancini, A., Eyassu, F., Conway, M., Occhipinti, A., Liò, P., Angione, C. and Pucciarelli, S., 2018. CiliateGEM: an open-project and a tool for predictions of ciliate metabolic variations and experimental condition design. BMC Bioinformatics, v. 19
Doi: http://doi.org/10.1186/s12859-018-2422-9
Barsacchi, M., Terre, HA. and Lió, P., 2018. GEESE: Metabolically driven latent space learning for gene expression data
Doi: 10.1101/365643
Saggese, I., Bona, E., Conway, M., Favero, F., Ladetto, M., Liò, P., Manzini, G. and Mignone, F., 2018. STAble: a novel approach to de novo assembly of RNA-seq data and its application in a metabolic model network based metatranscriptomic workflow. BMC Bioinformatics, v. 19
Doi: http://doi.org/10.1186/s12859-018-2174-6
Bartocci, E., Lio, P. and Paoletti, N., 2018. Guest Editors' Introduction to the Special Section on the 14th International Conference on Computational Methods in Systems Biology (CMSB 2016) IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 15
Doi: http://doi.org/10.1109/TCBB.2018.2816979
Veličković, P., Karazija, L., Lane, ND., Bhattacharya, S., Liberis, E., Liò, P., Chieh, A., Bellahsen, O. and Vegreville, M., 2018. Cross-modal recurrent models forweight objective prediction from multimodal time-series data PervasiveHealth: Pervasive Computing Technologies for Healthcare,
Doi: 10.1145/3240925.3240937
Felicetti, L., Femminella, M., Reali, G. and Liò, P., 2018. Applications of molecular communications to medicine: a survey. CoRR, v. abs/1808.04242
He, P., Nakano, T., Mao, Y., Liò, P., Liu, Q. and Yang, K., 2018. Stochastic Channel Switching of Frequency-Encoded Signals in Molecular Communication Networks. IEEE Commun. Lett., v. 22
Doi: 10.1109/LCOMM.2017.2768537
Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A. and Bengio, Y., 2018. Graph attention networks 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,
Liberis, E., Velickovic, P., Sormanni, P., Vendruscolo, M. and Liò, P., 2018. Parapred: antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics, v. 34
Doi: 10.1093/bioinformatics/bty305
Sheehan, C., Day, B. and Liò, P., 2018. Introducing Curvature to the Label Space
Vijayakumar, S., Conway, M., Lió, P. and Angione, C., 2018. Seeing the wood for the trees: a forest of methods for optimization and omic-network integration in metabolic modelling. Briefings in Bioinformatics, v. 19
Doi: http://doi.org/10.1093/bib/bbx053
Cangea, C., Veličković, P., Jovanović, N., Kipf, T. and Liò, P., 2018. Towards Sparse Hierarchical Graph Classifiers
Karazija, L., Veličković, P. and Liò, P., 2018. Automatic inference of cross-modal connection topologies for X-CNNs Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10878 LNCS
Doi: 10.1007/978-3-319-92537-0_7
Ascolani, G. and Lió, P., 2017. Modelling the order of driver mutations and metabolic mutations as
structures in cancer dynamics
Brouwer, T. and Lio', P., 2017. Prior and Likelihood Choices for Bayesian Matrix Factorisation on Small
Datasets
Oshota, O., Conway, M., Fookes, M., Schreiber, F., Chaudhuri, R., Yu, L., Morgan, F., Clare, S., Choudhary, J., Thomson, N., Lio, P., Maskell, D., Mastroeni, P. and Grant, AJ., 2017. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice PLoS ONE, v. 12
Doi: http://doi.org/10.1371/journal.pone.0181365
Barandalla, M., Shi, H., Xiao, H., Colleoni, S., Galli, C., Lio, P., Trotter, M. and Lazzari, G., 2017. Global gene expression profiling and senescence biomarker analysis of hESC exposed to H2O2 induced non-cytotoxic oxidative stress. Stem Cell Res Ther, v. 8
Doi: http://doi.org/10.1186/s13287-017-0602-6
Brouwer, T., Frellsen, J. and Lió, P., 2017. Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10534 LNAI
Doi: 10.1007/978-3-319-71249-9_31
Prokhorov, V., Pilehvar, MT., Kartsaklis, D., Lió, P. and Collier, N., 2017. Learning Rare Word Representations using Semantic Bridging
Kashaf, SS., Angione, C. and Lió, P., 2017. Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst Biol, v. 11
Doi: http://doi.org/10.1186/s12918-017-0395-3
Moni, MA. and Lio', P., 2017. Genetic Profiling and Comorbidities of Zika Infection. J Infect Dis, v. 216
Doi: 10.1093/infdis/jix327
Liberis, E., Veličković, P., Sormanni, P., Vendruscolo, M. and Liò, P., 2017. Paratope Prediction using Convolutional and Recurrent Neural Networks
Doi: http://doi.org/10.1101/185488
Dimitri, GM., Agrawal, S., Young, A., Donnelly, J., Liu, X., Smielewski, P., Hutchinson, P., Czosnyka, M., Lió, P. and Haubrich, C., 2017. A multiplex network approach for the analysis of intracranial pressure and heart rate data in traumatic brain injured patients. Appl Netw Sci, v. 2
Doi: 10.1007/s41109-017-0050-3
Rebello, D., Wang, E., Yen, E., Lio, PA. and Kelly, CR., 2017. Hair Growth in Two Alopecia Patients after Fecal Microbiota Transplant. ACG Case Rep J, v. 4
Doi: http://doi.org/10.14309/crj.2017.107
Bianchi, L. and Liò, P., 2017. Opportunities for community awareness platforms in personal genomics and bioinformatics education. Briefings in Bioinformatics, v. 18
Doi: http://doi.org/10.1093/bib/bbw078
Dimitri, GM. and Lio, P., 2017. DrugClust: A machine learning approach for drugs side effects prediction Computational Biology and Chemistry,
Peychev, M., Veličković, P. and Liò, P., 2017. Quantifying the Effects of Enforcing Disentanglement on Variational
Autoencoders
Bianchi, L. and Liò, P., 2017. Opportunities for community awareness platforms in personal genomics and bioinformatics education. Brief Bioinform, v. 18
Doi: http://doi.org/10.1093/bib/bbw078
Tordini, F., Drocco, M., Misale, C., Milanesi, L., Liò, P., Merelli, I., Torquati, M. and Aldinucci, M., 2017. NuChart-II: The road to a fast and scalable tool for Hi-C data analysis International Journal of High Performance Computing Applications, v. 31
Doi: 10.1177/1094342016668567
Angione, C., Conway, M. and Lió, P., 2016. Multiplex methods provide effective integration of multi-omic data in genome-scale models. BMC Bioinformatics, v. 17 Suppl 4
Doi: http://doi.org/10.1186/s12859-016-0912-1
Schwarz, E., Izmailov, R., Liò, P. and Meyer-Lindenberg, A., 2016. Protein Interaction Networks Link Schizophrenia Risk Loci to Synaptic Function. Schizophr Bull, v. 42
Doi: http://doi.org/10.1093/schbul/sbw035
Brouwer, T., Frellsen, J. and Lio', P., 2016. Fast Bayesian Non-Negative Matrix Factorisation and Tri-Factorisation CoRR abs/1610.08127 (2016),
Conway, M., Angione, C. and Liò, P., 2016. Iterative multi level calibration of metabolic networks Current Bioinformatics, v. 11
Doi: 10.2174/1574893611666151203222505
Scatà, M., Di Stefano, A., Liò, P. and La Corte, A., 2016. The Impact of Heterogeneity and Awareness in Modeling Epidemic Spreading on Multiplex Networks. Scientific Reports, v. 6
Doi: http://doi.org/10.1038/srep37105
Veličković, P. and Lió, P., 2016. Molecular multiplex network inference using Gaussian mixture hidden Markov models Journal of Complex Networks, v. 4
Doi: 10.1093/comnet/cnv029
Castellani, GC., Menichetti, G., Garagnani, P., Giulia Bacalini, M., Pirazzini, C., Franceschi, C., Collino, S., Sala, C., Remondini, D., Giampieri, E., Mosca, E., Bersanelli, M., Vitali, S., Valle, IFD., Liò, P. and Milanesi, L., 2016. Systems medicine of inflammaging. Brief Bioinform, v. 17
Doi: http://doi.org/10.1093/bib/bbv062
Angione, C. and Lió, P., 2016. Erratum: Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep, v. 6
Doi: http://doi.org/10.1038/srep26266
Tordini, F., Aldinucci, M., Milanesi, L., Liò, P. and Merelli, I., 2016. The Genome Conformation As an Integrator of Multi-Omic Data: The Example of Damage Spreading in Cancer. Front Genet, v. 7
Doi: http://doi.org/10.3389/fgene.2016.00194
Scatà, M., Di Stefano, A., La Corte, A., Liò, P., Catania, E., Guardo, E. and Pagano, S., 2016. Combining evolutionary game theory and network theory to analyze human cooperation patterns Chaos, Solitons and Fractals, v. 91
Doi: http://doi.org/10.1016/j.chaos.2016.04.018
Narula, P., Piratla, V., Bansal, A., Azad, S. and Lio, P., 2016. Parameter estimation of tuberculosis transmission model using Ensemble Kalman filter across Indian states and union territories Infection, Disease and Health, v. 21
Doi: 10.1016/j.idh.2016.11.001
Lu, X., Lio, P. and Hui, P., 2016. Distance-Based Opportunistic Mobile Data Offloading. Sensors (Basel), v. 16
Doi: 10.3390/s16060878
Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I. and Lió, P., 2016. Cancer Markers Selection Using Network-Based Cox Regression: A Methodological and Computational Practice. Front Physiol, v. 7
Doi: 10.3389/fphys.2016.00208
Capobianco, E. and Lio, P., 2016. Electronic Health Systems: Golden Mine for Precision Medicine The journal of precision medicine,
Shavit, Y., Walker, BJ. and Lio', P., 2016. Hierarchical block matrices as efficient representations of chromosome topologies and their application for 3C data integration. Bioinformatics, v. 32
Doi: http://doi.org/10.1093/bioinformatics/btv736
Shavit, Y., Merelli, I., Milanesi, L. and Lio', P., 2016. How computer science can help in understanding the 3D genome architecture. Brief Bioinform, v. 17
Doi: http://doi.org/10.1093/bib/bbv085
Bartocci, E. and Lió, P., 2016. Computational Modeling, Formal Analysis, and Tools for Systems Biology. PLoS Comput Biol, v. 12
Doi: 10.1371/journal.pcbi.1004591
Ascolani, G., Occhipinti, A. and Liò, P., 2015. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer. PLoS Comput Biol, v. 11
Doi: 10.1371/journal.pcbi.1004199
Fondi, M., Maida, I., Perrin, E., Mellera, A., Mocali, S., Parrilli, E., Tutino, ML., Liò, P. and Fani, R., 2015. Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Environ Microbiol, v. 17
Doi: 10.1111/1462-2920.12513
Narula, P., Azad, S. and Lio, P., 2015. Bayesian Melding Approach to Estimate the Reproduction Number for Tuberculosis Transmission in Indian States and Union Territories. Asia Pac J Public Health, v. 27
Doi: 10.1177/1010539515595068
Taffi, M., Taffi, M., Paoletti, N., Liò, P., Pucciarelli, S. and Marini, M., 2015. Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea Ecological Modelling, v. 306
Doi: http://doi.org/10.1016/j.ecolmodel.2014.11.030
Angione, C., Costanza, J., Carapezza, G., Lió, P. and Nicosia, G., 2015. Multi-Target Analysis and Design of Mitochondrial Metabolism. PLoS One, v. 10
Doi: http://doi.org/10.1371/journal.pone.0133825
Fondi, M. and Liò, P., 2015. Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology. Microbiol Res, v. 171
Doi: 10.1016/j.micres.2015.01.003
Haider, S., Lipinszki, Z., Przewloka, MR., Ladak, Y., D'Avino, PP., Kimata, Y., Lio', P. and Glover, DM., 2015. DAPPER: a data-mining resource for protein-protein interactions. BioData Min, v. 8
Doi: http://doi.org/10.1186/s13040-015-0063-3
Xu, H., Moni, MA. and Liò, P., 2015. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer. Comput Biol Chem, v. 59 Pt B
Doi: 10.1016/j.compbiolchem.2015.08.010
Merelli, I., Tordini, F., Drocco, M., Aldinucci, M., Liò, P. and Milanesi, L., 2015. Integrating multi-omic features exploiting Chromosome Conformation Capture data. Front Genet, v. 6
Doi: 10.3389/fgene.2015.00040
Angione, C., Costanza, J., Carapezza, G., Lió, P. and Nicosia, G., 2015. Analysis and design of molecular machines Theoretical Computer Science, v. 599
Doi: 10.1016/j.tcs.2015.01.030
Bosi, E., Donati, B., Galardini, M., Brunetti, S., Sagot, M-F., Lió, P., Crescenzi, P., Fani, R. and Fondi, M., 2015. MeDuSa: a multi-draft based scaffolder. Bioinformatics, v. 31
Doi: http://doi.org/10.1093/bioinformatics/btv171
Liò, P., Miglino, O., Nicosia, G., Nolfi, S. and Pavone, M., 2015. Advances in artificial life: Synthesis and simulation of living systems: Editorial Artificial Life, v. 21
Doi: http://doi.org/10.1162/ARTL_e_00189
Narula, P., Sihota, P., Azad, S. and Lio, P., 2015. Analyzing seasonality of tuberculosis across Indian states and union territories. J Epidemiol Glob Health, v. 5
Doi: 10.1016/j.jegh.2015.02.004
Di Stefano, A., Scatà, M., La Corte, A., Liò, P., Catania, E., Guardo, E. and Pagano, S., 2015. Quantifying the Role of Homophily in Human Cooperation Using Multiplex Evolutionary Game Theory. PLoS One, v. 10
Doi: 10.1371/journal.pone.0140646
Angione, C. and Lió, P., 2015. Predictive analytics of environmental adaptability in multi-omic network models. Sci Rep, v. 5
Doi: 10.1038/srep15147
Angione, C., Pratanwanich, N. and Lió, P., 2015. A Hybrid of Metabolic Flux Analysis and Bayesian Factor Modeling for Multiomic Temporal Pathway Activation. ACS Synth Biol, v. 4
Doi: 10.1021/sb5003407
Liò, P., Miglino, O., Nicosia, G., Nolfi, S. and Pavone, M., 2015. Advances in Artificial Life: Synthesis and Simulation of Living Systems: Editorial. Artif Life, v. 21
Doi: 10.1162/ARTL_e_00189
Capobianco, E. and Liò, P., 2015. Comorbidity networks: Beyond disease correlations Journal of Complex Networks, v. 3
Doi: 10.1093/comnet/cnu048
Moni, MA. and Liò, P., 2015. How to build personalized multi-omics comorbidity profiles. Front Cell Dev Biol, v. 3
Doi: 10.3389/fcell.2015.00028
Smedley, D., Haider, S., Durinck, S., Pandini, L., Provero, P., Allen, J., Arnaiz, O., Awedh, MH., Baldock, R., Barbiera, G., Bardou, P., Beck, T., Blake, A., Bonierbale, M., Brookes, AJ., Bucci, G., Buetti, I., Burge, S., Cabau, C., Carlson, JW., Chelala, C., Chrysostomou, C., Cittaro, D., Collin, O., Cordova, R., Cutts, RJ., Dassi, E., Di Genova, A., Djari, A., Esposito, A., Estrella, H., Eyras, E., Fernandez-Banet, J., Forbes, S., Free, RC., Fujisawa, T., Gadaleta, E., Garcia-Manteiga, JM., Goodstein, D., Gray, K., Guerra-Assunção, JA., Haggarty, B., Han, D-J., Han, BW., Harris, T., Harshbarger, J., Hastings, RK., Hayes, RD., Hoede, C., Hu, S., Hu, Z-L., Hutchins, L., Kan, Z., Kawaji, H., Keliet, A., Kerhornou, A., Kim, S., Kinsella, R., Klopp, C., Kong, L., Lawson, D., Lazarevic, D., Lee, J-H., Letellier, T., Li, C-Y., Lio, P., Liu, C-J., Luo, J., Maass, A., Mariette, J., Maurel, T., Merella, S., Mohamed, AM., Moreews, F., Nabihoudine, I., Ndegwa, N., Noirot, C., Perez-Llamas, C., Primig, M., Quattrone, A., Quesneville, H., Rambaldi, D., Reecy, J., Riba, M., Rosanoff, S., Saddiq, AA., Salas, E., Sallou, O., Shepherd, R., Simon, R., Sperling, L., Spooner, W., Staines, DM., Steinbach, D., Stone, K., Stupka, E., Teague, JW., Dayem Ullah, AZ., Wang, J., Ware, D., Wong-Erasmus, M., Youens-Clark, K., Zadissa, A., Zhang, S-J. and Kasprzyk, A., 2015. The BioMart community portal: an innovative alternative to large, centralized data repositories. Nucleic Acids Res, v. 43
Doi: http://doi.org/10.1093/nar/gkv350
Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio', P. and Koucheryavy, Y., 2014. Forward and Reverse coding for chromosome transfer in bacterial nanonetworks Nano Communication Networks,
Azad, S. and Lio, P., 2014. Emerging trends of malaria-dengue geographical coupling in the Southeast Asia region. J Vector Borne Dis, v. 51
Taffi, M., Paoletti, N., Liò, P., Tesei, L., Pucciarelli, S. and Marini, M., 2014. Estimation and Modelling of PCBs Bioaccumulation in the Adriatic Sea
Ecosystem
Taffi, M., Paoletti, N., Angione, C., Pucciarelli, S., Marini, M. and Liò, P., 2014. Bioremediation in marine ecosystems: a computational study combining ecological modeling and flux balance analysis. Front Genet, v. 5
Doi: 10.3389/fgene.2014.00319
Raju, HB., Englander, Z., Capobianco, E., Tsinoremas, NF. and Lerch, JK., 2014. Identification of potential therapeutic targets in a model of neuropathic pain. Front Genet, v. 5
Doi: 10.3389/fgene.2014.00131
Petrov, V., Balasubramaniam, S., Lale, R., Moltchanov, D., Lio', P. and Koucheryavy, Y., 2014. Forward and Reverse coding for chromosome transfer in bacterial nanonetworks Nano Communication Networks, v. 5
Doi: http://doi.org/10.1016/j.nancom.2014.04.003
Fondi, M., Orlandini, V., Perrin, E., Maida, I., Bosi, E., Papaleo, MC., Michaud, L., Lo Giudice, A., de Pascale, D., Tutino, ML., Liò, P. and Fani, R., 2014. Draft genomes of three Antarctic Psychrobacter strains producing antimicrobial compounds against Burkholderia cepacia complex, opportunistic human pathogens. Mar Genomics, v. 13
Doi: 10.1016/j.margen.2013.12.009
Lu, X., Qu, Z., Lio, P., Hui, P., Li, Q., Lu, P. and Bie, R., 2014. Directional communication with movement prediction in mobile wireless sensor networks Personal and Ubiquitous Computing, v. 18
Doi: 10.1007/s00779-014-0793-0
Taffi, M., Paoletti, N., Liò, P., Pucciarelli, S. and Marini, M., 2014. Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea Ecological Modelling, v. 306
Doi: 10.1016/j.ecolmodel.2014.11.030
Nardi, F., Liò, P., Carapelli, A. and Frati, F., 2014. MtPAN(3): site-class specific amino acid replacement matrices for mitochondrial proteins of Pancrustacea and Collembola. Mol Phylogenet Evol, v. 75
Doi: 10.1016/j.ympev.2014.02.001
Shavit, Y. and Lio', P., 2014. Combining a wavelet change point and the Bayes factor for analysing chromosomal interaction data. Mol Biosyst, v. 10
Doi: 10.1039/c4mb00142g
Pratanwanich, N. and Lió, P., 2014. Pathway-based Bayesian inference of drug-disease interactions. Mol Biosyst, v. 10
Doi: 10.1039/c4mb00014e
Lu, X., Qu, Z., Lio, P., Hui, P., Li, Q., Lu, P. and Bie, R., 2014. Directional communication with movement prediction in mobile wireless sensor networks Personal and Ubiquitous Computing,
Doi: http://doi.org/10.1007/s00779-014-0793-0
Felicetti, L., Femminella, M., Reali, G. and Liò, P., 2014. A molecular communication system in blood vessels for tumor detection Proceedings of the 1st ACM International Conference on Nanoscale Computing and Communication, NANOCOM 2014,
Doi: http://doi.org/10.1145/2619955.2619978
Nardi, F., Liò, P., Carapelli, A. and Frati, F., 2014. MtPAN<sup>3</sup>: Site-class specific amino acid replacement matrices for mitochondrial proteins of Pancrustacea and Collembola Molecular Phylogenetics and Evolution, v. 75
Doi: 10.1016/j.ympev.2014.02.001
Lió, P., 2014. Computing longevity: Insights from controls Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8738 LNBI
Doi: http://doi.org/10.1007/978-3-319-10398-3_4
Pratanwanich, N. and Lio, P., 2014. Exploring the complexity of pathway-drug relationships using latent Dirichlet allocation. Comput Biol Chem, v. 53 Pt A
Doi: 10.1016/j.compbiolchem.2014.08.019
Taffi, M., Paoletti, N., Liò, P., Tesei, L., Merelli, E. and Marini, M., 2013. A systems biology and ecology framework for POPs bioaccumulation in marine ecosystems Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8130 LNBI
Castiglione, F., Tieri, P., De Graaf, A., Franceschi, C., Liò, P., Van Ommen, B., Mazzà, C., Tuchel, A., Bernaschi, M., Samson, C., Colombo, T., Castellani, GC., Capri, M., Garagnani, P., Salvioli, S., Nguyen, VA., Bobeldijk-Pastorova, I., Krishnan, S., Cappozzo, A., Sacchetti, M., Morettini, M. and Ernst, M., 2013. The onset of type 2 diabetes: proposal for a multi-scale model. JMIR Res Protoc, v. 2
Doi: http://doi.org/10.2196/resprot.2854
Moni, MA., Mariani, S., Poli, G., Lio, P. and Vicenzi, E., 2013. Differential impacts of R5 vs. X4 HIV-1 on the transcriptome of primary CD4(+) T cells RETROVIROLOGY, v. 10
Doi: 10.1186/1742-4690-10-S1-P114
Angione, C., Carapezza, G., Costanza, J., Lió, P. and Nicosia, G., 2013. Design and strain selection criteria for bacterial communication networks Nano Communication Networks,
Vicenzi, E., Liò, P. and Poli, G., 2013. The puzzling role of CXCR4 in human immunodeficiency virus infection. Theranostics, v. 3
Doi: http://doi.org/10.7150/thno.5392
Castiglione, F., Diaz, V., Gaggioli, A., Lio, P., Mazza, C., Merelli, E., Meskers, CGM., Pappalardo, F. and von Ammon, R., 2013. Physio-Environmental Sensing and Live Modeling JOURNAL OF MEDICAL INTERNET RESEARCH, v. 15
Doi: http://doi.org/10.2196/ijmr.2092
Angione, C., Carapezza, G., Costanza, J., Lió, P. and Nicosia, G., 2013. Design and strain selection criteria for bacterial communication networks Nano Communication Networks, v. 4
Doi: http://doi.org/10.1016/j.nancom.2013.08.001
Xie, S., Lawnizak, AT., Lio, P. and Krishnan, S., 2013. Feature Extraction by Multi-Scale Principal Component Analysis and Classification in Spectral Domain Engineering, v. 05
Doi: 10.4236/eng.2013.510b056
Angione, C., Carapezza, G., Costanza, J., Lió, P. and Nicosia, G., 2013. Pareto optimality in organelle energy metabolism analysis. IEEE/ACM Trans Comput Biol Bioinform, v. 10
Doi: 10.1109/TCBB.2013.95
Carapezza, G., Umeton, R., Costanza, J., Angione, C., Stracquadanio, G., Papini, A., Lió, P. and Nicosia, G., 2013. Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis. ACS Synth Biol, v. 2
Doi: 10.1021/sb300102k
Lu, X., Lio, P., Hui, P. and Jin, H., 2013. A Location Prediction Algorithm for Mobile Communications Using Directional Antennas INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS,
Doi: http://doi.org/10.1155/2013/418606
Di Stefano, A., La Corte, A., Leotta, M., Lió, P. and Scatá, M., 2013. It measures like me: An IoTs algorithm in WSNs based on heuristics behavior and clustering methods Ad Hoc Networks,
Balasubramaniam, S., Ben-Yehuda, S., Pautot, S., Jesorka, A., Lio', P. and Koucheryavy, Y., 2013. A review of experimental opportunities for molecular communication Nano Communication Networks, v. 4
Doi: 10.1016/j.nancom.2013.02.002
Moni, MA., Liò, P. and Milanesi, L., 2013. Comparing viral (HIV) and bacterial (staphylococcus aureus) infection of the bone tissue BIOINFORMATICS 2013 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms,
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2013. Rational design of organelle compartments in cells EMBnet. journal, v. 18
Liò, P., 2013. Pathways to P4 medicine BIOINFORMATICS 2013 - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms,
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2013. Pareto Optimality in Organelle Energy Metabolism Analysis. IEEE/ACM Trans Comput Biol Bioinform,
Angione, C., Costanza, J., Carapezza, G., Lió, P. and Nicosia, G., 2013. Pareto epsilon-dominance and identifiable solutions for BioCAD modeling Proceedings - Design Automation Conference,
Doi: http://doi.org/10.1145/2463209.2488787
Capobianco, E. and Lio', P., 2013. Comorbidity: a multidimensional approach Trends in Molecular Medicine,
Angione, C., Costanza, J., Carapezza, G., Lió, P. and Nicosia, G., 2013. A design automation framework for computational bioenergetics in biological networks. Mol Biosyst, v. 9
Doi: 10.1039/c3mb25558a
Lu, X., Hui, P. and Lio, P., 2013. Offloading Mobile Data from Cellular Networks Through Peer-to-Peer WiFi Communication: A Subscribe-and-Send Architecture CHINA COMMUNICATIONS, v. 10
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2013. Multi objective design for bacterial communication networks 2013 IEEE International Conference on Communications Workshops, ICC 2013,
Doi: http://doi.org/10.1109/ICCW.2013.6649345
Jacovella, L. and Lio, P., 2013. Speeding up the transition to collective awareness 2013 IEEE International Conference on Communications Workshops, ICC 2013,
Doi: http://doi.org/10.1109/ICCW.2013.6649232
Di Stefano, A., La Corte, A., Leotta, M., Lió, P. and Scatá, M., 2013. It measures like me: An IoTs algorithm in WSNs based on heuristics behavior and clustering methods Ad Hoc Networks, v. 11
Doi: http://doi.org/10.1016/j.adhoc.2013.04.011
Lio, PA. and Lee, KC., 2013. Answers to Dermatophile questions Archives of disease in childhood - Education & practice edition, v. 98
Doi: 10.1136/archdischild-2012-303256a
Costanza, J., Carapezza, G., Angione, C., Lió, P. and Nicosia, G., 2012. Robust design of microbial strains. Bioinformatics, v. 28
Doi: http://doi.org/10.1093/bioinformatics/bts590
Bartocci, E., Liò, P., Merelli, E. and Paoletti, N., 2012. Multiple Verification in Complex Biological Systems: The Bone Remodelling Case Study. Trans. Comp. Sys. Biology, v. 14
Doi: 10.1007/978-3-642-35524-0_3
Liò, P., Paoletti, N., Moni, MA., Atwell, K., Merelli, E. and Viceconti, M., 2012. Modelling osteomyelitis. BMC Bioinformatics, v. 13 Suppl 14
Doi: http://doi.org/10.1186/1471-2105-13-S14-S12
Costanza, J., Carapezza, G., Angione, C., Liò, P. and Nicosia, G., 2012. Multi-objective optimisation, sensitivity and robustness analysis in FBA modelling Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 7605 LNBI
Doi: http://doi.org/10.1007/978-3-642-33636-2_9
Massaro, E., Bagnoli, F., Guazzini, A. and Lió, P., 2012. Information dynamics algorithm for detecting communities in networks Communications in Nonlinear Science and Numerical Simulation,
Liò, P., Merelli, E. and Paoletti, N., 2012. Disease processes as hybrid dynamical systems EPTCS 92, 2012, pp. 152-166,
Peng, C., Jin, X., Wong, K-C., Shi, M. and Liò, P., 2012. Collective human mobility pattern from taxi trips in urban area. PLoS One, v. 7
Doi: http://doi.org/10.1371/journal.pone.0034487
Laise, P., Fanelli, D., Lio, P. and Arcangeli, A., 2012. Modeling TGF-beta signaling pathway in epithelial-mesenchymal transition AIP ADV, v. 2
Doi: http://doi.org/10.1063/1.3697962
Massaro, E., Bagnoli, F., Guazzini, A. and Lió, P., 2012. Information dynamics algorithm for detecting communities in networks Communications in Nonlinear Science and Numerical Simulation, v. 17
Doi: http://doi.org/10.1016/j.cnsns.2012.03.023
Lu, XF., Towsley, D., Lio, P. and Xiong, Z., 2012. An adaptive directional MAC protocol for ad hoc networks using directional antennas Science China Information Sciences, v. 55
Doi: http://doi.org/10.1007/s11432-012-4550-6
Umeton, R., Stracquadanio, G., Papini, A., Costanza, J., Liò, P. and Nicosia, G., 2012. Identification of sensitive enzymes in the photosynthetic carbon metabolism. Adv Exp Med Biol, v. 736
Doi: http://doi.org/10.1007/978-1-4419-7210-1_26
Lu, X., Pan, H. and Lio, P., 2012. High Delivery Performance Opportunistic Routing Scheme for Delay Tolerant Networks CHINA COMMUNICATIONS, v. 9
Xie, S., Lawniczak, AT., Krishnan, S. and Lio, P., 2012. Wavelet Kernel Principal Component Analysis in Noisy Multiscale Data Classification ISRN Computational Mathematics, v. 2012
Doi: 10.5402/2012/197352
Paoletti, N., Liò, P., Merelli, E. and Viceconti, M., 2012. Multilevel computational modeling and quantitative analysis of bone remodeling. IEEE/ACM Trans Comput Biol Bioinform, v. 9
Doi: 10.1109/TCBB.2012.51
Liò, P., Angelini, C., De Feis, I. and Nguyen, V-A., 2012. Statistical approaches to use a model organism for regulatory sequences annotation of newly sequenced species. PLoS One, v. 7
Doi: http://doi.org/10.1371/journal.pone.0042489
Peng, C., Jin, X., Wong, KC., Shi, M. and Liò, P., 2012. Correction: Collective Human Mobility Pattern from Taxi Trips in Urban Area. PLoS One, v. 7
Doi: http://doi.org/10.1371/annotation/f0d48839-ed4b-4cb2-822a-d449a6b4fa5d
Haider, S., Cordeddu, L., Robinson, E., Movassagh, M., Siggens, L., Vujic, A., Choy, M-K., Goddard, M., Lio, P. and Foo, R., 2012. The landscape of DNA repeat elements in human heart failure. Genome Biol, v. 13
Doi: http://doi.org/10.1186/gb-2012-13-10-r90
Angione, C., Liò, P. and Nicosia, G., 2012. How to Compute with Metabolism in Bacteria? ERCIM News, v. 2012
Aldinucci, M., Bracciali, A., Liò, P., Sorathiya, A. and Torquati, M., 2011. StochKit-FF: Efficient systems biology on multicore architectures Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6586 LNCS
Doi: http://doi.org/10.1007/978-3-642-21878-1_21
Lio, P., Emanuela Merelli, , Nicola Paoletti, NP. and Marco Viceconti, MV., 2011. A Combined Process Algebraic and Stochastic Approach to Bone Remodeling Electronic Notes in Theoretical Computer Science, v. 277
Umeton, R., Stracquadanio, G., Sorathiya, A., Papini, A., Liò, P. and Nicosia, G., 2011. Design of robust metabolic pathways Proceedings - Design Automation Conference,
Doi: http://doi.org/10.1145/2024724.2024892
Movassagh, M., Choy, M-K., Knowles, DA., Cordeddu, L., Haider, S., Down, T., Siggens, L., Vujic, A., Simeoni, I., Penkett, C., Goddard, M., Lio, P., Bennett, MR. and Foo, RS-Y., 2011. Distinct epigenomic features in end-stage failing human hearts. Circulation, v. 124
Doi: http://doi.org/10.1161/CIRCULATIONAHA.111.040071
Lio, PA., 2011. Commentary on ‘Topical treatments for cutaneous warts’ Evidence-Based Child Health: A Cochrane Review Journal, v. 6
Doi: 10.1002/ebch.851
Lu, X., Hui, P. and Lio, P., 2011. Evolving model of opportunistic routing in delay tolerant networks Proceedings - 2011 7th International Conference on Mobile Ad-hoc and Sensor Networks, MSN 2011,
Doi: http://doi.org/10.1109/MSN.2011.35
Paoletti, N., Liò, P., Merelli, E. and Viceconti, M., 2011. Osteoporosis: A multiscale modeling viewpoint Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB'11,
Doi: http://doi.org/10.1145/2037509.2037536
Hebenstreit, D., Gu, M., Haider, S., Turner, DJ., Liò, P. and Teichmann, SA., 2011. EpiChIP: gene-by-gene quantification of epigenetic modification levels. Nucleic Acids Res, v. 39
Doi: http://doi.org/10.1093/nar/gkq1226
Lu, X., Xin, Y. and Lio, P., 2011. ADMAC: An adaptive directional MAC protocol for mobile ad hoc networks Proceedings - 2011 4th IEEE International Conference on Broadband Network and Multimedia Technology, IC-BNMT 2011,
Doi: http://doi.org/10.1109/ICBNMT.2011.6155982
Schwarz, E., Whitfield, P., Nahnsen, S., Wang, L., Major, H., Leweke, FM., Koethe, D., Lio, P. and Bahn, S., 2011. Alterations of primary fatty acid amides in serum of patients with severe mental illness. Front Biosci (Elite Ed), v. 3
Doi: http://doi.org/10.2741/e246
Khoo, WM. and Lió, P., 2011. Unity in diversity: Phylogenetic-inspired techniques for reverse engineering and detection of malware families Proceedings - 1st SysSec Workshop, SysSec 2011,
Doi: http://doi.org/10.1109/SysSec.2011.24
Gilks, WR., Nye, TMW. and Lio, P., 2011. A Variance-Components Model for Distance-Matrix Phylogenetic Reconstruction STAT APPL GENET MOL, v. 10
Doi: http://doi.org/10.2202/1544-6115.1574
Lio, P. and Verma, D., 2011. Biologically inspired networking and sensing: Algorithms and architectures Biologically Inspired Networking and Sensing: Algorithms and Architectures,
Doi: http://doi.org/10.4018/978-1-61350-092-7
Giampieri, E., Remondini, D., de Oliveira, L., Castellani, G. and Lió, P., 2011. Stochastic analysis of a miRNA-protein toggle switch. Mol Biosyst, v. 7
Doi: http://doi.org/10.1039/c1mb05086a
Balasubramaniam, S., Leibnitz, K., Lio', P., Botvich, D. and Murata, M., 2011. Biological Principles for Future Internet Architecture Design IEEE COMMUN MAG, v. 49
Liò, P., Merelli, E., Paoletti, N. and Viceconti, M., 2011. A combined process algebraic and stochastic approach to bone remodeling Electronic Notes in Theoretical Computer Science, v. 277
Doi: http://doi.org/10.1016/j.entcs.2011.09.034
Van Der Wath, RC., Van Der Wath, EC. and Lió, P., 2011. Parallel hematopoietic stem cell division rate estimation using an agent-based model on the grid Proceedings - 19th International Euromicro Conference on Parallel, Distributed, and Network-Based Processing, PDP 2011,
Doi: http://doi.org/10.1109/PDP.2011.65
Leung, IXY., Chan, S-Y., Hui, P. and Lio', P., 2011. Intra-City Urban Network and Traffic Flow Analysis from GPS Mobility
Trace
Yoneki, E., Crowcroft, J., Lio', P., Walton, N., Vojnovic, M. and Whitaker, R., 2011. Message from the Workshop on the Future of Social Networking COMPUT COMMUN REV, v. 41
Doi: 10.1145/2002250.2002254
Movassagh, M., Choy, MK., Knowles, DA., Cordeddu, L., Haider, S., Down, T., Siggens, L., Vujic, A., Simeoni, I., Penkett, C., Goddard, M., Lio, P., Bennett, MR. and Foo, RSY., 2011. Distinct epigenomic features in end-stage failing human hearts Circulation, v. 124
Doi: http://doi.org/10.1161/CIRCULATIONAHA.111.040071
Song, Y. and Liò, P., 2011. Epileptic EEG detection via a novel pattern recognition framework 5th International Conference on Bioinformatics and Biomedical Engineering, iCBBE 2011,
Doi: http://doi.org/10.1109/icbbe.2011.5780179
Lio, P. and Verma, D., 2010. Biologically Inspired Networking IEEE NETWORK, v. 24
Botta, M., Haider, S., Leung, IXY., Lio, P. and Mozziconacci, J., 2010. Intra- and inter-chromosomal interactions correlate with CTCF binding genome wide. Mol Syst Biol, v. 6
Doi: http://doi.org/10.1038/msb.2010.79
Xie, S., Lawniczak, AT., Song, Y. and Liò, P., 2010. Feature extraction via dynamic PCA for epilepsy diagnosis and epileptic seizure detection Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2010,
Doi: http://doi.org/10.1109/MLSP.2010.5588995
Lio, P. and Song, Y., 2010. A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine Journal of Biomedical Science and Engineering, v. 3
Doi: http://doi.org/10.4236/jbise.2010.36078
Cheng, TMK., Lu, Y-E., Guest, PC., Rahmoune, H., Harris, LW., Wang, L., Ma, D., Stelzhammer, V., Umrania, Y., Wayland, MT., Lió, P. and Bahn, S., 2010. Identification of targeted analyte clusters for studies of schizophrenia. Mol Cell Proteomics, v. 9
Doi: http://doi.org/10.1074/mcp.M900372-MCP200
Lio, PA., 2010. Answers From questions on page 23 Archives of Disease in Childhood - Education and Practice, v. 96
Doi: 10.1136/adc.2010.194126a
Angelini, C., De Feis, I., Nguyen, VA., Van Der Wath, R. and Liò, P., 2010. Combining replicates and nearby species data: A Bayesian approach Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6160 LNBI
Doi: http://doi.org/10.1007/978-3-642-14571-1_14
Lu, XF., Wicker, FD., Towsley, D., Xiong, Z. and Lio, P., 2010. Detection Probability Estimation of Directional Antennas and Omni-Directional Antennas WIRELESS PERS COMMUN, v. 55
Doi: http://doi.org/10.1007/s11277-009-9785-1
Sorathiya, A., Bracciali, A. and Liò, P., 2010. Formal reasoning on qualitative models of coinfection of HIV and Tuberculosis and HAART therapy. BMC Bioinformatics, v. 11 Suppl 1
Doi: http://doi.org/10.1186/1471-2105-11-S1-S67
Xie, S., Lawniczak, AT. and Liò, P., 2010. Features extraction via wavelet kernel PCA for data classification Proceedings of the 2010 IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2010,
Doi: http://doi.org/10.1109/MLSP.2010.5588766
Liò, P. and Verma, DC., 2010. Biologically inspired networking [Guest Editorial]. IEEE Netw., v. 24
Doi: 10.1109/MNET.2010.5464220
Sorathiya, A., Bracciali, A. and Liò, P., 2010. An integrated modelling approach for R5-X4 mutation and HAART therapy assessment Swarm Intelligence,
Song, Y., Azad, S. and Lio, P., 2010. A new approach for epileptic seizure detection using extreme learning machine BIOSIGNALS 2010 - Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, Proceedings,
Stracquadanio, G., Umeton, R., Papini, A., Lio, P. and Nicosia, G., 2010. Analysis and optimization of C<inf>3</inf> photosynthetic carbon metabolism 10th IEEE International Conference on Bioinformatics and Bioengineering 2010, BIBE 2010,
Doi: 10.1109/BIBE.2010.17
Aldinucci, M., Bracciali, A. and Lio, P., 2010. Formal Synthetic Immunology Ercim News, v. 82
Guazzini, A., Lió, P., Bagnoli, F., Passarella, A. and Conti, M., 2010. Cognitive network dynamics in chatlines Procedia Computer Science, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.265
van der Wath, RC., Wilson, A., Laurenti, E., Trumpp, A. and Liò, P., 2009. Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One, v. 4
Doi: http://doi.org/10.1371/journal.pone.0006972
Schwarz, E., Leweke, FM., Bahn, S. and Liò, P., 2009. Clinical bioinformatics for complex disorders: a schizophrenia case study. BMC Bioinformatics, v. 10 Suppl 12
Doi: http://doi.org/10.1186/1471-2105-10-S12-S6
Wilson, A., Laurenti, E., Oser, G., van der Wath, RC., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C., Eshkind, L., Bockamp, E., Lio, P., MacDonald, HR. and Trumpp, A., 2009. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair (vol 135, pg 1118, 2008) CELL, v. 138
Doi: http://doi.org/10.1016/j.cell.2009.06.020
Wilson, A., Laurenti, E., Oser, G., van der Wath, RC., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C., Eshkind, L., Bockamp, E., Lio, P., MacDonald, HR. and Trumpp, A., 2009. Hematopoietic Stem Cells Reversibly Switch from Dormancy to Self-Renewal during Homeostasis and Repair (DOI:10.1016/j.cell.2008.10.048) Cell, v. 138
Doi: http://doi.org/10.1016/j.cell.2009.06.020
Cheng, TMK., Lu, YE. and Lió, P., 2009. Identification of structurally important amino acids in proteins by graph-theoretic measures Proceedings of the KDD-09 Workshop on Statistical and Relational Learning in Bioinformatics, StReBio '09,
Doi: http://doi.org/10.1145/1562090.1562092
Chan, SY., Leung, IXY. and Liò, P., 2009. Fast centrality approximation in modular networks International Conference on Information and Knowledge Management, Proceedings,
Doi: http://doi.org/10.1145/1651274.1651282
Carla Balocco, CB., Lio, P. and Luca Sani, , 2009. Simulazione di un sistema di ventilazione per il controllo degli agenti eziologici nei reparti infettivi. Un caso reale CDA CONDIZIONAMENTO DELL'ARIA RISCALDAMENTO REFRIGERAZIONE, v. May 2009
Leung, IXY., Hui, P., Lio, P. and Crowcroft, J., 2009. Towards real-time community detection in large networks PHYS REV E, v. 79
Doi: 10.1103/PhysRevE.79.066107
Lee, U., Magistretti, E., Gerla, M., Bellavista, P., Lio, P. and Lee, KW., 2009. Bio-inspired multi-agent data harvesting in a proactive urban monitoring environment AD HOC NETW, v. 7
Doi: http://doi.org/10.1016/j.adhoc.2008.03.009
Milanesi, L., Romano, P., Castellani, G., Remondini, D. and Liò, P., 2009. Trends in modeling Biomedical Complex Systems. BMC Bioinformatics, v. 10 Suppl 12
Doi: http://doi.org/10.1186/1471-2105-10-S12-I1
Milanesi, L., Romano, P., Castellani, G., Remondini, D. and Lio, P., 2009. Trends in modeling Biomedical Complex Systems BMC BIOINFORMATICS, v. 10
Doi: http://doi.org/10.1186/1471-2105-10-S12-11
Brilli, M., Fondi, M., Lio, P. and Fani, R., 2009. The Origin and Evolution of Nitrogen Fixation Genes ORIGINS LIFE EVOL B, v. 39
Bianchi, L. and Lio, P., 2009. La legge e il DNA Le Scienze, Italian Edition Scientific American,
Lu, XF., Towsley, D., Lio, P., Wicker, F. and Xiong, Z., 2009. Minimizing Detection Probability Routing in Ad Hoc Networks Using Directional Antennas EURASIP J WIREL COMM,
Doi: http://doi.org/10.1155/2009/256714
Fondi, M., Emiliani, G., Liò, P., Gribaldo, S. and Fani, R., 2009. The evolution of histidine biosynthesis in archaea: insights into the his genes structure and organization in LUCA. J Mol Evol, v. 69
Doi: http://doi.org/10.1007/s00239-009-9286-6
Kershenbaum, A., Pappas, V., Lee, KW., Lio, P., Sadler, B. and Verma, D., 2008. A biologically-inspired MANET architecture Proceedings of SPIE - The International Society for Optical Engineering, v. 6981
Doi: http://doi.org/10.1117/12.783462
Brilli, M., Mengoni, A., Fondi, M., Bazzicalupo, M., Liò, P. and Fani, R., 2008. Analysis of plasmid genes by phylogenetic profiling and visualization of homology relationships using Blast2Network. BMC Bioinformatics, v. 9
Doi: http://doi.org/10.1186/1471-2105-9-551
Lu, X., Wicker, F., Leung, I., Liò, P. and Xiong, Z., 2008. A location prediction algorithm for directional communication IWCMC 2008 - International Wireless Communications and Mobile Computing Conference,
Doi: http://doi.org/10.1109/IWCMC.2008.28
Lio, P. and Bishop, M., 2008. Modeling sequence evolution Methods Mol Biol., v. 452
Lu, YE., Lió, P. and Hand, S., 2008. On low dimensional random projections and similarity search International Conference on Information and Knowledge Management, Proceedings,
Doi: http://doi.org/10.1145/1458082.1458182
Xie, S., Lawniczak, AT. and Lió, P., 2008. Parametric & non-parametric analysis of mean treatment effects of number of packets in transit in data network model Canadian Conference on Electrical and Computer Engineering,
Doi: http://doi.org/10.1109/CCECE.2008.4564900
Stajano, F., Bianchi, L., Liò, P. and Korff, D., 2008. Forensic genomics: Kin privacy, driftnets and other open questions Proceedings of the ACM Conference on Computer and Communications Security,
Doi: 10.1145/1456403.1456407
Wilson, A., Osee, G., van der Wath, R., Blanco-Bose, W., Laurenti, E., Dunant, C., Lio, P., MacDonald, HR. and Trumpp, A., 2008. Haematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair SWISS MED WKLY, v. 138
Cheng, TMK., Lu, Y-E., Vendruscolo, M., Lio', P. and Blundell, TL., 2008. Prediction by graph theoretic measures of structural effects in proteins arising from non-synonymous single nucleotide polymorphisms. PLoS Comput Biol, v. 4
Doi: http://doi.org/10.1371/journal.pcbi.1000135
Brilli, M., Fani, R. and Liò, P., 2008. Current trends in the bioinformatic sequence analysis of metabolic pathways in prokaryotes. Brief Bioinform, v. 9
Doi: http://doi.org/10.1093/bib/bbm051
Liò, P., Lawniczak, AT., Xie, S. and Xu, J., 2008. Wavelet-domain statistics of packet switching networks near traffic congestion Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5151 LNCS
Doi: http://doi.org/10.1007/978-3-540-92191-2_24
Wilson, A., Laurenti, E., Oser, G., van der Wath, RC., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, CF., Eshkind, L., Bockamp, E., Lió, P., Macdonald, HR. and Trumpp, A., 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell, v. 135
Doi: http://doi.org/10.1016/j.cell.2008.10.048
Bagnoli, F., Guazzini, A. and Liò, P., 2008. Human Heuristics for Autonomous Agents CoRR, v. abs/0801.3048
Liò, P., 2007. Topological and dynamical properties of genetic and social networks PAMM, v. 7
Doi: 10.1002/pamm.200700842
van der Wath, E., Moutsianas, L., van der Wath, R., Visagie, A., Milanesi, L. and Lio, P., 2007. Grid methodology for identifying co-regulated genes and transcription factor binding sites IEEE T NANOBIOSCI, v. 6
Doi: http://doi.org/10.1109/TNB.2007.897470
Lawniczak, AT., Xie, S., Liò, PP. and Xu, J., 2007. Study of packet traffic fluctuations near phase transition point from free flow to congestion in data network model Canadian Conference on Electrical and Computer Engineering,
Doi: http://doi.org/10.1109/CCECE.2007.93
Weston, EM., Friday, AE. and Liò, P., 2007. Biometric evidence that sexual selection has shaped the hominin face. PloS one, v. 2
Caretta-Cartozo, C., De Los Rios, P., Piazza, F. and Lio, P., 2007. Bottleneck genes and community structure in the cell cycle network of S-pombe PLOS COMPUT BIOL, v. 3
Doi: http://doi.org/10.1371/journal.pcbi.0030103
Chen, F., Archambault, V., Kar, A., Lio, P., D'Avino, PP., Sinka, R., Lilley, K., Laue, ED., Deak, P., Capalbo, L. and Glover, DM., 2007. Multiple protein phosphatases are required for mitosis in Drosophila CURR BIOL, v. 17
Doi: http://doi.org/10.1016/j.cub.2007.01.068
Papetti, C., Lio, P., Ruber, L., Patarnello, T. and Zardoya, R., 2007. Antarctic fish mitochondrial genomes lack ND6 gene J MOL EVOL, v. 65
Doi: http://doi.org/10.1007/s00239-007-9030-z
Caretta-Cartozo, C., De Los Rios, P., Piazza, F. and Liò, P., 2007. Bottleneck genes and community structure in the cell cycle network of S. pombe PLoS Computational Biology, v. 3
Doi: 10.1371/journal.pcbi.0030103
Fani, R., Caramelli, D. and Liò, P., 2006. [It happened... From prebiotic chemistry to human evolution. In Florence, the First Congress of S.I.B.E. September, 4-6, 2006]. Riv Biol, v. 99
Sguanci, L., Bagnoli, F. and Lio, P., 2006. Mathematical Model of HIV superinfection dynamics and R5 to X4 switch
Fani, R., Caramelli, D. and Liò, P., 2006. From prebiotic chemistry to the evolution of man: The First Conference of the S.I.B.E. (Italian Society of Evolutionary Biology) in Florence Rivista di Biologia - Biology Forum, v. 99
Ambesi-Impiombato, A., Bansal, M., Liò, P. and di Bernardo, D., 2006. Computational framework for the prediction of transcription factor binding sites by multiple data integration. BMC Neurosci, v. 7 Suppl 1
Doi: http://doi.org/10.1186/1471-2202-7-S1-S8
Fani, R., Caramelli, D. and Liò, P., 2006. From prebiotic chemistry to the evolution of man: The First Conference of the S.I.B.E. (Italian Society of Evolutionary Biology) in Florence Rivista di Biologia - Biology Forum, v. 99
Fani, R., Brilli, M. and Lio, P., 2005. The origin and evolution of operons: The piecewise building of the proteobacterial histidine operon J MOL EVOL, v. 60
Doi: http://doi.org/10.1007/s00239-004-0198-1
Lio, P. and Goldman, N., 2004. Phylogenomics and bioinformatics of SARS-CoV TRENDS MICROBIOL, v. 12
Rustici, G., Mata, J., Kivinen, K., Lió, P., Penkett, CJ., Burns, G., Hayles, J., Brazma, A., Nurse, P. and Bähler, J., 2004. Periodic gene expression program of the fission yeast cell cycle. Nat Genet, v. 36
Doi: http://doi.org/10.1038/ng1377
Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, CJ., Burns, G., Hayles, J., Brazma, A., Nurse, P. and Bahler, J., 2004. Periodic gene expression program of the fission yeast cell cycle Nat Genet, v. 36
Lio, P., 2003. Wavelets in bioinformatics and computational biology: state of art and perspectives BIOINFORMATICS, v. 19
Lio, P., 2003. Il genoma della Sars Le Scienze Italian Edition of Scientific American, v. June 2003
Skaer, N., Pistillo, D., Gibert, JM., Lio, P., Wulbeck, C. and Simpson, P., 2002. Gene duplication at the achaete-scute complex and morphological complexity of the peripheral nervous system in Diptera TRENDS GENET, v. 18
Lio, P., 2002. Investigating the relationship between genome structure, composition, and ecology in prokaryotes MOL BIOL EVOL, v. 19
Lio, P., 2002. Una vita per le proteine Le Scienze Italian Edition of Scientific American, v. February 2002
Lio, P., 2001. Le nuove sfide della filogenesi molecolare Le Scienze Italian Edition of Scientific American, v. February 2001
Massingham, T., Davies, LJ. and Lio, P., 2001. Analysing gene function after duplication BIOESSAYS, v. 23
Bogani, P., Simoni, A., Lio, P., Germinario, A. and Buiatti, M., 2001. Molecular variation in plant cell populations evolving in vitro in different physiological contexts. Genome, v. 44
Vannucci, M. and Lio, P., 2001. Non-decimated wavelet analysis of biological sequences: applications to protein structure and genomics Sankhyā: The Indian Journal of Statistics, Series B, v. 63b2
Whelan, S., Lio, P. and Goldman, N., 2001. Molecular phylogenetics: state-of-the-art methods for looking into the past TRENDS GENET, v. 17
Lio, P., 2001. Dal Genoma al Fisioma
Lio, P., 2000. Siamo uomini non DNA robot,
Thomas, NS., Wilkinson, J., Lio, P., Doull, I., Morton, NE. and Holgate, ST., 2000. [Genetic factors involved in asthma and atopy. Studies in British families]. Rev Mal Respir, v. 17
Thomas, NS., Wilkinson, J., Lio, P., Doull, I., Morton, NE. and Holgate, ST., 2000. Investigation of the genetic factors underlying asthma and atopy in outbred UK populations REV MAL RESPIR, v. 17
Hagelberg, E., Goldman, N., Lio, P., Whelan, S., Schiefenhovel, W., Clegg, JB. and Bowden, DK., 2000. Evidence for mitochondrial DNA recombination in a human population of island Melanesia: correction P ROY SOC LOND B BIO, v. 267
Thomas, NS., Wilkinson, J., Lio, P., Doull, I., Morton, NE. and Holgate, ST., 2000. Investigation of the genetic factors underlying asthma and atopy in outbred UK populations Revue des Maladies Respiratoires, v. 17
Fani, R., Gallo, R. and Liò, P., 2000. Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes. J Mol Evol, v. 51
Doi: http://doi.org/10.1007/s002390010061
Lio, P. and Vannucci, M., 2000. Finding pathogenicity islands and gene transfer events in genome data BIOINFORMATICS, v. 16
Hagelberg, E., Goldman, N., Lió, P., Whelan, S., Schiefenhövel, W., Clegg, JB. and Bowden, DK., 1999. Evidence for mitochondrial DNA recombination in a human population of island Melanesia. Proc Biol Sci, v. 266
Doi: http://doi.org/10.1098/rspb.1999.0663
Mori, E., Liò, P., Daly, S., Damiani, G., Perito, B. and Fani, R., 1999. Molecular nature of RAPD markers from Haemophilus influenzae Rd genome. Res Microbiol, v. 150
Doi: http://doi.org/10.1016/s0923-2508(99)80026-6
Liò, P., Goldman, N., Thorne, JL. and Jones, DT., 1998. PASSML: Combining evolutionary inference and protein secondary structure prediction Bioinformatics, v. 14
Doi: 10.1093/bioinformatics/14.8.726
Lio, P. and Ruffo, S., 1998. Searching for genomic constraints NUOVO CIMENTO D, v. 20
Dewar, J., Wheatley, A., Wilkinson, J., Holgate, ST., Thomas, NS., Lio, P., Morton, NE. and Hall, IP., 1997. Association of the Gln 27 beta 2-adrenoceptor polymorphism and IgE variability in asthmatic families. Chest, v. 111
Doi: http://doi.org/10.1378/chest.111.6_supplement.78s
Fani, R., Tamburini, E., Mori, E., Lazcano, A., Liò, P., Barberio, C., Casalone, E., Cavalieri, D., Perito, B. and Polsinelli, M., 1997. Paralogous histidine biosynthetic genes: evolutionary analysis of the Saccharomyces cerevisiae HIS6 and HIS7 genes. Gene, v. 197
Doi: http://doi.org/10.1016/s0378-1119(97)00146-7
Bogani, P., Liò, P., Intrieri, MC. and Buiatti, M., 1997. A physiological and molecular analysis of the genus Nicotiana. Mol Phylogenet Evol, v. 7
Doi: http://doi.org/10.1006/mpev.1996.0356
Lio, P., 1997. Correlation methods for genomic constraints analysis Annals of Human Genetics, v. 61
Lio, P., 1997. Comparison of multipoint analyses for complex inheritance: IDDM and asthma Annals of Human Genetics, v. 61
Dewar, JC., Wilkinson, J., Wheatley, A., Thomas, NS., Doull, I., Morton, N., Lio, P., Harvey, JF., Liggett, SB., Holgate, ST. and Hall, IP., 1997. The glutamine 27 beta2-adrenoceptor polymorphism is associated with elevated IgE levels in asthmatic families. J Allergy Clin Immunol, v. 100
Doi: http://doi.org/10.1016/s0091-6749(97)70234-3
Alifano, P., Fani, R., Liò, P., Lazcano, A., Bazzicalupo, M., Carlomagno, MS. and Bruni, CB., 1996. Histidine biosynthetic pathway and genes: structure, regulation, and evolution. Microbiol Rev, v. 60
Doi: http://doi.org/10.1128/mr.60.1.44-69.1996
Liò, P., Politi, A., Ruffo, S. and Buiatti, M., 1996. Analysis of genomic patchiness of Haemophilus influenzae and Saccharomyces cerevisiae chromosomes. J Theor Biol, v. 183
Doi: http://doi.org/10.1006/jtbi.1996.0235
Alifano, P., Fani, R., Lio, P., Lazcano, A., Bazzicalupo, M., Carlomagno, MS. and Bruni, CB., 1996. Histidine biosynthetic pathway and genes: Structure, regulation, and evolution MICROBIOL REV, v. 60
Bogani, P., Simoni, A., Lio', P., Scialpi, A. and Buiatti, M., 1996. Genome flux in tomato cell clones cultured in vitro in different physiological equilibria. II. A RAPD analysis of variability. Genome, v. 39
Doi: http://doi.org/10.1139/g96-107
VICARIO, F., VENDRAMIN, GG., ROSSI, P., LIO, P. and GIANNINI, R., 1995. ALLOZYME, CHLOROPLAST DNA AND RAPD MARKERS FOR DETERMINING GENETIC-RELATIONSHIPS BETWEEN ABIES-ALBA AND THE RELIC POPULATION OF ABIES NEBRODENSIS THEOR APPL GENET, v. 90
Fani, R., Liò, P., Chiarelli, I. and Bazzicalupo, M., 1994. The evolution of the histidine biosynthetic genes in prokaryotes: a common ancestor for the hisA and hisF genes. J Mol Evol, v. 38
Doi: http://doi.org/10.1007/BF00178849
Lió, P., Ruffo, S. and Buiatti, M., 1994. Third codon G + C periodicity as a possible signal for an "internal" selective constraint. J Theor Biol, v. 171
Doi: http://doi.org/10.1006/jtbi.1994.1225
Banerjee, S., Lio, P., Jones, PB. and Cardinal, RN., A Human-Interpretable Machine Learning Approach to Predict Mortality in Severe Mental Illness SSRN Electronic Journal,
Doi: http://doi.org/10.2139/ssrn.3824766
Veličković, P., Wang, D., Lane, ND. and Liò, P., X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets SSCI 2016: 1-8,
Martins, DP., Barros, M., Pierobon, M., Kandhavelu, M., Lio, P. and Balasubramaniam, S., Computational Models for Trapping Ebola Virus Using Engineered Bacteria IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 15
Doi: http://doi.org/10.1109/TCBB.2018.2836430
Ercole, A., Deasy, J. and Lio, P., Impact of novel aggregation methods for flexible, time-sensitive EHR prediction without variable selection or cleaning arXiv,
Corso, G., Cavalleri, L., Beaini, D., Liò, P. and Velickovic, P., Principal Neighbourhood Aggregation for Graph Nets Advances in Neural Information Processing Systems, v. 2020-December
Bodnar, C., Cangea, C. and Lio, P., Deep Graph Mapper: Seeing Graphs through the Neural Lens Frontiers in Big Data,
Benmounah, Z., Meshoul, S., Batouche, M. and Lio, P., Parallel swarm intelligence strategies for large-scale clustering based on MapReduce with application to epigenetics of aging Applied Soft Computing, v. 69
Doi: http://doi.org/10.1016/j.asoc.2018.04.012
Maj, C., Azevedo, T., Giansanti, V., Borisov, O., Dimitri, GM., Spasov, S., Alzheimer’s Disease Neuroimaging Initiative, , Lió, P. and Merelli, I., Integration of Machine Learning Methods to Dissect Genetically Imputed Transcriptomic Profiles in Alzheimer's Disease. Frontiers in Genetics, v. 10
Doi: http://doi.org/10.3389/fgene.2019.00726
Roberts, M., Driggs, D., Thorpe, MATTHEW., Gilbey, J., Yeung, M., Ursprung, S., Aviles-Rivero, A., Etmann, C., McCague, C., Beer, L., Weir-McCall, J., Teng, Z., Gkrania-Klotsas, E., Collaboration, AIX-COVNET., Rudd, J., Sala, E. and Schoenlieb, C-B., Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans Nature Machine Intelligence,
Christensen, CN., Ward, EN., Lio, P. and Kaminski, CF., ML-SIM: A deep neural network for reconstruction of structured
illumination microscopy images arXiv,
Cvejic, A., Tangherloni, A. and Liò, P., Analysis of single-cell RNA sequencing data based on autoencoders BMC Bioinformatics,
Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N. and Liò, P., On Second Order Behaviour in Augmented Neural ODEs Advances in Neural Information Processing Systems, v. 2020-December
Dimitri, GM., Beqiri, E., Czosnyka, M., Ercole, A., Smielewski, P., Liò, P. and CENTER-TBI High Resolution Sub- Study Participants and Investigators, , Analysing cardio-cerebral crosstalks in an adult cohort from CENTER-TBI Acta Neurochirurgica: Supplementum,
Doi: http://doi.org/10.1007/978-3-030-59436-7_9
Goddard, D., Lio, P., Kay, J. and Liu, V., Nephrogenic Fibrosing Dermopathy: A Review of the Massachusetts General Hospital Experience Journal of Cutaneous Pathology, v. 32
Doi: 10.1111/j.0303-6987.2005.320ce.x
Tailor, SA., Opolka, FL., Liò, P. and Lane, ND., Adaptive Filters and Aggregator Fusion for Efficient Graph Convolutions arxiv,
Trębacz, M., Shams, Z., Jamnik, M., Scherer, P., Simidjievski, N., Terre, HA. and Liò, P., Using ontology embeddings for structural inductive bias in gene
expression data analysis arxiv,
Bilimoria, S., Lee, K. and Lio, P., Evaluating the predictive utility of patient‐oriented scoring of atopic dermatitis (PO‐SCORAD) versus Patient‐Oriented Eczema Measure (POEM) for peanut sensitivity in patients with atopic dermatitis JEADV Clinical Practice,
Doi: http://doi.org/10.1002/jvc2.69
Christensen, CN., Ward, E., Lio, P. and Kaminski, C., ML-SIM: Universal reconstruction of structured illumination microscopy images using transfer learning Biomedical Optics Express,
Doi: http://doi.org/10.1364/boe.414680
Deasy, J., Simidjievski, N. and Liò, P., Constraining Variational Inference with Geometric Jensen-Shannon
Divergence Advances in Neural Information Processing Systems, v. 2020-December
Bodnar, C., Day, B. and Lió, P., Proximal Distilled Evolutionary Reinforcement Learning AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,
Laise, P., Fanelli, D., Lio, P. and Arcangeli, A., Modeling TGF-β signaling pathway in epithelial-mesenchymal transition AIP Advances, v. Special Topic: Physics of Cancer
Lio, PA., A split body trial comparing dilute bleach vs. dilute apple cider vinegar compresses for atopic dermatitis in Chicago: a pilot study Journal of Dermatology & Cosmetology, v. 3
Doi: 10.15406/jdc.2019.03.00109
Banerjee, S., Lio, P., Jones, P. and Cardinal, R., A class-contrastive human-interpretable machine learning approach to predict mortality in severe mental illness npj Schizophrenia,
Doi: 10.1038/s41537-021-00191-y
Lu, M., Christensen, C., Weber, J., Konno, T., Laubli, N., Scherer, K., Avezov, E., Lio, P., Lapkin, A., Kaminski Schierle, G. and Kaminski, C., ERnet: a tool for the semantic segmentation and quantitative analysis of endoplasmic reticulum topology Nature Methods,
Doi: http://doi.org/10.1038/s41592-023-01815-0
Ganggayah, MD., Taib, NA., Har, YC., Lio, P. and Dhillon, SK., Predicting factors for survival of breast cancer patients using machine learning techniques. BMC Medical Informatics and Decision Making, v. 19
Doi: http://doi.org/10.1186/s12911-019-0801-4
Lipov, A. and Liò, P., A Multiscale Graph Convolutional Network Using Hierarchical Clustering Advances in Intelligent Systems and Computing, v. 1364 AISC
Doi: 10.1007/978-3-030-73103-8_35
Scherer, P., Trębacz, M., Simidjievski, N., Viñas, R., Shams, Z., Terre, HA., Jamnik, M. and Liò, P., Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinformatics,
Doi: 10.1093/bioinformatics/btab830
Viñas, R., Andrés-Terré, H., Liò, P. and Bryson, K., Adversarial generation of gene expression data. Bioinformatics,
Doi: 10.1093/bioinformatics/btab035
Viñas Torné, R., Azevedo, T., R. Gamazon, E. and Liò, P., Deep Learning Enables Fast and Accurate Imputation of Gene Expression Frontiers in Genetics,
Charoenkwan, P., Nantasenamat, C., Hasan, MM., Moni, MA., Lio', P. and Shoombuatong, W., iBitter-Fuse: A Novel Sequence-Based Bitter Peptide Predictor by Fusing Multi-View Features. International Journal of Molecular Sciences, v. 22
Doi: 10.3390/ijms22168958
Jana, W., Lio, P. and Lapkin, A., Identification of strategic molecules for future circular supply chains using large reaction networks Reaction Chemistry and Engineering,
Beaini, D., Passaro, S., Letourneau, V., Hamilton, WL., Corso, G. and Lio, P., Directional Graph Networks INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, v. 139
Müller, T. and Lió, P., Personalisable Clinical Decision Support System. ERCIM News, v. 116
Reali, G. and Lio, P., Simulation Tools for Molecular Communications IEEE TCSIM Newsletter,
Spergel, J., Blaiss, M., Lio, P., Kessel, A., Takiya, L., Werth, J., O'Connell, M., Zang, C. and Cork, M., Efficacy and Safety of Crisaborole in Patients With Mild-to-Moderate Atopic Dermatitis With and Without Comorbid Allergic Rhinitis SKIN The Journal of Cutaneous Medicine, v. 5
Doi: 10.25251/skin.5.supp.13
Athanasiadis, E., Botthof, J., Lio, P. and Cvejic, A., Single-cell RNA Sequencing uncovers transcriptional states and fate decisions in haematopoiesis Nature Communications,
Dimitri, GM., Beqiri, E., Placek, MM., Czosnyka, M., Stocchetti, N., Ercole, A., Smielewski, P., Lio, P. and CENTER-TBI collaborators, , Modelling brain-heart cross-talks information in Traumatic Brain Injury patients Neurocritical Care,
Doi: 10.1007/s12028-021-01353-7
Blaiss, M., Cork, M., Lio, P., Kessel, A., Takiya, L., Werth, J., O'Connell, M., Zang, C. and Spergel, J., Efficacy and Safety of Crisaborole in Patients With Mild-to-Moderate Atopic Dermatitis With and Without Food Allergies SKIN The Journal of Cutaneous Medicine, v. 5
Doi: 10.25251/skin.5.supp.12
Tangherloni, A., Spolaor, S., Rundo, L., Nobile, MS., Cazzaniga, P., Mauri, G., Liò, P., Merelli, I. and Besozzi, D., GenHap: a novel computational method based on genetic algorithms for haplotype assembly. BMC Bioinformatics, v. 20
Doi: http://doi.org/10.1186/s12859-019-2691-y
Prokhorov, V., Pilehvar, MT., Kartsaklis, D., Lio, P. and Collier, N., Unseen Word Representation by Aligning Heterogeneous Lexical Semantic Spaces Proceedings of the AAAI Conference on Artificial Intelligence, v. 33
Doi: 10.1609/aaai.v33i01.33016900
Deasy, J., Lio, P. and Ercole, A., Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or pre-processing arXiv,
Rocheteau, E., Liò, P. and Hyland, S., Temporal Pointwise Convolutional Networks for Length of Stay Prediction
in the Intensive Care Unit ACM CHIL 2021 - Proceedings of the 2021 ACM Conference on Health, Inference, and Learning,
Doi: 10.1145/3450439.3451860
Barbiero, P., Viñas Torné, R. and Lió, P., Graph Representation Forecasting of Patient's Medical Conditions: Toward a Digital Twin Front Genet, v. 12
Doi: 10.3389/fgene.2021.652907
King, J., Torné, RV., Campbell, A. and Liò, P., An investigation of pre-upsampling generative modelling and Generative
Adversarial Networks in audio super resolution
Zubić, N. and Liò, P., An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering IFIP Advances in Information and Communication Technology, v. 627
Doi: 10.1007/978-3-030-79150-6_25
Andres Terre, H., Cvejic, A. and Lio, P., Unsupervised generative and graph representation learning for modelling cell differentiation Scientific Reports,
Spasov, S., Passamonti, L., Duggento, A., Liò, P. and Toschi, N., A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease NeuroImage,
Doi: http://doi.org/10.1016/j.neuroimage.2019.01.031
Callahan, SW. and Lio, PA., Current Therapies and Approaches to the Treatment of Chronic Itch International Journal of Clinical Reviews,
Doi: 10.5275/ijcr.2012.02.01
Merelli, I., Liò, P. and Milanesi, L., Describing the genes social networks relying on chromosome conformation capture data EMBnet.journal, v. 19
Doi: 10.14806/ej.19.b.735
Deasy, J., Liò, P. and Ercole, A., Dynamic survival prediction in intensive care units from heterogeneous time series without the need for variable selection or curation Scientific Reports,
Doi: http://doi.org/10.1038/s41598-020-79142-z
Conference proceedings
Lu, X., Zhang, X. and Lio, P., 2023. GAT-DNS: DNS Multivariate Time Series Prediction Model Based on Graph Attention Network ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023,
Doi: http://doi.org/10.1145/3543873.3587329
Mittone, G., Svoboda, F., Aldinucci, M., Lane, N. and Lió, P., 2023. A Federated Learning Benchmark for Drug-Target Interaction ACM Web Conference 2023 - Companion of the World Wide Web Conference, WWW 2023,
Doi: http://doi.org/10.1145/3543873.3587687
Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, M., Jamnik, M. and Lio, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations CEUR Workshop Proceedings, v. 3318
Day, B., Vinas, R., Simidjievski, N. and Lio, P., 2022. Attentional Meta-learners for Few-shot Polythetic Classification INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162,
Fan, J., Pei, J., Bi, X., Xiao, B. and Lio, P., 2022. Context Correlation Aware Network for Cardiac Segmentation Proceedings - IEEE International Conference on Multimedia and Expo, v. 2022-July
Doi: http://doi.org/10.1109/ICME52920.2022.9859985
Stark, H., Beaini, D., Corso, G., Tossou, P., Dallago, C., Guennemann, S. and Lio, P., 2022. 3D Infomax improves GNNs for Molecular Property Prediction INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162,
Lu, X. and Lio, P., 2022. Second International Workshop On Artificial Intelligence To Security - AITS 2022 Proceedings - 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop Volume, DSN-W 2022,
Doi: http://doi.org/10.1109/DSN-W54100.2022.00010
Manouchehrinia, A., Ebrahimi, A., Wiil, UK., Kiani, NA., Lio, P., Olsson, T. and Kockum, I., 2022. A susceptibility network analysis of disease pathways leading to multiple sclerosis MULTIPLE SCLEROSIS JOURNAL, v. 28
Qian, P., Yang, J., Lió, P., Hu, P. and Qi, H., 2022. Joint Group-Wise Motion Estimation and Segmentation of Cardiac Cine MR Images Using Recurrent U-Net Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13413 LNCS
Doi: http://doi.org/10.1007/978-3-031-12053-4_5
Opolka, FL. and Lio, P., 2022. Bayesian Link Prediction with Deep Graph Convolutional Gaussian Processes INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, v. 151
Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M. and Melacci, S., 2022. Entropy-Based Logic Explanations of Neural Networks Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, v. 36
Opolka, FL., Zhi, Y-C., Lio, P. and Dong, X., 2022. Adaptive Gaussian Processes on Graphs via Spectral Graph Wavelets INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, v. 151
Georgiev, D., Barbiero, P., Kazhdan, D., Veličković, P. and Liò, P., 2022. Algorithmic Concept-Based Explainable Reasoning Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, v. 36
Jain, R., Ciravegna, G., Barbiero, P., Giannini, F., Buffelli, D. and Lio, P., 2022. Extending Logic Explained Networks to Text Classification Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022,
Aghakhanyan, G., Barucci, A., Colantonio, S., Colcelli, V., Pasquinelli, F., Gini, R., Lio, P., Mazzei, M., Erba, P., Miele, V. and Neri, E., 2022. NAVIGATOR: An Imaging Biobank to Precisely Prevent and Predict cancer, and facilitate the Participation of oncologic patients to Diagnosis and Treatment EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, v. 49
Tailor, SA., Opolka, FL., Liò, P. and Lane, ND., 2022. DO WE NEED ANISOTROPIC GRAPH NEURAL NETWORKS? ICLR 2022 - 10th International Conference on Learning Representations,
Lu, X., Zhao, J. and Lio, P., 2022. Robust android malware detection based on subgraph network and denoising GCN network MobiSys 2022 - Proceedings of the 2022 20th Annual International Conference on Mobile Systems, Applications and Services,
Doi: http://doi.org/10.1145/3498361.3538778
Lu, X., Pang, R. and Lio, P., 2022. Poster: CFMAP: A Robust CPU Clock Fingerprint Model for Device Authentication Proceedings of the ACM Conference on Computer and Communications Security,
Doi: http://doi.org/10.1145/3548606.3563528
Campbell, A., Qendro, L., Liò, P. and Mascolo, C., 2022. ROBUST AND EFFICIENT UNCERTAINTY AWARE BIOSIGNAL CLASSIFICATION VIA EARLY EXIT ENSEMBLES ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 2022-May
Doi: http://doi.org/10.1109/ICASSP43922.2022.9746330
Tilly, T., Auckland, K., Nibhani, R., Martin, J., Nihr, N., Morrell, NW., Lio', P. and Graf, S., 2022. Deep learning of regulatory regions discovers enhancer variants implicated in PAH EUROPEAN RESPIRATORY JOURNAL, v. 60
Doi: http://doi.org/10.1183/13993003.congress-2022.2543
Liu, L., Huang, Z., Liò, P., Schönlieb, CB. and Aviles-Rivero, AI., 2022. You only Look at Patches: A Patch-wise Framework for 3D Unsupervised Medical Image Registration Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13386 LNCS
Doi: http://doi.org/10.1007/978-3-031-11203-4_21
Zheng, X., Zhou, B., Gao, J., Wang, Y., Lió, P., Li, M. and Montúfar, G., 2021. How Framelets Enhance Graph Neural Networks. ICML, v. 139
Beaini, D., Passaro, S., Létourneau, V., Hamilton, WL., Corso, G. and Lió, P., 2021. Directional Graph Networks. ICML, v. 139
Bodnar, C., Frasca, F., Otter, N., Wang, YG., Lio, P., Montufar, G. and Bronstein, M., 2021. Weisfeiler and Lehman Go Cellular: CW Networks ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021),
Bellini, E., Bagnoli, F., Caporuscio, M., Damiani, E., Flammini, F., Linkov, I., Lio, P. and Marrone, S., 2021. Resilience learning through self adaptation in digital twins of human-cyber-physical systems Proceedings of the 2021 IEEE International Conference on Cyber Security and Resilience, CSR 2021,
Doi: http://doi.org/10.1109/CSR51186.2021.9527913
Corso, G., Ying, R., Pandy, M., Velickovic, P., Leskovec, J. and Lio, P., 2021. Neural Distance Embeddings for Biological Sequences ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), v. 34
Kazhdan, D., Dimanov, B., Terre, HA., Jamnik, M., Liò, P. and Weller, A., 2021. Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
Rocheteau, E., Liò, P. and Hyland, SL., 2021. Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit. CHIL,
Norcliffe, A., Bodnar, C., Day, B., Moss, J. and Liò, P., 2021. NEURAL ODE PROCESSES ICLR 2021 - 9th International Conference on Learning Representations,
Zubic, N. and Liò, P., 2021. An Effective Loss Function for Generating 3D Models from Single 2D Image Without Rendering. AIAI, v. 627
Sebenius, I., Campbell, A., Morgan, SE., Bullmore, ET. and Lio, P., 2021. Multimodal Graph Coarsening for Interpretable, MRI-Based Brain Graph Neural Network IEEE International Workshop on Machine Learning for Signal Processing, MLSP, v. 2021-January
Doi: http://doi.org/10.1109/MLSP52302.2021.9690626
Wei, X., Pu, C., He, Z. and Lio, P., 2021. Deep Reinforcement Learning-based Vaccine Distribution Strategies Proceedings - 2021 2nd International Conference on Electronics, Communications and Information Technology, CECIT 2021,
Doi: http://doi.org/10.1109/CECIT53797.2021.00082
Bodnar, C., Frasca, F., Wang, Y., Otter, N., Montúfar, GF., Lió, P. and Bronstein, MM., 2021. Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks. ICML, v. 139
Lu, X. and Lio, P., 2021. International Workshop on Application of Intelligent Technology in Security - AITS 2021 Proceedings - 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops, DSN-W 2021,
Doi: http://doi.org/10.1109/DSN-W52860.2021.00008
Norcliffe, A., Bodnar, C., Day, B., Simidjievski, N. and Lió, P., 2020. On Second Order Behaviour in Augmented Neural ODEs. NeurIPS,
Deasy, J., Simidjievski, N. and Lió, P., 2020. Constraining Variational Inference with Geometric Jensen-Shannon Divergence. NeurIPS,
Filip, A-C., Azevedo, T., Passamonti, L., Toschi, N. and Lio, P., 2020. A novel Graph Attention Network Architecture for modeling multimodal brain connectivity. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9176613
Corso, G., Cavalleri, L., Beaini, D., Liò, P. and Velickovic, P., 2020. Principal Neighbourhood Aggregation for Graph Nets. NeurIPS,
Ma, Z., Xuan, J., Wang, YG., Li, M. and Liò, P., 2020. Path Integral Based Convolution and Pooling for Graph Neural Networks. NeurIPS,
Wang, D., Jamnik, M. and Lio, P., 2020. Abstract Diagrammatic Reasoning with Multiplex Graph Networks
D’Agostino, D., Liò, P., Aldinucci, M. and Merelli, I., 2020. NeoHiC: A web application for the analysis of Hi-C data Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12313 LNBI
Doi: 10.1007/978-3-030-63061-4_10
Kusztos, R., Dimitri, GM. and Lió, P., 2020. Neural Models for Brain Networks Connectivity Analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11925 LNBI
Doi: 10.1007/978-3-030-34585-3_19
Bodnar, C., Day, B. and Lió, P., 2020. Proximal Distilled Evolutionary Reinforcement Learning. AAAI,
Zhu, J., Tan, C., Yang, J., Yang, G. and Lio', P., 2020. Arbitrary Scale Super-Resolution for Brain MRI Images. International Journal of Neural Systems, v. 31
Doi: 10.1142/S0129065721500374
Di Stefano, A., Maesa, DDF., Das, SK. and Liò, P., 2020. Resolution of Blockchain Conflicts through Heuristics-based Game Theory and Multilayer Network Modeling. ICDCN 2020: Proceedings of the 21st International Conference on Distributed Computing and Networking,
Doi: http://doi.org/10.1145/3369740.3372914
Dimitri, GM., Beqiri, E., Placek, MM., Czosnyka, M., Ercole, A., Smielewski, P. and Lio, P., 2020. Introducing brain-heart crosstalks information in clinical decision support systems for TBI patients, through ICM+ 2020 11th Conference of the European Study Group on Cardiovascular Oscillations: Computation and Modelling in Physiology: New Challenges and Opportunities, ESGCO 2020,
Doi: 10.1109/ESGCO49734.2020.9158050
Dimitri, GM., Spasov, S., Duggento, A., Passamonti, L., Lio, P. and Toschi, N., 2020. Unsupervised stratification in neuroimaging through deep latent embeddings. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9175810
Azevedo, T., Passamonti, L., Lio, P. and Toschi, N., 2020. A deep spatiotemporal graph learning architecture for brain connectivity analysis. Annu Int Conf IEEE Eng Med Biol Soc, v. 2020
Doi: http://doi.org/10.1109/EMBC44109.2020.9175360
Yeghikyan, G., Opolka, FL., Nanni, M., Lepri, B. and Lio, P., 2020. Learning Mobility Flows from Urban Features with Spatial Interaction Models and Neural Networks**To appear in the Proceedings of 2020 IEEE International Conference on Smart Computing (SMARTCOMP 2020) Proceedings - 2020 IEEE International Conference on Smart Computing, SMARTCOMP 2020,
Doi: 10.1109/SMARTCOMP50058.2020.00028
Prokhorov, V., Pilehvar, MT., Kartsaklis, D., Liò, P. and Collier, N., 2019. Unseen word representation by aligning heterogeneous lexical semantic spaces 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019,
Satu, MS., Chandra Howlader, K., Niamat Ullah Akhund, TM., Quinn, JMW., Lio, P. and Moni, MA., 2019. Comorbidity effects of mitochondrial dysfunction to the progression of neurological disorders: Insights from a systems biomedicine perspective 2019 22nd International Conference on Computer and Information Technology, ICCIT 2019,
Doi: 10.1109/ICCIT48885.2019.9038388
Tangherloni, A., Rundo, L., Spolaor, S., Nobile, MS., Merelli, I., Besozzi, D., Mauri, G., Cazzaniga, P. and Liò, P., 2019. High performance computing for haplotyping: Models and platforms Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11339 LNCS
Doi: 10.1007/978-3-030-10549-5_51
Serra, A., Guida, MD., Lió, P. and Tagliaferri, R., 2019. Hierarchical block matrix approach for multi-view clustering Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10834 LNBI
Doi: 10.1007/978-3-030-14160-8_19
Spasov, SE. and Liò, P., 2019. Dynamic Neural Network Channel Execution for Efficient Training. BMVC,
Despeyroux, J., Felty, A., Liò, P. and Olarte, C., 2019. A Logical Framework for Modelling Breast Cancer Progression Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11415 LNCS
Doi: 10.1007/978-3-030-19432-1_8
Veličković, P., Fedus, W., Hamilton, WL., Bengio, Y., Liò, P. and Devon Hjelm, R., 2019. Deep graph infomax 7th International Conference on Learning Representations, ICLR 2019,
Cangea, C., Belilovsky, E., Liò, P. and Courville, AC., 2019. VideoNavQA: Bridging the Gap between Visual and Embodied Question Answering. ViGIL@NeurIPS,
Zhu, J., Yang, G. and Lió, P., 2019. Lesion focused super-resolution. Medical Imaging: Image Processing, v. 10949
Zhu, J., Yang, G. and Liò, P., 2019. How Can We Make Gan Perform Better in Single Medical Image Super-Resolution? A Lesion Focused Multi-Scale Approach. ISBI,
Di Stefano, A., Scatà, M., La Corte, A., Das, SK. and Liò, P., 2019. Improving QoE in multi-layer social sensing: A cognitive architecture and game theoretic model SocialSense'19 Proceedings of the Fourth International Workshop on Social Sensing,
Doi: http://doi.org/10.1145/3313294.3313384
Veličković, P., Casanova, A., Liò, P., Cucurull, G., Romero, A. and Bengio, Y., 2018. Graph attention networks 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings,
Velickovic, P., Karazija, L., Lane, ND., Bhattacharya, S., Liberis, E., Liò, P., Chieh, A., Bellahsen, O. and Vegreville, M., 2018. Cross-modal Recurrent Models for Weight Objective Prediction from Multimodal Time-series Data. PervasiveHealth,
Spasov, SE., Passamonti, L., Duggento, A., Lio, P. and Toschi, N., 2018. A Multi-modal Convolutional Neural Network Framework for the Prediction of Alzheimer's Disease. Annu Int Conf IEEE Eng Med Biol Soc, v. 2018
Doi: http://doi.org/10.1109/EMBC.2018.8512468
2018. 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing, PDP 2018, Cambridge, United Kingdom, March 21-23, 2018 PDP,
Merelli, I., Lio, P. and Kotenko, I., 2018. Message from General Chairs Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018,
Doi: http://doi.org/10.1109/PDP2018.2018.00005
Merelli, I., Lio, P. and Kotenko, I., 2018. Message from Organizing Chairs Proceedings - 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018,
Doi: http://doi.org/10.1109/PDP2018.2018.00006
Lu, X., Liang, C., Zhang, S., Lio, P. and Jing, S., 2018. Terminal sensitive data protection by adjusting access time bidirectionally and automatically Proceedings - International Conference on Computer Communications and Networks, ICCCN, v. 2018-July
Doi: 10.1109/ICCCN.2018.8487465
Bakas, S., Reyes, M., Jakab, A., Bauer, S., Rempfler, M., Crimi, A., Shinohara, RT., Berger, C., Ha, SM., Rozycki, M., Prastawa, M., Alberts, E., Lipkova, J., Freymann, J., Kirby, J., Bilello, M., Fathallah-Shaykh, H., Wiest, R., Kirschke, J., Wiestler, B., Colen, R., Kotrotsou, A., Lamontagne, P., Marcus, D., Milchenko, M., Nazeri, A., Weber, M-A., Mahajan, A., Baid, U., Gerstner, E., Kwon, D., Acharya, G., Agarwal, M., Alam, M., Albiol, A., Albiol, A., Albiol, FJ., Alex, V., Allinson, N., Amorim, PHA., Amrutkar, A., Anand, G., Andermatt, S., Arbel, T., Arbelaez, P., Avery, A., Azmat, M., Pranjal, B., Bai, W., Banerjee, S., Barth, B., Batchelder, T., Batmanghelich, K., Battistella, E., Beers, A., Belyaev, M., Bendszus, M., Benson, E., Bernal, J., Bharath, HN., Biros, G., Bisdas, S., Brown, J., Cabezas, M., Cao, S., Cardoso, JM., Carver, EN., Casamitjana, A., Castillo, LS., Catà, M., Cattin, P., Cerigues, A., Chagas, VS., Chandra, S., Chang, Y-J., Chang, S., Chang, K., Chazalon, J., Chen, S., Chen, W., Chen, JW., Chen, Z., Cheng, K., Choudhury, AR., Chylla, R., Clérigues, A., Colleman, S., Colmeiro, RGR., Combalia, M., Costa, A., Cui, X., Dai, Z., Dai, L., Daza, LA., Deutsch, E., Ding, C., Dong, C., Dong, S., Dudzik, W., Eaton-Rosen, Z., Egan, G., Escudero, G., Estienne, T., Everson, R., Fabrizio, J., Fan, Y., Fang, L., Feng, X., Ferrante, E., Fidon, L., Fischer, M., French, AP., Fridman, N., Fu, H., Fuentes, D., Gao, Y., Gates, E., Gering, D., Gholami, A., Gierke, W., Glocker, B., Gong, M., González-Villá, S., Grosges, T., Guan, Y., Guo, S., Gupta, S., Han, W-S., Han, IS., Harmuth, K., He, H., Hernández-Sabaté, A., Herrmann, E., Himthani, N., Hsu, W., Hsu, C., Hu, X., Hu, X., Hu, Y., Hu, Y., Hua, R., Huang, T-Y., Huang, W., Huffel, SV., Huo, Q., Vivek, HV., Iftekharuddin, KM., Isensee, F., Islam, M., Jackson, AS., Jambawalikar, SR., Jesson, A., Jian, W., Jin, P., Jose, VJM., Jungo, A., Kainz, B., Kamnitsas, K., Kao, P-Y., Karnawat, A., Kellermeier, T., Kermi, A., Keutzer, K., Khadir, MT., Khened, M., Kickingereder, P., Kim, G., King, N., Knapp, H., Knecht, U., Kohli, L., Kong, D., Kong, X., Koppers, S., Kori, A., Krishnamurthi, G., Krivov, E., Kumar, P., Kushibar, K., Lachinov, D., Lambrou, T., Lee, J., Lee, C., Lee, Y., Lee, M., Lefkovits, S., Lefkovits, L., Levitt, J., Li, T., Li, H., Li, W., Li, H., Li, X., Li, Y., Li, H., Li, Z., Li, X., Li, Z., Li, X., Li, W., Lin, Z-S., Lin, F., Lio, P., Liu, C., Liu, B., Liu, X., Liu, M., Liu, J., Liu, L., Llado, X., Lopez, MM., Lorenzo, PR., Lu, Z., Luo, L., Luo, Z., Ma, J., Ma, K., Mackie, T., Madabushi, A., Mahmoudi, I., Maier-Hein, KH., Maji, P., Mammen, CP., Mang, A., Manjunath, BS., Marcinkiewicz, M., McDonagh, S., McKenna, S., McKinley, R., Mehl, M., Mehta, S., Mehta, R., Meier, R., Meinel, C., Merhof, D., Meyer, C., Miller, R., Mitra, S., Moiyadi, A., Molina-Garcia, D., Monteiro, MAB., Mrukwa, G., Myronenko, A., Nalepa, J., Ngo, T., Nie, D., Ning, H., Niu, C., Nuechterlein, NK., Oermann, E., Oliveira, A., Oliveira, DDC., Oliver, A., Osman, AFI., Ou, Y-N., Ourselin, S., Paragios, N., Park, MS., Paschke, B., Pauloski, JG., Pawar, K., Pawlowski, N., Pei, L., Peng, S., Pereira, SM., Perez-Beteta, J., Perez-Garcia, VM., Pezold, S., Pham, B., Phophalia, A., Piella, G., Pillai, GN., Piraud, M., Pisov, M., Popli, A., Pound, MP., Pourreza, R., Prasanna, P., Prkovska, V., Pridmore, TP., Puch, S., Puybareau, É., Qian, B., Qiao, X., Rajchl, M., Rane, S., Rebsamen, M., Ren, H., Ren, X., Revanuru, K., Rezaei, M., Rippel, O., Rivera, LC., Robert, C., Rosen, B., Rueckert, D., Safwan, M., Salem, M., Salvi, J., Sanchez, I., Sánchez, I., Santos, HM., Sartor, E., Schellingerhout, D., Scheufele, K., Scott, MR., Scussel, AA., Sedlar, S., Serrano-Rubio, JP., Shah, NJ., Shah, N., Shaikh, M., Shankar, BU., Shboul, Z., Shen, H., Shen, D., Shen, L., Shen, H., Shenoy, V., Shi, F., Shin, HE., Shu, H., Sima, D., Sinclair, M., Smedby, O., Snyder, JM., Soltaninejad, M., Song, G., Soni, M., Stawiaski, J., Subramanian, S., Sun, L., Sun, R., Sun, J., Sun, K., Sun, Y., Sun, G., Sun, S., Suter, YR., Szilagyi, L., Talbar, S., Tao, D., Tao, D., Teng, Z., Thakur, S., Thakur, MH., Tharakan, S., Tiwari, P., Tochon, G., Tran, T., Tsai, YM., Tseng, K-L., Tuan, TA., Turlapov, V., Tustison, N., Vakalopoulou, M., Valverde, S., Vanguri, R., Vasiliev, E., Ventura, J., Vera, L., Vercauteren, T., Verrastro, CA., Vidyaratne, L., Vilaplana, V., Vivekanandan, A., Wang, G., Wang, Q., Wang, CJ., Wang, W., Wang, D., Wang, R., Wang, Y., Wang, C., Wang, G., Wen, N., Wen, X., Weninger, L., Wick, W., Wu, S., Wu, Q., Wu, Y., Xia, Y., Xu, Y., Xu, X., Xu, P., Yang, T-L., Yang, X., Yang, H-Y., Yang, J., Yang, H., Yang, G., Yao, H., Ye, X., Yin, C., Young-Moxon, B., Yu, J., Yue, X., Zhang, S., Zhang, A., Zhang, K., Zhang, X., Zhang, L., Zhang, X., Zhang, Y., Zhang, L., Zhang, J., Zhang, X., Zhang, T., Zhao, S., Zhao, Y., Zhao, X., Zhao, L., Zheng, Y., Zhong, L., Zhou, C., Zhou, X., Zhou, F., Zhu, H., Zhu, J., Zhuge, Y., Zong, W., Kalpathy-Cramer, J., Farahani, K., Davatzikos, C., Leemput, KV. and Menze, B., 2018. Identifying the Best Machine Learning Algorithms for Brain Tumor
Segmentation, Progression Assessment, and Overall Survival Prediction in the
BRATS Challenge
Wang, D., Zhang, R., Zhu, J., Teng, Z., Huang, Y., Spiga, F., Hong-Fei Du, M., Gillard, JH., Lu, Q. and Liò, P., 2018. Neural network fusion: a novel CT-MR Aortic Aneurysm image segmentation method. Proc SPIE Int Soc Opt Eng, v. 10574
Doi: http://doi.org/10.1117/12.2293371
Bica, I., Veličković, P., Xiao, H. and Liò, P., 2018. Multi-omics data integration using cross-modal neural networks ESANN 2018 - Proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning,
Mathur, A., Zhang, T., Bhattacharya, S., Velickovic, P., Joffe, L., Lane, ND., Kawsar, F. and Liò, P., 2018. Using deep data augmentation training to address software and hardware heterogeneities in wearable and smartphone sensing devices. IPSN '18 Proceedings of the 17th ACM/IEEE International Conference on Information Processing in Sensor Networks,
Doi: http://doi.org/10.1109/IPSN.2018.00048
Brouwer, T. and Lio, P., 2017. Bayesian Hybrid Matrix Factorisation for Data Integration Proceedings of Machine Learning Research, v. 54
Heffernan, K., Liò, P. and Teufel, S., 2017. Multilayer data and document stratification for comorbidity analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10477 LNBI
Doi: 10.1007/978-3-319-67834-4_17
Felicetti, L., Femminella, M., Ivanov, T., Lio, P. and Reali, G., 2017. A big-data layered architecture for analyzing molecular communications systems in blood vessels Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication, NanoCom 2017,
Doi: 10.1145/3109453.3109468
Pratanwanich, N., Lió, P. and Stegle, O., 2016. Warped matrix factorisation for multi-view data integration Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9852 LNAI
Doi: 10.1007/978-3-319-46227-1_49
Alarcon, E., Cid-Fuentes, RG., Davy, A., Felicetti, L., Femminella, M., Lio, P., Reali, G. and Solé-Pareta, J., 2016. MolComML: The molecular communication markup language Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, ACM NANOCOM 2016,
Doi: 10.1145/2967446.2967460
2016. Computational Methods in Systems Biology - 14th International Conference, CMSB 2016, Cambridge, UK, September 21-23, 2016, Proceedings CMSB, v. 9859
Moni, M. and Lio, P., 2016. Infectome, diseasome and comorbidities of Zika infection INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, v. 53
Doi: 10.1016/j.ijid.2016.11.040
Lu, X. and Lio, P., 2016. Privacy Information Security Classification and Comparison between the Westerner and Chinese Proceedings - 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things, IIKI 2015,
Doi: 10.1109/IIKI.2015.10
He, P., Mao, Y., Liu, Q., Liò, P. and Yang, K., 2016. Channel modelling of molecular communications across blood vessels and nerves 2016 IEEE International Conference on Communications, ICC 2016,
Doi: http://doi.org/10.1109/ICC.2016.7510860
Angione, C., Liò, P., Pucciarelli, S., Can, B., Conway, M., Lotti, M., Bokhari, H., Mancini, A., Sezerman, U. and Telatin, A., 2016. Bioinformatics challenges and potentialities in studying extreme environments Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9874 LNCS
Doi: 10.1007/978-3-319-44332-4_16
Velickovic, P., Wang, D., Lane, ND. and Liò, P., 2016. X-CNN: Cross-modal convolutional neural networks for sparse datasets. SSCI,
Tordini, F., Merelli, I., Liò, P., Milanesi, L. and Aldinucci, M., 2016. NuchaRT: Embedding high-level parallel computing in R for augmented Hi-C data analysis Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9874 LNCS
Doi: 10.1007/978-3-319-44332-4_20
Boutorh, A., Pratanwanich, N., Guessoum, A. and Liò, P., 2015. Drug repurposing by optimizing mining of genes target association Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: 10.1007/978-3-319-24462-4_18
Di Serio, C., Liò, P., Nonis, A. and Tagliaferri, R., 2015. Computational intelligence methods for bioinformatics and biostatistics: 11th international meeting, CIBB 2014 Cambridge, UK, june 26–28, 2014 revised selected papers Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Bardozzo, F., Lió, P. and Tagliaferri, R., 2015. Multi omic oscillations in bacterial pathways Proceedings of the International Joint Conference on Neural Networks, v. 2015-September
Doi: 10.1109/IJCNN.2015.7280853
Pratanwanich, N. and Lio, P., 2015. Who wrote this? Textual modeling with authorship attribution in big data IEEE International Conference on Data Mining Workshops, ICDMW, v. 2015-January
Doi: 10.1109/ICDMW.2014.140
Tordini, F., Drocco, M., Merelli, I., Milanesi, L., Liò, P. and Aldinucci, M., 2015. NuChart-II: A graph-based approach for analysis and interpretation of Hi-C data Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: 10.1007/978-3-319-24462-4_25
Hamey, FK., Shavit, Y., Maciulyte, V., Town, C., Liò, P. and Tosi, S., 2015. Automated detection of fluorescent probes in molecular imaging Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: 10.1007/978-3-319-24462-4_6
Iuliano, A., Occhipinti, A., Angelini, C., De Feis, I. and Lió, P., 2015. Applications of network-based survival analysis methods for pathways detection in cancer Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: 10.1007/978-3-319-24462-4_7
Korhonen, A., Guo, Y., Baker, S., Yetisgen-Yildiz, M., Stenius, U., Narita, M. and Liò, P., 2015. Improving literature-based discovery with advanced text mining Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8623
Doi: 10.1007/978-3-319-24462-4_8
Tordini, F., Drocco, M., Misale, C., Milanesi, L., Lió, P., Merelli, I. and Aldinucci, M., 2015. Parallel exploration of the nuclear Chromosome Conformation with NuChart-II Proceedings - 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, PDP 2015,
Doi: 10.1109/PDP.2015.104
Lu, X., Lio, P. and Hui, P., 2015. A content dissemination model for mobile internet to minimize load on cellular network Electronics, Communications and Networks IV - Proceedings of the 4th International Conference on Electronics, Communications and Networks, CECNet2014,
Doi: 10.1201/b18592-54
Tordini, F., Drocco, M., Misale, C., Milanesi, L., Lio, P., Merelli, I. and Aldinucci, M., 2015. Parallel Exploration of the Nuclear Chromosome Conformation with NuChart-II 23RD EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, AND NETWORK-BASED PROCESSING (PDP 2015),
Doi: http://doi.org/10.1109/PDP.2015.104
Lu, X., Lio, P., Hui, P. and Qu, Z., 2014. Nodes density adaptive opportunistic forwarding protocol for intermittently connected networks Proceedings - 2014 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2014,
Doi: 10.1109/IIKI.2014.67
Felicetti, L., Femminella, M., Reali, G. and Liò, P., 2014. Endovascular mobile sensor network for detecting circulating tumoral cells BODYNETS 2014 - 9th International Conference on Body Area Networks,
Doi: 10.4108/icst.bodynets.2014.256917
Lió, P., 2014. Computing longevity: Insights from controls Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8738 LNBI
Doi: http://doi.org/10.1007/978-3-319-10398-3_4
Bartoszek, K. and Lio, P., 2014. A novel algorithm to reconstruct phylogenies using gene sequences and expression data
2013. Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living Systems: Advances in Artificial Life, ECAL 2013, Sicily, Italy, September 2-6, 2013 ECAL,
Bansal, A., Azad, S. and Lio, P., 2013. Malaria Incidence Forecasting and Its Implication to Intervention Proceedings of the European Conference on Complex Systems 2012,
Bianchi, L., Fernandes, P. and Lio, P., 2013. Improving collective awareness and education about the privacy and ethical issues connected with the genome technologies The Future of Education, Conference Proceedings 2013,
Lio, P., Iacovella, L., Bianchi, L. and Nguyen, V., 2013. Information Filtering and Learning: From Heuristics to Social
Eudaimonia Proceedings of the European Conference on Complex Systems 2012,
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., 2013. The Role of the Genome in the Evolution of the Complexity
of Metabolic Machines Proceedings of the European Conference on Complex Systems 2012,
Pratanwanich, N. and Lio, P., 2013. Bayesian Inference for Learning Between-Pathway Network: A New Tool for Studying Drug-Disease Interactions HUMAN HEREDITY, v. 76
Liò, P., 2013. Methodologies for Systems Medicine: Time to Join the Forces of Bioengineering and Bioinformatics. BIOINFORMATICS,
2012. Artificial Immune Systems - 11th International Conference, ICARIS 2012, Taormina, Italy, August 28-31, 2012. Proceedings ICARIS, v. 7597
Kim, H., Khoo, WM. and Lio, P., 2012. Polymorphic Attacks against Sequence-based Software Birthmarks
Lio, P., Emanuela Merelli, and Nicola Paoletti, NP., 2011. Multiple verification in computational modeling of bone pathologies EPTCS, v. 67
Merelli, E., Paoletti, N. and Lio, P., 2011. Methodological Bridges for Multi-Level Systems Procedia Computer Science, v. 7
2011. Artificial Immune Systems - 10th International Conference, ICARIS 2011, Cambridge, UK, July 18-21, 2011. Proceedings ICARIS, v. 6825
Aldinucci, M., Bracciali, A., Liò, P., Sorathiya, A. and Torquati, M., 2010. StochKit-FF: Efficient Systems Biology on Multicore Architectures. Euro-Par Workshops, v. 6586
Bartoszek, K., Lio, P. and Sorathiya, A., 2010. INFLUENZA DIFFERENTIATION AND EVOLUTION SUMMER SOLSTICE 2009 INTERNATIONAL CONFERENCE ON DISCRETE MODELS OF COMPLEX SYSTEMS, v. 3
Chan, TM., Leung, KS., Lee, KH. and Lio, P., 2010. Generic Spaced DNA Motif Discovery Using Genetic Algorithm 2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC),
Papini, A., Nicosia, G., Stracquadanio, G., Lio, P. and Umeton, R., 2010. Key Enzymes for the Optimization of CO2 Uptake and Nitrogen Consumption in the C-3 Photosynthetic Carbon Metabolism JOURNAL OF BIOTECHNOLOGY, v. 150
Doi: http://doi.org/10.1016/j.jbiotec.2010.09.846
Papini, A., Mosti, S., Lio, P. and Haider, S., 2010. BIOLIP, a biotechnology-oriented database of oil content in plants, algae, fungi and cyanobacteria JOURNAL OF BIOTECHNOLOGY, v. 150
Doi: http://doi.org/10.1016/j.jbiotec.2010.09.012
Ostilli, M., Yoneki, E., Leung, IXY., Mendes, JFF., Lio, P. and Crowcroft, J., 2010. Statistical mechanics of rumour spreading in network communities ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: 10.1016/j.procs.2010.04.262
Kitchovitch, S. and Lio, P., 2010. Risk perception and disease spread on social networks ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.264
Guazzini, A., Lio, P., Bagnoli, F., Passarella, A. and Conti, M., 2010. Cognitive network dynamics in chatlines ICCS 2010 - INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, PROCEEDINGS, v. 1
Doi: http://doi.org/10.1016/j.procs.2010.04.265
Hui, P., Xu, K., Li, VOK., Crowcroft, J., Latora, V. and Lio, P., 2009. Selfishness, Altruism and Message Spreading in Mobile Social Networks IEEE INFOCOM 2009 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS,
Kitchovitch, S., Leung, I., Song, YD. and Lio, P., 2009. Using Mutual Information and Models of Evolution for improved pattern detection 2009 INTERNATIONAL JOINT CONFERENCE ON BIOINFORMATICS, SYSTEMS BIOLOGY AND INTELLIGENT COMPUTING, PROCEEDINGS,
Doi: http://doi.org/10.1109/IJCBS.2009.77
Xie, SK., Lio, P. and Lawniczak, AT., 2009. A Comparative Study of Noise Effect on Wavelet Based De-noising Methods IEEE TIC-STH 09: 2009 IEEE TORONTO INTERNATIONAL CONFERENCE: SCIENCE AND TECHNOLOGY FOR HUMANITY,
Giampaolo Bella, GB. and Lio, P., 2009. Analysing the microRNA-17-92/Myc/E2F/RB Compound Toggle Switch by Theorem Proving Proc. of the 9th Workshop on Network Tools and Applications in Biology (Nettab’09), v. Liberodiscrivere (2009)
Xu, K., Hui, P., Li, VOK., Crowcroft, J., Latora, V. and Lio, P., 2009. Impact of Altruism on Opportunistic Communications 2009 FIRST INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS,
Kitchovitch, S., Song, YD., van der Wath, R. and Lio, P., 2009. Substitution Matrices and Mutual Information Approaches to Modeling Evolution LEARNING AND INTELLIGENT OPTIMIZATION, v. 5851
Bella, G. and Lio, P., 2009. Formal Analysis of the Genetic Toggle COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 5688
Sorathiya, A., Jucikas, T., Piecewicz, S., Sengupta, S. and Lio, P., 2009. Searching for Glycomics Role in Stem Cell Development COMPUTATIONAL INTELLIGENCE METHODS FOR BIOINFORMATICS AND BIOSTATISTICS, v. 5488
Guazzini, A., Lio, P., Passarella, A. and Conti, M., 2009. Information Processing and Timing Mechanisms in Vision ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, v. 5768
Sorathiyar, A., Lio, P. and Sguanci, L., 2009. Mathematical Model of HIV Superinfection and Comparative Drug Therapy ARTIFICIAL IMMUNE SYSTEMS, PROCEEDINGS, v. 5666
Lu, Y-E., Roberts, SGB., Cheng, TMK., Dunbar, R., Liò, P. and Crowcroft, J., 2009. On optimising personal network size to manage information flow. CIKM-CNIKM,
Lu, Y-E., Roberts, SGB., Liò, P., Dunbar, R. and Crowcroft, J., 2009. Size Matters: Variation in Personal Network Size, Personality and Effect on Information Transmission. CSE (4),
Doi: 10.1109/CSE.2009.179
Xie, SK., Lio, P. and Lawniczak, AT., 2009. A Case Study of ICA with Multi-scale PCA of Simulated Traffic Data ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, v. 5769
Allen, SM., Conti, M., Crowcroft, J., Dunbar, R., Liò, P., Mendes, JF., Molva, R., Passarella, A., Stavrakakis, I. and Whitaker, RM., 2008. Social Networking for Pervasive Adaptation. SASO Workshops,
Doi: 10.1109/SASOW.2008.34
Angelini, C., Cutillo, L., De Feis, I., Lio, P. and van der Wath, R., 2008. Combining experimental evidences from replicates and nearby species data for annotating novel genomes COLLECTIVE DYNAMICS: TOPICS ON COMPETITION AND COOPERATION IN THE BIOSCIENCES, v. 1028
Leung, IXY., Gibbs, G., Bagnoli, F., Sorathiya, A. and Lio, P., 2008. Contact Network Modeling of Flu Epidemics CELLULAR AUTOMATA, PROCEEDINGS, v. 5191
Lu, XF., Chen, YC., Leung, I., Xiong, Z. and Lio, P., 2008. A novel mobility model from a heterogeneous military MANET trace AD-HOC, MOBILE AND WIRELESS NETWORKS, PROCEEDINGS, v. 5198
van der Wath, RC., van der Wath, E., Carapelli, A., Nardi, F., Frati, F., Milanesi, L. and Lio, P., 2008. Bayesian phylogeny on grid BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
Kershenbaum, A., Pappas, V., Lee, KW., Lio, P., Sadler, B. and Verma, D., 2008. A Biologically-Inspired MANET Architecture Proceedings of SPIE, the International Society for Optical Engineering,
Xie, SK., Lawniczak, AT. and Lio, P., 2008. Parametric & non-parametric analysis of mean treatment effects of number of packets in transit in data network model 2008 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-4,
Lu, XF., Wicker, F., Lio', P. and Towsley, D., 2008. Security Estimation Model with Directional Antennas 2008 IEEE MILITARY COMMUNICATIONS CONFERENCE: MILCOM 2008, VOLS 1-7,
Lio, P., Angelini, C., DeFeis, I., Nguyen, V., Cutillo, L. and va der Wath, R., 2008. Statistical issues for combining replicates and nearby species data and different omics Proceedings The Art and Science of Statistical Bioinformatics The 27th Leeds Annual Statistical Research Workshop 15th - 17th July 2008,
Lu, YE., Lio, P. and Hand, S., 2008. Beta Random Projection BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
Schwarz, E., Leweke, FM., Bahn, S. and Lio, P., 2008. Combining molecular and physiological data of complex disorders BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
Nguyen, VA., Koukolikova-Nicola, Z., Bagnoli, F. and Lio, P., 2008. Bayesian Inference on Hidden Knowledge in High-Throughput Molecular Biology Data PRICAI 2008: TRENDS IN ARTIFICIAL INTELLIGENCE, v. 5351
Allen, SM., Conti, M., Crowcroft, J., Dunbar, R., Lio, P., Mendes, JF., Molva, R., Passarella, A., Stavrakakis, I. and Whitaker, RM., 2008. Social Networking for Pervasive Adaptation SASOW 2008: SECOND IEEE INTERNATIONAL CONFERENCE ON SELF-ADAPTIVE AND SELF-ORGANIZING SYSTEMS WORKSHOPS, PROCEEDINGS,
Lee, U., Magistretti, E., Gerla, M., Bellavista, P., Lio, P. and Lee, KW., 2008. Bio-Inspired Multi-agent Collaboration for Urban Monitoring Applications BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
Bagnoli, F., Guazzini, A. and Lio, P., 2008. Human Heuristics for Autonomous Agents BIO-INSPIRED COMPUTING AND COMMUNICATION, v. 5151
Lu, XF., Hui, P., Lio, P. and Xiong, Z., 2008. Identity Privacy Protection by Delayed Transmission in Pocket Switched Networks EUC 2008: PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING, VOL 2, WORKSHOPS,
Lio, P., Brilli, M. and Fani, R., 2008. Topological metrics in Blast data mining: Plasmid and nitrogen-fixing proteins case studies BIOINFORMATICS RESEARCH AND DEVELOPMENT, PROCEEDINGS, v. 13
van der Wath, RC. and Lio, P., 2008. A Stochastic Single Cell Based Model of BrdU Measured Hematopoietic Stem Cell Kinetics COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 5307
van der Wath, RC. and Lio, P., 2008. A Stochastic Multi-agent Model of Stem Cell Proliferation CELLULAR AUTOMATA, PROCEEDINGS, v. 5191
Koukolikova-Nicola, Z., Lio, P. and Bagnoli, F., 2008. Inference on missing values in genetic networks using high-throughput data EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, v. 4973
2008. Bio-Inspired Computing and Communication, First Workshop on Bio-Inspired Design of Networks, BIOWIRE 2007, Cambridge, UK, April 2-5, 2007, Revised Selected Papers BIOWIRE, v. 5151
Kershenbaum, A., Pappas, V., Lee, KW., Lio, P., Sadler, B. and Verma, D., 2008. A biologically-inspired MANET architecture - art. no. 698106 DEFENSE TRANSFORMATION AND NET-CENTRIC SYSTEMS 2008, v. 6981
Angelini, C., Cutillo, L., De Feis, I., Van der Wath, R. and Lio, P., 2007. Identifying regulatory sites using neighborhood species Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, Proceedings, v. 4447
Lawniczak, AT., Lio, P., Xie, S. and Xu, JY., 2007. Wavelet spectral analysis of packet traffic near phase transition point from free flow to congestion in data network model 2007 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-3,
Fani, R., Brilli, M., Fondi, M. and Lio, P., 2007. The role of gene fusions in the evolution of metabolic pathways: the histidine biosynthesis case BMC EVOLUTIONARY BIOLOGY, v. 7
Doi: http://doi.org/10.1186/1471-2148-7-S2-S4
Lu, YE., Hand, S. and Lio, P., 2007. Keyword searching in structured overlays via content distance addressing Databases, Information Systems, and Peer-to-Peer Computing, v. 4125
Milanesi, L., Lio, P. and Breton, V., 2007. Bioinformatics Challenges in Life Science IST-Africa 2007 Conference Proceedings, Paul Cunningham and Miriam Cunningham (Eds), IIMC International Information Management Corporation, 2007, ISBN: 1-905824-04-1,
Carapelli, A., Lio, P., Nardi, F., van der Wath, E. and Frati, F., 2007. Phylogenetic analysis of mitochondrial protein coding genes confirms the reciprocal paraphyly of Hexapoda and Crustacea BMC EVOLUTIONARY BIOLOGY, v. 7
Doi: http://doi.org/10.1186/1471-2148-7-S2-S8
Sguanci, L., Lio, P. and Bagnoli, F., 2006. The influence of risk perception in epidemics: A cellular agent model CELLULAR AUTOMATA, PROCEEDINGS, v. 4173
Fani, R., Caramelli, D. and Lio, P., 2006. It happened... From prebiotic chemistry to human evolution Rivista di biologia,
Sguanci, L., Lio, P. and Bagnoli, F., 2006. Modeling evolutionary dynamics of HIV infection COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, PROCEEDINGS, v. 4210
Lu, YE., Hand, S. and Lio, P., 2005. Keyword searching in hypercubic manifolds Fifth IEEE International Conference on Peer-to-Peer Computing, Proceedings,
Brilli, M., Lio, P., Lazcano, A. and Fani, R., 2002. Evolution of TIM barrel: Multiple gene elongation events in HisA. Origins of Life and Evolution of the Biosphere, v. 22
Lio, P., 2002. Structure and evolution of the histidine biosynthetic pathway Origins of Life and Evolution of the Biosphere, v. 22
Hagelberg, E., Kayser, M., Nagy, M., Roewer, L., Zimdahl, H., Krawczak, M., Lió, P. and Schiefenhövel, W., 1999. Molecular genetic evidence for the human settlement of the Pacific: analysis of mitochondrial DNA, Y chromosome and HLA markers. Philos Trans R Soc Lond B Biol Sci, v. 354
Doi: http://doi.org/10.1098/rstb.1999.0367
Morton, NE. and Lio, P., 1997. Oligogenic linkage and map integration GENETIC MAPPING OF DISEASE GENES,
Thomas, NS., Wilkinson, J., Lio, P., Doull, I., Morton, NE. and Holgate, ST., 1997. Investigation of the genetic factors underlying asthma and atopy in outbred UK populations 5TH WEST-PACIFIC ALLERGY SYMPOSIUM / 7TH KOREA-JAPAN JOINT ALLERGY SYMPOSIUM,
Dewar, J., Wheatley, A., Wilkinson, J., Holgate, ST., Thomas, NS., Lio, P., Morton, NE. and Hall, IP., 1997. Association of the Gln 27 beta(2)-adrenoceptor polymorphism and IgE variability in asthmatic families CHEST, v. 111
Bagnoli, F., Guasti, G. and Lio, P., 1995. Translation optimization in bacteria: Statistical models NONLINEAR EXCITATIONS IN BIOMOLECULES,
Fani, R., Grifoni, A., Damiani, G., Lio, P. and Mori, E., 1994. Nucleotide Sequence of Azospirillum RAPD markers Azospirillum VI and Related Microorganisms:: Genetics - Physiology - Ecology (NATO ASI Series / Ecological Sciences),
Fani, R., Bandi, C., Bazzicalupo, M., Damiani, G., Di Cello, F., Fancelli, S., Gerace, L., Grifoni, A., Lio, P. and Mori, E., 1994. Phylogenetic Studies of the Genus Azospirillum Related Microorganisms:: Genetics - Physiology - Ecology (NATO ASI Series / Ecological Sciences),
Cangea, C., Belilovsky, E., Liò, P. and Courville, A., VideoNavQA: Bridging the Gap between Visual and Embodied Question
Answering
Norcliffe, A., Bodnar, C., Day, B., Moss, J. and Liò, P., Neural ODE Processes
Azevedo, T., Passamonti, L., Lio, P. and Toschi, N., A Machine Learning Tool for Interpreting Differences in Cognition Using Brain Features IFIP Advances in Information and Communication Technology,
Doi: http://doi.org/10.1007/978-3-030-19823-7_40
Bardozzo, F., Lio', P. and Tagliaferri, R., A machine learning approach to investigate regulatory control circuits in bacterial metabolic pathways
Kazhdan, D., Dimanov, B., Jamnik, M., Lio, P. and Weller, A., Now You See Me (CME): Concept-based Model Extraction
Taylor, D., Spasov, S. and Liò, P., Co-Attentive Cross-Modal Deep Learning for Medical Evidence Synthesis and Decision Making
Angione, C., Bartocci, E., Bortolussi, L., Lio, P., Occhipinti, A. and Sanguinetti, G., Bayesian Design for Whole Cell Synthetic Biology Models Proceedings of the Third International Workshop on Hybrid Systems Biology (HSB 2014),
Rossi, E., Monti, F., Bronstein, M. and Liò, P., ncRNA Classification with Graph Convolutional Networks
Angione, C., Pratanwanich, N. and Lio, P., A hybrid of multi-omics FBA and Bayesian factor modeling to identify pathway crosstalks Proceedings of the 6th International Workshop on Bio-Design Automation (IWBDA),
Espinosa Zarlenga, M., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P. and Jamnik, M., Concept embedding models: Beyond the Accuracy-Explainability Trade-Off
Webb, E., Day, B., Andres-Terre, H. and Lió, P., Factorised Neural Relational Inference for Multi-Interaction Systems
Lio, P., Long Range Properties of DNA Sequences Collana Franco Angeli Editore,
Prokhorov, V., Pilehvar, M., Kartsaklis, D., Lio, P. and Collier, N., Unseen Word Representation by Aligning Heterogeneous Lexical Semantic Spaces
Nguyen, VA. and Lio, P., Filling in the gaps of biological network
Drotár, P., Jamasb, AR., Day, B., Cangea, C. and Liò, P., Structure-aware generation of drug-like molecules
Scata', M., Di Stefano, A., Giacchi, E., La Corte, A. and Lio, P., The Bio-Inspired and Social Evolution of Node and Data in a Multilayer Network SCITEPRESS Digital Library,
Deasy, J., Ercole, A. and Liò, P., Adaptive Prediction Timing for Electronic Health Records
Moss, JD., Opolka, FL., Dumitrascu, B. and Lió, P., Approximate Latent Force Model Inference
Fernandes, P., Lio, P. and Milanesi, L., Challenges in building an e-health infrastructure for P5 Medicine
Opolka, FL., Solomon, A., Cangea, C., Veličković, P., Liò, P. and Hjelm, RD., Spatio-Temporal Deep Graph Infomax
Veličković, P., Fedus, W., Hamilton, WL., Liò, P., Bengio, Y. and Hjelm, RD., Deep Graph Infomax
Margeloiu, A., Simidjievski, N., Lio, P. and Jamnik, M., Weight predictor network with feature selection for small sample tabular biomedical data
Scherer, P., Lio, P. and Jamnik, M., Distributed representations of graphs for drug pair scoring Proceedings of the First Learning on Graphs Conference (LoG 2022), v. PMLR 198
Angione, C., Carapezza, G., Costanza, J., Lio, P. and Nicosia, G., Computing with Metabolic Machines EPiC Series in Computing,
Doi: 10.29007/t48n
Zhu, J., Yang, G. and Lio, P., How Can We Make GAN Perform Better in Single Medical Image Super-Resolution? A Lesion Focused Multi-Scale Approach 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019),
Internet publications
Igashov, I., Jamasb, A., Sadek, A., Sverrisson, F., Schneuing, A., Liò, P., Blundell, T., Bronstein, M. and Correia, B., 2022. Decoding Surface Fingerprints for Protein-Ligand Interactions
Doi: 10.1101/2022.04.26.489341
Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P. and Jamnik, M., 2020. Probabilistic Dual Network Architecture Search on Graphs
Wang, D., Jamnik, M. and Lio, P., 2020. Extrapolatable Relational Reasoning With Comparators in Low-Dimensional
Manifolds
Luzhnica, E., Day, B. and Liò, P., 2019. On Graph Classification Networks, Datasets and Baselines
Viñas, R., Andrés-Terré, H., Liò, P. and Bryson, K., 2019. Adversarial generation of gene expression data
Doi: 10.1101/836254
Bica, I., Andrés-Terré, H., Cvejic, A. and Liò, P., 2019. Unsupervised generative and graph representation learning for modelling cell differentiation
Doi: 10.1101/801605
Book chapters
DE MARIA, E., DESPEYROUX, J., FELTY, A., LIÒ, P., OLARTE, C. and BAHRAMI, A., 2022. Logique calculatoire pour la biomédecine et les neurosciences
Doi: 10.51926/iste.9029.ch6
Vignani, R., Scali, M. and Liò, P., 2022. Molecular Markers and Genomics for Food and Beverages Characterization
Doi: 10.1007/978-981-16-4318-7_43
Barsacchi, M., Andres-Terré, H. and Lió, P., 2022. Metabolically driven latent space learning for gene expression data
Doi: 10.1142/9781800610941_0005
Felicetti, LF., Femminella, MF., Lio', LP., Reali, RG. and Lio, P., 2017. Effect of Aging, Disease Versus Health Conditions in the Design of Nano-communications in Blood Vessels
Doi: http://doi.org/10.1007/978-3-319-50688-3_19
Bansal, A., Azad, S. and Lio, P., 2013. Malaria incidence forecasting and its implication to intervention strategies in South East Asia Region
Doi: 10.1007/978-3-319-00395-5_110
Lio, P., Bianchi, L., Nguyen, V. and Kitchovich, S., 2013. Risk Perception, Heuristics and Epidemic Spread
Lio, P. and Verma, D., 2012. Biologically Inspired Networking and Sensing: Algorithms and Architectures Preface
Brilli, M., Fani, R. and Lio, P., 2010. Bioinformatics of gene families
Brilli, M. and Lio, P., 2010. The structural and dynamical properties of biological systems
Lio, P. and Brilli, M., 2010. Transcription factors and gene regulatory networks
Emiliani, G., Fondi, M., Lio, P. and Fani, R., 2010. Evolution of Metabolic Pathways and Evolution of Genomes
Carapelli, A., Nardi, F., Dallai, R., Boore, J., LiÒ, P. and Frati, F., 2005. Relationships between hexapods and crustaceans based on four mitochondrial genes
Doi: 10.1201/9781420037548.ch12
Carapelli, A., Nardi, F., Dallai, R., Boore, JL., Lio, P. and Frati, F., 2005. Relationships between hexapods and crustaceans based on 4 mitochondrial genes
Liò, P., Bazzicalupo, M., Grifoni, A., Mori, E. and Fani, R., 1995. Cloning and Analysis of an Azospirillum brasilense Iteron and hslUV Operon Containing Region
Doi: 10.1007/978-3-642-79906-8_14
Books
Aiello, LM., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P. and Rocha, LM., 2019. Preface
Aiello, LM., Cherifi, C., Cherifi, H., Lambiotte, R., Lió, P. and Rocha, LM., 2019. Preface
Lio, P. and Zuliani, P., 2019. Automated Reasoning for Systems Biology and Medicine Preface
Bartocci, E., Lio, P. and Paoletti, N., 2016. Preface
Di Serio, C., Liò, P., Nonis, A. and Tagliaferri, R., 2015. Preface
Lio, P. and Verma, D., 2011. Biologically Inspired Networking and Sensing
Theses / dissertations
Deasy, J., Relaxing assumptions in deep probabilistic modelling
Azevedo, T., Data-driven Representations in Brain Science: Modelling Approaches in Gene Expression and Neuroimaging Domains
Spivakovsky-Gonzalez, P., Computational Tools for Metabolic Modeling and Gene Duplication Analysis
Andres Terre, H., Interpreting Deep Learning for cell differentiation. Supervised and Unsupervised models viewed through the lens of information and perturbation theory.
Wang, D., Neural Diagrammatic Reasoning
Spasov, S., Encoding parameter and structural efficiency in deep learning
Dimanov, B., Interpretable Deep Learning: Beyond Feature-Importance with Concept-based Explanations
Rocheteau, E., Representation Learning for Patients in the Intensive Care Unit