skip to content

Department of Computer Science and Technology

Singular: 
PhD student
Slug: 
phd-students

Read more at: Mateo Espinosa Zarlenga

Mateo Espinosa Zarlenga

My current research interests roughly lie on the intersection of machine learning, representation learning, and interpretable deep learning. More specifically, I am interested in:




Read more at: Matteo Bettini

Matteo Bettini

I am Matteo, a PhD student in Prorok Lab at the University of Cambridge.

With my supervisor, Dr. Amanda Prorok, I study resilience and heterogeneity in multi-agent and multi-robot systems. For my research, I employ techniques from the fields of Multi-Agent Reinforcement Learning and Graph Neural Networks.

Conference proceedings

  • Bou, A., Bettini, M., Dittert, S., Kumar, V., Sodhani, S., Yang, X., De Fabritiis, G. and Moens, V., 2024. TORCHRL: A DATA-DRIVEN DECISION-MAKING LIBRARY FOR PYTORCH 12th International Conference on Learning Representations Iclr 2024,
  • Bettini, M., Kortvelesy, R. and Prorok, A., 2024. Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning Proceedings of Machine Learning Research, v. 235
  • Bettini, M., Shankar, A. and Prorok, A., 2023. Heterogeneous Multi-Robot Reinforcement Learning Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems Aamas, v. 2023-May
  • Morad, S., Kortvelesy, R., Bettini, M., Liwicki, S. and Prorok, A., 2023. POPGYM: BENCHMARKING PARTIALLY OBSERVABLE REINFORCEMENT LEARNING 11th International Conference on Learning Representations Iclr 2023,
  • Book chapters

  • Bettini, M., Kortvelesy, R., Blumenkamp, J. and Prorok, A., 2024. VMAS: A Vectorized Multi-agent Simulator for Collective Robot Learning
    Doi: http://doi.org/10.1007/978-3-031-51497-5_4
  • Journal articles

  • Bettini, M., Kortvelesy, R., Blumenkamp, J. and Prorok, A., 2022. VMAS: A Vectorized Multi-Agent Simulator for Collective Robot Learning
  • Bettini, M. and Prorok, A., 2022. On the properties of path additions for traffic routing
  • Bettini, M. and Prorok, A., On the Properties of Path Additions for Traffic Routing
  • Conference proceedings

    2024

  • Bou, A., Bettini, M., Dittert, S., Kumar, V., Sodhani, S., Yang, X., De Fabritiis, G. and Moens, V., 2024. TORCHRL: A DATA-DRIVEN DECISION-MAKING LIBRARY FOR PYTORCH 12th International Conference on Learning Representations Iclr 2024,
  • Bettini, M., Kortvelesy, R. and Prorok, A., 2024. Controlling Behavioral Diversity in Multi-Agent Reinforcement Learning Proceedings of Machine Learning Research, v. 235
  • 2023

  • Bettini, M., Shankar, A. and Prorok, A., 2023. Heterogeneous Multi-Robot Reinforcement Learning Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems Aamas, v. 2023-May
  • Morad, S., Kortvelesy, R., Bettini, M., Liwicki, S. and Prorok, A., 2023. POPGYM: BENCHMARKING PARTIALLY OBSERVABLE REINFORCEMENT LEARNING 11th International Conference on Learning Representations Iclr 2023,
  • Book chapters

    2024

  • Bettini, M., Kortvelesy, R., Blumenkamp, J. and Prorok, A., 2024. VMAS: A Vectorized Multi-agent Simulator for Collective Robot Learning
    Doi: http://doi.org/10.1007/978-3-031-51497-5_4
  • Journal articles

    2022

  • Bettini, M., Kortvelesy, R., Blumenkamp, J. and Prorok, A., 2022. VMAS: A Vectorized Multi-Agent Simulator for Collective Robot Learning
  • Bettini, M. and Prorok, A., 2022. On the properties of path additions for traffic routing
  • Bettini, M. and Prorok, A., On the Properties of Path Additions for Traffic Routing

  • Read more at: Richard Diehl Martinez

    Richard Diehl Martinez

    Hi there! I am a Ph.D. student in the NLP group (supervised by Paula Buttery). My research focuses on efficient pre-training techniques to bridge the performance gap between small and large language models.

    To find out more, check out my website: richarddiehlmartinez.com 

     

     




    Read more at: Guoliang He

    Guoliang He

    I am a 3rd year PhD student working on optimising machine learning models.