skip to content

Department of Computer Science and Technology

  • Professor of Artificial Intelligence

I am a full Professor of Artificial Intelligence in the Department of Computer Science and Technology (Computer Laboratory) at the University of Cambridge, UK. I am also an associate fellow at the Leverhulme Centre for the Future of Intelligence. Recently I served as Specialist Adviser to the House of Lords Select Committee on Artificial Intelligence. I founded the women@CL initiative.

More information is on my personal homepage.

 

Research

In my work I want to build AI systems that work in more human-like ways. I explore how people represent their problems and how they solve them using informal techniques. I combine AI reasoning with machine learning techniques in order to obtain explainable model predictions as well as to be able to apply them in applications where it is important to understand the machine's output. In particular, I apply this theoretical work to clinical decision support systems in personalised cancer medicine as well as in education to personalised tutoring systems.

Broadly, my research is in the areas of artificial intelligence, human-like computation, machine learning, automated reasoning, diagrammatic reasoning, knowledge representation, theorem proving, cognitive science, human-computer interaction.

I am a member of the Artificial Intelligence research group and also of the Programming, Logic, and Semantics Group.

Publications

Theses / dissertations

  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers’ mathematical knowledge and views
    Doi: http://doi.org/10.17863/CAM.115816
  • Jiang, Q., 2025 (No publication date). Language models for verifiable mathematical automation: Interaction, integration, and autoformalization
    Doi: http://doi.org/10.17863/CAM.115428
  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers' mathematical knowledge and views
  • Yang, M., 2024 (No publication date). Chinese Teachers’ Noticing in the Context of Lakatos-Style Proving Activity: A mixed-methods study to investigate its patterns and underlying mechanisms
    Doi: http://doi.org/10.17863/CAM.112706
  • Kazhdan, D., 2024 (No publication date). Enhancing Interpretability: The Role of Concept-based Explanations Across Data Types
    Doi: http://doi.org/10.17863/CAM.109227
  • Scherer, P., 2024 (No publication date). Distributional and relational inductive biases for graph representation learning in biomedicine
    Doi: 10.17863/CAM.107338
  • Słowik, A., 2023 (No publication date). Out-of-distribution generalisation in machine learning
    Doi: 10.17863/CAM.101537
  • Ayers, E., 2022 (No publication date). A Tool for Producing Verified, Explainable Proofs
    Doi: 10.17863/CAM.81869
  • Stockdill, A., 2022 (No publication date). Automating representation change across domains for reasoning
    Doi: 10.17863/CAM.84749
  • Dimanov, B., 2021 (No publication date). Interpretable Deep Learning: Beyond Feature-Importance with Concept-based Explanations
  • Wang, D., 2021 (No publication date). Neural Diagrammatic Reasoning
  • Conference proceedings

  • Dong, T., Jamnik, M. and Lio, P., 2025 (No publication date). Neural Reasoning for Sure Through Constructing Explainable Models
  • Matjasec, U., Simidjievski, N. and Jamnik, M., 2025 (No publication date). RO-FIGS: Efficient and Expressive Tree-Based Ensembles for Tabular Data
    Doi: http://doi.org/10.17863/CAM.117035
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2025 (Accepted for publication). Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities in Biomedicine
    Doi: http://doi.org/10.17863/CAM.117032
  • Dong, T., Jamnik, M. and Liò, P., 2025. Neural Reasoning for Sure Through Constructing Explainable Models. AAAI,
  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2025. Measuring Cross-Modal Interactions in Multimodal Models. AAAI,
  • Cheng, P., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Index systems: Enumerating their forms and explaining their diversity with representational interpretive structure theory
    Doi: http://doi.org/10.17863/CAM.117030
  • Colarusso, F., Cheng, P., Grau, R., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Decoding expertise: Exploring cognitive micro-behavioural measurements for visualization competence
    Doi: http://doi.org/10.17863/CAM.117031
  • Ciravegna, G., Zarlenga, ME., Barbiero, P., Giannini, F., Shams, Z., Garreau, D., Jamnik, M. and Cerquitelli, T., 2024. Workshop on Human-Interpretable AI CEUR Workshop Proceedings, v. 3841
    Doi: 10.1145/3637528.3671499
  • Raman, N., Zarlenga, ME. and Jamnik, M., 2024. Understanding Inter-Concept Relationships in Concept-Based Models Proceedings of Machine Learning Research, v. 235
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models. NeurIPS,
  • Jiang, AQ., Ziarko, A., Piotrowski, B., Li, W., Jamnik, M. and Miłos, P., 2024. Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Advances in Neural Information Processing Systems, v. 37
  • Jiang, AQ., Li, W. and Jamnik, M., 2024. Multi-language Diversity Benefits Autoformalization Advances in Neural Information Processing Systems, v. 37
  • Rex, E., Zarlenga, ME., Margeloiu, A. and Jamnik, M., 2024. From Must to May: Enabling Test-Time Feature Imputation and Interventions CEUR Workshop Proceedings, v. 3841
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data. NeurIPS,
  • 2024. Proceedings of the KDD Workshop on Human-Interpretable AI 2024 co-located with 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024), Centre de Convencions Internacional de Barcelona, Spain, August 26, 2024. HI-AI@KDD, v. 3841
  • Lo, A., Jiang, AQ., Li, W. and Jamnik, M., 2024. End-to-End Ontology Learning with Large Language Models Advances in Neural Information Processing Systems, v. 37
  • Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2024. A Human Information Processing Theory of the Interpretation of Visualizations: Demonstrating Its Utility Conference on Human Factors in Computing Systems - Proceedings,
    Doi: 10.1145/3613904.3642276
  • Jiang, X., Margeloiu, A., Simidjievski, N. and Jamnik, M., 2024. ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data Proceedings of Machine Learning Research, v. 235
  • Wu, L., Choi, S., Raggi, D., Stockdill, A., Garcia, GG., Colarusso, F., Cheng, PCH. and Jamnik, M., 2024. Generation of Visual Representations for Multi-Modal Mathematical Knowledge Proceedings of the AAAI Conference on Artificial Intelligence, v. 38
    Doi: 10.1609/aaai.v38i21.30586
  • Komorowska, UJ., Mathis, S., Didi, K., Vargas, F., Lio, P. and Jamnik, M., 2024. Dynamics-Informed Protein Design with Structure Conditioning
  • Collins, KM., Barker, M., Espinosa Zarlenga, M., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems AIES 2023 - Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society,
    Doi: 10.1145/3600211.3604692
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023. Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Zarlenga, ME., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023. Towards Robust Metrics For Concept Representation Evaluation Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023, v. 37
    Doi: 10.1609/aaai.v37i10.2636126392
  • Colarusso, F., Cheng, PCH., Garcia Garcia, G., Stockdill, A., Raggi, D. and Jamnik, M., 2023. A novel interaction for competence assessment using micro-behaviors: Extending CACHET to graphs and charts Conference on Human Factors in Computing Systems - Proceedings,
    Doi: 10.1145/3544548.3581519
  • Yang, M., Stylianides, AJ. and Jamnik, M., 2023. Teachers’ multiple and adaptive noticing driven by their framing of professional obligations in the context of a proving activity Proceedings of the International Group for the Psychology of Mathematics Education, v. 4
  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2023. Human Visual Consistency-Checking in the Real World Ontologies Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
    Doi: 10.1109/VL-HCC57772.2023.00044
  • Zarlenga, ME., Collins, K., Dvijotham, K., Weller, A., Shams, Z. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models. NeurIPS,
  • Collins, KM., Barker, M., Zarlenga, ME., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems. AIES,
  • Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga, ME., Magister, LC., Tonda, A., Lió, P., Precioso, F., Jamnik, M. and Marra, G., 2023. Interpretable Neural-Symbolic Concept Reasoning Proceedings of Machine Learning Research, v. 202
  • Jiang, AQ., Welleck, S., Zhou, JP., Li, W., Liu, J., Jamnik, M., Lacroix, T., Lample, G. and Wu, Y., 2023. DRAFT, SKETCH, AND PROVE: GUIDING FORMAL THEOREM PROVERS WITH INFORMAL PROOFS 11th International Conference on Learning Representations, ICLR 2023,
  • Yang, M., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Chinese teachers’ professional noticing of students’ reasoning in the context of Lakatos-style proving activity.
    Doi: 10.17863/CAM.95065
  • Cheng, P., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022 (Accepted for publication). Representational interpretive structure: Theory and notation
    Doi: 10.17863/CAM.94952
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022 (Accepted for publication). Evaluating colour in concept diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • Deslis, D., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Two Primary School Teachers’ Mathematical Knowledge of Content, Students, and Teaching Practices relevant to Lakatos-style Investigation of Proof Tasks
    Doi: 10.17863/CAM.94953
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models Advances in Neural Information Processing Systems, v. 35
  • Scherer, P., Liò, P. and Jamnik, M., 2022. Distributed Representations of Graphs for Drug Pair Scoring Proceedings of Machine Learning Research, v. 198
  • Stockdill, A., Stapleton, G., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2022. Examining Experts' Recommendations of Representational Systems for Problem Solving Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2022-September
    Doi: 10.1109/VL/HCC53370.2022.9833141
  • Słowik, A., Bottou, L., Holden, SB. and Jamnik, M., 2022. On the Relation between Distributionally Robust Optimization and Data Curation (Student Abstract) Proceedings of the 36th AAAI Conference on Artificial Intelligence, AAAI 2022, v. 36
    Doi: 10.1609/aaai.v36i11.21663
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PCH., 2022. Oruga: An Avatar of Representational Systems Theory CEUR Workshop Proceedings, v. 3227
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models. NeurIPS,
  • Stockdill, A., Garcia, GG., Cheng, PCH., Raggi, D. and Jamnik, M., 2022. Cognitive Analysis for Representation Change CEUR Workshop Proceedings, v. 3227
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygózdz, T., Milos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers. NeurIPS,
  • Apperly, I., Bundy, A., Cohn, A., Colton, S., Cussens, J., D'Avila Garcez, A., Hahn, U., Jamnik, M., Jay, C., Mareschal, D., Sammut, C., Schmid, U., Seed, A., Stahl, BC., Steedman, M. and Tamaddoni-Nezhad, A., 2022. Preface CEUR Workshop Proceedings, v. 3227
  • Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, M., Jamnik, M. and Lio, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations CEUR Workshop Proceedings, v. 3318
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P. and Jamnik, M., 2022. Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off Advances in Neural Information Processing Systems, v. 35
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygóźdz, T., Miłos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers Advances in Neural Information Processing Systems, v. 35
  • Slowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2021. Structural Inductive Biases in Emergent Communication. CogSci,
  • Deslis, D., Stylianides, AJ. and Jamnik, M., 2021. PRIMARY SCHOOL TEACHERS’ MATHEMATICAL KNOWELEDGE FOR LAKATOS-STYLE PROOF INSTRUCTION Proceedings of the International Group for the Psychology of Mathematics Education, v. 2
  • Kazhdan, D., Dimanov, B., Terre, HA., Jamnik, M., Liò, P. and Weller, A., 2021. Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
  • Margeloiu, A., Ashman, M., Bhatt, U., Chen, Y., Jamnik, M. and Weller, A., 2021. Do Concept Bottleneck Models Learn as Intended?
  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks
  • Ayers, EW., Jamnik, M. and Gowers, WT., 2021. A graphical user interface framework for formal verification Leibniz International Proceedings in Informatics, LIPIcs, v. 193
    Doi: 10.4230/LIPIcs.ITP.2021.4
  • Słowik, A., Mangla, C., Jamnik, M., Holden, S. and Paulson, L., 2020 (No publication date). Bayesian Optimisation for Heuristic Configuration in Automated Theorem Proving EPiC Series in Computing, v. 71
    Doi: 10.29007/q91g
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Cross-domain correspondences for explainable recommendations CEUR Workshop Proceedings, v. 2582
  • Wang, D., Jamnik, M. and Lio, P., 2020. Abstract Diagrammatic Reasoning with Multiplex Graph Networks
  • Gupta, A., Słowik, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Analyzing structural priors in multi-agent communication ALA 2020 - Adaptive and Learning Agents Workshop at AAMAS 2020,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2020. Dissecting Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12169 LNAI
    Doi: 10.1007/978-3-030-54249-8_11
  • Slowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), v. 34
    Doi: 10.1609/aaai.v34i10.7232
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now you see me (CME): Concept-based model extraction CEUR Workshop Proceedings, v. 2699
  • Raggi, D., Stapleton, G., Stockdill, A., Jamnik, M., Garcia, GG. and Cheng, PCH., 2020. How to (Re)represent it? Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, v. 2020-November
    Doi: 10.1109/ICTAI50040.2020.00185
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Correspondence-based analogies for choosing problem representations Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2020-August
    Doi: 10.1109/VL/HCC50065.2020.9127258
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian optimisation for premise selection in automated theorem proving (student abstract) AAAI 2020 - 34th AAAI Conference on Artificial Intelligence,
  • Dimanov, B., Bhatt, U., Jamnik, M. and Weller, A., 2020. You shouldn’t trust me: Learning models which conceal unfairness from multiple explanation methods. Frontiers in Artificial Intelligence and Applications: ECAI 2020,
    Doi: 10.3233/FAIA200380
  • Cheng, PC-H., Garcia, GG., Sutherland, HEA., Raggi, D., Stockdill, A. and Jamnik, M., 2019. Elucidating the Cognitive Anatomy of Representation Systems. CogSci,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2019. Inspection and Selection of Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11617 LNAI
    Doi: 10.1007/978-3-030-23250-4_16
  • Ayers, EW., Gowers, WT. and Jamnik, M., 2019. A Human-Oriented Term Rewriting System Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11793 LNAI
    Doi: 10.1007/978-3-030-30179-8_6
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018 (No publication date). Reasoning with Concept Diagrams about Antipatterns Kalpa Publications in Computing, v. 1
    Doi: 10.29007/4ckv
  • Wang, D., Jamnik, M. and Lio, P., 2018 (Accepted for publication). Investigating diagrammatic reasoning with deep neural networks
    Doi: 10.1007/978-3-319-91376-6_36
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018. Icon: A diagrammatic theorem prover for ontologies Principles of Knowledge Representation and Reasoning: Proceedings of the 16th International Conference, KR 2018,
  • Shams, Z., Sato, Y., Jamnik, M. and Stapleton, G., 2018. Accessible reasoning with diagrams: From cognition to automation Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_25
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2018. Deductive reasoning about expressive statements using external graphical representations. CogSci,
  • Stapleton, G., Shimojima, A. and Jamnik, M., 2018. The observational advantages of euler diagrams with existential import Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_29
  • Shams, Y., Jamnik, M., Stapleton, G. and Sato, Y., 2017 (Accepted for publication). Reasoning with concept diagrams about antipatterns
    Doi: 10.1007/978-3-319-62075-6_18
  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2017. How network-based and set-based visualizations aid consistency checking in ontologies ACM International Conference Proceeding Series, v. Part F130152
    Doi: 10.1145/3105971.3105988
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2017. Reasoning with concept diagrams about antipatterns in ontologies Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10383 LNAI
    Doi: 10.1007/978-3-319-62075-6_18
  • 2016. Diagrammatic Representation and Inference - 9th International Conference, Diagrams 2016, Philadelphia, PA, USA, August 7-10, 2016, Proceedings Diagrams, v. 9781
  • Stapleton, G., Jamnik, M. and Shimojima, A., 2016. Effective representation of information: Generalizing free rides Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9781
    Doi: 10.1007/978-3-319-42333-3_28
  • Sarkar, A., Spott, M., Blackwell, AF. and Jamnik, M., 2016. Visual discovery and model-driven explanation of time series patterns Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2016-November
    Doi: 10.1109/VLHCC.2016.7739668
  • Sarkar, A., Jamnik, M., Blackwell, AF. and Spott, M., 2015. Interactive visual machine learning in spreadsheets Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2015-December
    Doi: 10.1109/VLHCC.2015.7357211
  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2015. Interaction with uncertainty in visualisations Eurographics Conference on Visualization, EuroVis 2015 - Short Papers,
    Doi: 10.2312/eurovisshort.20151138
  • Urbas, M. and Jamnik, M., 2014. A framework for heterogeneous reasoning in formal and informal domains Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 8578 LNAI
    Doi: 10.1007/978-3-662-44043-8_28
  • Urbas, M. and Jamnik, M., 2012. Diabelli: A Heterogeneous Proof System. IJCAR, v. 7364
  • Urbas, M., Jamnik, M., Stapleton, G. and Flower, J., 2012. Speedith: A Diagrammatic Reasoner for Spider Diagrams. Diagrams, v. 7352
  • Urbas, M. and Jamnik, M., 2011. Heterogeneous proofs: Spider diagrams meet higher-order provers Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 6898 LNCS
    Doi: 10.1007/978-3-642-22863-6_29
  • Urbas, M. and Jamnik, M., 2010. Heterogeneous Reasoning in Real Arithmetic DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 6170
  • Ridsdale, M., Jamnik, M., Benton, N. and Berdine, J., 2008. Diagrammatic reasoning in separation logic Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5223 LNAI
    Doi: 10.1007/978-3-540-87730-1_50
  • Benzmuller, C., Sorge, V., Jamnik, M. and Kerber, M., 2005. Can a higher-order and a first-order theorem prover cooperate? LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, v. 3452
  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2004. An experimental comparison of diagrammatic and algebraic logics DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • Winterstein, D., Bundy, A. and Jamnik, M., 2004. On differences between the real and physical plane DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Automatic learning in proof planning ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, v. 77
  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Learn Omega-matic: System Description. CADE, v. 2392
  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2002. Using animation in diagrammatic theorem proving DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2317
  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Experiments with an Agent-Oriented Reasoning System. KI/ÖGAI, v. 2174
  • Benzmuller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Resource guided concurrent deduction SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • Jamnik, M., Kerber, M. and Benzmuller, C., 2001. Towards learning new methods in proof planning SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • Winterstein, D., Bundy, A. and Jamnik, M., 2000. A proposal for automating diagrammatic reasoning in continuous domains THEORY AND APPLICATION OF DIAGRAMS, PROCEEDINGS, v. 1889
  • Jamnik, M., Bundy, A. and Green, I., 1998. DIAMOND: Diagrammatic Reasoning System Demonstration AAAI Fall Symposium - Technical Report, v. FS-98-04
  • Jamnik, M., Bundy, A. and Green, I., 1998. Verification of Diagrammatic Proofs AAAI Fall Symposium - Technical Report, v. FS-98-04
  • Jamnik, M., 1997. Automation of Diagrammatic Proofs in Mathematics. IJCAI,
  • Jamnik, M., Bundy, A. and Green, P., 1997. Automation of diagrammatic reasoning IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2,
  • Jamnik, M., Bundy, A. and Green, I., 1997. Automation of Diagrammatic Reasoning AAAI Fall Symposium - Technical Report, v. FS-97-03
  • Book chapters

  • Espinosa Zarlenga, M., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2025. Efficient Bias Mitigation Without Privileged Information
    Doi: http://doi.org/10.1007/978-3-031-73220-1_9
  • Raggi, D., Stapleton, G., Stockdill, A., Garcia, GG., Cheng, PCH. and Jamnik, M., 2024. Oruga: Implementation and Use of Representational Systems Theory
    Doi: http://doi.org/10.1007/978-3-031-66997-2_20
  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Jamnik, M. and Liò, P., 2023. Concept Distillation in Graph Neural Networks
    Doi: 10.1007/978-3-031-44070-0_12
  • Hemker, K., Shams, Z. and Jamnik, M., 2023. CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs
    Doi: 10.1007/978-3-031-39539-0_6
  • Cheng, PCH., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022. Representational Interpretive Structure: Theory and Notation
    Doi: 10.1007/978-3-031-15146-0_4
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022. Evaluating Colour in Concept Diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2021 (Accepted for publication). Considerations in Representation Selection for Problem Solving: A Review
    Doi: 10.1007/978-3-030-86062-2_4
  • Cheng, PCH., Garcia, GG., Raggi, D., Stockdill, A. and Jamnik, M., 2021 (Accepted for publication). Cognitive Properties of Representations: A Framework
    Doi: 10.1007/978-3-030-86062-2_43
  • Jamnik, M. and Cheng, P., 2021. Endowing Machines with the Expert Human Ability to Select Representations: Why and How
    Doi: 10.1093/oso/9780198862536.003.0018
  • Jamnik, M., 2021. Logical reasoning with diagrams
    Doi: 10.17863/CAM.81063
  • Jamnik, M., 2021. Human-Like Computational Reasoning: Diagrams and Other Representations
    Doi: 10.1007/978-3-030-77879-8_7
  • Colarusso, F., Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2021. Observing Strategies of Drawing Data Representations
    Doi: 10.1007/978-3-030-86062-2_55
  • Jamnik, M., 2021. Logical Reasoning with Diagrams
    Doi: 10.7551/mitpress/11252.003.0078
  • Jamnik, M., Bundy, A. and Green, I., 2002. On Automating Diagrammatic Proofs of Arithmetic Arguments
    Doi: 10.1007/978-1-4471-0109-3_18
  • Journal articles

  • Buczynski, W., Steffek, F., Jamnik, M., Cuzzolin, F. and Sahakian, B., 2025. Future themes in regulating artificial intelligence in investment management Computer Law and Security Review, v. 56
    Doi: http://doi.org/10.1016/j.clsr.2025.106111
  • Collins, KM., Jiang, Q., Frieder, S., Wong, L., Zilka, M., Bhatt, U., Lukasiewicz, T., Wu, Y., Tenenbaum, JB., Hart, W., Gowers, T., Li, W., Weller, A. and Jamnik, M., 2024 (Accepted for publication). Evaluating Language Models for Mathematics through Interactions. Proceedings of the National Academy of Sciences of the United States of America, v. 121
    Doi: 10.1073/pnas.2318124121
  • Zarlenga, ME., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2024. Efficient Bias Mitigation Without Privileged Information. CoRR, v. abs/2409.17691
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data Advances in Neural Information Processing Systems, v. 37
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2024. GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data Transactions on Machine Learning Research, v. 2024
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models Advances in Neural Information Processing Systems, v. 37
  • Raman, N., Zarlenga, ME., Heo, J. and Jamnik, M., 2024. Do Concept Bottleneck Models Obey Locality? CoRR, v. abs/2401.01259
  • Buzzard, Z., Hemker, K., Simidjievski, N. and Jamnik, M., 2024. PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis. CoRR, v. abs/2411.18225
  • Dong, T., Jamnik, M. and Liò, P., 2024. Sphere Neural-Networks for Rational Reasoning. CoRR, v. abs/2403.15297
  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2024. Measuring Cross-Modal Interactions in Multimodal Models. CoRR, v. abs/2412.15828
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023 (Published online). Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Espinosa Zarlenga, M., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023 (Published online). Towards Robust Metrics for Concept Representation Evaluation Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i10.26392
  • Kazhdan, D., Dimanov, B., Magister, LC., Barbiero, P., Jamnik, M. and Liò, P., 2023. GCI: A (G)raph (C)oncept (I)nterpretation Framework. CoRR, v. abs/2302.04899
  • Zarlenga, ME., Weller, A., Collins, KM., Shams, Z., Dvijotham, K. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models Advances in Neural Information Processing Systems, v. 36
  • Jiang, AQ., Li, W. and Jamnik, M., 2023. Multilingual Mathematical Autoformalization. CoRR, v. abs/2311.03755
  • Leelarathna, N., Margeloiu, A., Jamnik, M. and Simidjievski, N., 2023. Enhancing Representation Learning on High-Dimensional, Small-Size Tabular Data: A Divide and Conquer Method with Ensembled VAEs. CoRR, v. abs/2306.15661
  • Lishkova, Y., Scherer, P., Ridderbusch, S., Jamnik, M., Liò, P., Ober-Blöbaum, S. and Offen, C., 2022 (Accepted for publication). Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery IFAC-PapersOnLine, v. 56
    Doi: 10.1016/j.ifacol.2023.10.1457
  • Scherer, P., Trebacz, M., Simidjievski, N., Viñas, R., Shams, Z., Andrés-Terré, H., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinform., v. 38
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PC-H., 2022. Representational Systems Theory: A Unified Approach to Encoding, Analysing and Transforming Representations. CoRR, v. abs/2206.03172
  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Liò, P. and Jamnik, M., 2022. Encoding Concepts in Graph Neural Networks. CoRR, v. abs/2207.13586
  • Scherer, P., Trębacz, M., Simidjievski, N., Viñas, R., Shams, Z., Terre, HA., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinformatics, v. 38
    Doi: 10.1093/bioinformatics/btab830
  • Buczynski, W., Steffek, F., Cuzzolin, F., Jamnik, M. and Sahakian, B., 2022. Hard Law and Soft Law Regulations of Artificial Intelligence in Investment Management Cambridge Yearbook of European Legal Studies, v. 24
    Doi: 10.1017/cel.2022.10
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Liò, P. and Jamnik, M., 2022. Concept Embedding Models. CoRR, v. abs/2209.09056
  • Margeloiu, A., Simidjievski, N., Lio', P. and Jamnik, M., 2022. Graph-Conditioned MLP for High-Dimensional Tabular Biomedical Data. CoRR, v. abs/2211.06302
  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks. CoRR, v. abs/2111.12628
  • Trębacz, M., Shams, Z., Jamnik, M., Scherer, P., Simidjievski, N., Terre, HA. and Liò, P., 2020 (Published online). Using ontology embeddings for structural inductive bias in gene expression data analysis arxiv,
  • Margeloiu, A., Simidjievski, N., Jamnik, M. and Weller, A., 2020. Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training
  • Kiat, NQW., Wang, D. and Jamnik, M., 2020. Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices
  • Scherer, P., Trȩbacz, M., Simidjievski, N., Shams, Z., Terre, HA., Liò, P. and Jamnik, M., 2020. Incorporating network based protein complex discovery into automated model construction
  • Zhao, Y., Wang, D., Bates, D., Mullins, R., Jamnik, M. and Lio, P., 2020. Learned Low Precision Graph Neural Networks
  • Wang, D., Jamnik, M. and Lio, P., 2020. ABSTRACT DIAGRAMMATIC REASONING WITH MULTIPLEX GRAPH NETWORKS 8th International Conference on Learning Representations, ICLR 2020,
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now You See Me (CME): Concept-based Model Extraction. CoRR, v. abs/2010.13233
  • Kazhdan, D., Dimanov, B., Jamnik, M. and Liò, P., 2020. MEME: Generating RNN Model Explanations via Model Extraction
  • Bundy, A. and Jamnik, M., 2019. A Common Type of Rigorous Proof that Resists Hilbert’s Programme
    Doi: 10.1007/978-3-030-28483-1_3
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2019. Human inference beyond syllogisms: an approach using external graphical representations. Cogn Process, v. 20
    Doi: 10.1007/s10339-018-0877-2
  • Wang, D., Jamnik, M. and Lio, P., 2019. Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2019. Bayesian Optimisation with Gaussian Processes for Premise Selection
  • Oliver, I., Howse, J., Stapleton, G., Shams, Z. and Jamnik, M., 2019. Exploring and conceptualising attestation Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11530 LNAI
    Doi: 10.1007/978-3-030-23182-8_10
  • Scherer, P., Andres-Terre, H., Lio, P. and Jamnik, M., 2019. Decoupling feature propagation from the design of graph auto-encoders
  • Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres Terre, H., Shams, Z., Jamnik, M. and Liò, P., 2019. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet, v. 10
    Doi: 10.3389/fgene.2019.01205
  • Linker, S., Burton, J. and Jamnik, M., 2017. Tactical diagrammatic reasoning Electronic Proceedings in Theoretical Computer Science, EPTCS, v. 239
    Doi: 10.4204/EPTCS.239.3
  • Stapleton, G., Jamnik, M. and Shimojima, A., 2017. What Makes an Effective Representation of Information: A Formal Account of Observational Advantages Journal of Logic, Language and Information, v. 26
    Doi: 10.1007/s10849-017-9250-6
  • Urbas, M., Jamnik, M. and Stapleton, G., 2015. Speedith: A Reasoner for Spider Diagrams Journal of Logic, Language and Information, v. 24
    Doi: 10.1007/s10849-015-9229-0
  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2014. Teach and try: A simple interaction technique for exploratory data modelling by end users Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
    Doi: 10.1109/VLHCC.2014.6883022
  • Stapleton, G., Jamnik, M. and Urbas, M., 2013. Designing inference rules for spider diagrams Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
    Doi: 10.1109/VLHCC.2013.6645238
  • Benzmüller, C., Sorge, V., Jamnik, M. and Kerber, M., 2008. Combined reasoning by automated cooperation Journal of Applied Logic, v. 6
    Doi: 10.1016/j.jal.2007.06.003
  • Jamnik, M., 2008. How can machines reason? AISB 2008 Convention: Communication, Interaction and Social Intelligence - Proceedings of the AISB 2008 Symposium on Logic and the Simulation of Interaction and Reasoning,
  • Dennis, LA., Jamnik, M. and Pollet, M., 2006. On the comparison of proof planning systems: γcLAM Ωmega and IsaPlanner Electronic Notes in Theoretical Computer Science, v. 151
    Doi: 10.1016/j.entcs.2005.11.025
  • Jamnik, M. and Bundy, A., 2005. Psychological validity of schematic proofs LECT NOTES ARTIF INT, v. 2605
  • Bundy, A., Jamnik, M. and Fugard, A., 2005. What is a proof? PHILOS T ROY SOC A, v. 363
    Doi: 10.1098/rsta.2005.1651
  • Jamnik, M. and Janičić, P., 2003. Learning strategies for mechanised building of decision procedures Electronic Notes in Theoretical Computer Science, v. 86
    Doi: 10.1016/S1571-0661(04)80662-5
  • Jamnik, M., Kerber, M., Pollet, M. and Benzmuller, C., 2003. Automatic learning of proof methods in proof planning LOGIC J IGPL, v. 11
    Doi: 10.1093/jigpal/11.6.647
  • Jamnik, M., Bundy, A. and Green, I., 1999. On automating diagrammatic proofs of arithmetic arguments Journal of Logic, Language and Information, v. 8
    Doi: 10.1023/A:1008323427489
  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 1999. Agent based mathematical reasoning Electronic Notes in Theoretical Computer Science, v. 23
    Doi: 10.1016/S1571-0661(05)82522-8
  • Internet publications

  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M. and Holden, SB., 2020. Towards Graph Representation Learning in Emergent Communication
  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Structural Inductive Biases in Emergent Communication
  • Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P. and Jamnik, M., 2020. Probabilistic Dual Network Architecture Search on Graphs
  • Jamnik, M., Home Page
  • Books

  • Jamnik, M., Uesaka, Y. and Schwartz, SE., 2016. Preface
  • 2012. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-31223-6
  • 2012. Automated Reasoning
    Doi: 10.1007/978-3-642-31365-3
  • Jamnik, M., Goel, AK. and Narayanan, NH., 2010. Preface
  • Jamnik, M., Goel, A. and Narayanan, H., 2010. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface
  • 2010. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-14600-8
  • 2010. Diagrammatic Representation and Inference, 6th International Conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010. Proceedings
  • Contact Details

    Room: 
    FC18
    Office phone: 
    (01223) 7-63587
    Email: 

    mateja.jamnik@cl.cam.ac.uk