skip to content

Department of Computer Science and Technology


Read more at: Mateja Jamnik

Mateja Jamnik

I am a full Professor of Artificial Intelligence in the Department of Computer Science and Technology (Computer Laboratory) at the University of Cambridge, UK. I am also an associate fellow at the Leverhulme Centre for the Future of Intelligence. Recently I served as Specialist Adviser to the House of Lords Select Committee on Artificial Intelligence.

Conference proceedings

  • Dong, T., Jamnik, M. and Liò, P., 2025 (Published online). Neural Reasoning for Sure Through Constructing Explainable Models Proceedings of the AAAI Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i11.33262
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2025 (Accepted for publication). Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities in Biomedicine
    Doi: http://doi.org/10.17863/CAM.117032
  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2025. Measuring Cross-Modal Interactions in Multimodal Models. AAAI,
  • Dong, T., Jamnik, M. and Liò, P., 2025. Neural Reasoning for Sure Through Constructing Explainable Models Proceedings of the Aaai Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i11.33262
  • Matjasec, U., Simidjievski, N. and Jamnik, M., 2025. RO-FIGS: Efficient and Expressive Tree-Based Ensembles for Tabular Data 2025 IEEE Symposium on Trustworthy Explainable and Responsible Computational Intelligence Citrex 2025,
    Doi: 10.1109/CITREx64975.2025.10974939
  • Matjasec, U., Simidjievski, N. and Jamnik, M., 2025. RO-FIGS: Efficient and Expressive Tree-Based Ensembles for Tabular Data. CoRR, v. abs/2504.06927
  • Cheng, P., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Index systems: Enumerating their forms and explaining their diversity with representational interpretive structure theory
    Doi: http://doi.org/10.17863/CAM.117030
  • Colarusso, F., Cheng, P., Grau, R., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Decoding expertise: Exploring cognitive micro-behavioural measurements for visualization competence
    Doi: http://doi.org/10.17863/CAM.117031
  • Wu, L., Choi, S., Raggi, D., Stockdill, A., Garcia, GG., Colarusso, F., Cheng, PCH. and Jamnik, M., 2024. Generation of Visual Representations for Multi-Modal Mathematical Knowledge Proceedings of the AAAI Conference on Artificial Intelligence, v. 38
    Doi: 10.1609/aaai.v38i21.30586
  • Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2024. A Human Information Processing Theory of the Interpretation of Visualizations: Demonstrating Its Utility Conference on Human Factors in Computing Systems Proceedings,
    Doi: 10.1145/3613904.3642276
  • Komorowska, UJ., Mathis, S., Didi, K., Vargas, F., Lio, P. and Jamnik, M., 2024. Dynamics-Informed Protein Design with Structure Conditioning
  • Jiang, X., Margeloiu, A., Simidjievski, N. and Jamnik, M., 2024. ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data Proceedings of Machine Learning Research, v. 235
  • Raggi, D., Stapleton, G., Stockdill, A., Garcia, GG., Cheng, PCH. and Jamnik, M., 2024. Oruga: Implementation and Use of Representational Systems Theory Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 14960 LNAI
    Doi: 10.1007/978-3-031-66997-2_20
  • Ciravegna, G., Zarlenga, ME., Barbiero, P., Giannini, F., Shams, Z., Garreau, D., Jamnik, M. and Cerquitelli, T., 2024. Workshop on Human-Interpretable AI Ceur Workshop Proceedings, v. 3841
    Doi: 10.1145/3637528.3671499
  • Raman, N., Zarlenga, ME. and Jamnik, M., 2024. Understanding Inter-Concept Relationships in Concept-Based Models Proceedings of Machine Learning Research, v. 235
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models. NeurIPS,
  • Jiang, AQ., Ziarko, A., Piotrowski, B., Li, W., Jamnik, M. and Miłos, P., 2024. Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Advances in Neural Information Processing Systems, v. 37
  • Jiang, AQ., Li, W. and Jamnik, M., 2024. Multi-language Diversity Benefits Autoformalization Advances in Neural Information Processing Systems, v. 37
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data. NeurIPS,
  • Rex, E., Zarlenga, ME., Margeloiu, A. and Jamnik, M., 2024. From Must to May: Enabling Test-Time Feature Imputation and Interventions Ceur Workshop Proceedings, v. 3841
  • 2024. Proceedings of the KDD Workshop on Human-Interpretable AI 2024 co-located with 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024), Centre de Convencions Internacional de Barcelona, Spain, August 26, 2024. HI-AI@KDD, v. 3841
  • Lo, A., Jiang, AQ., Li, W. and Jamnik, M., 2024. End-to-End Ontology Learning with Large Language Models Advances in Neural Information Processing Systems, v. 37
  • Jiang, AQ., Welleck, S., Zhou, JP., Li, W., Liu, J., Jamnik, M., Lacroix, T., Lample, G. and Wu, Y., 2023. DRAFT, SKETCH, AND PROVE: GUIDING FORMAL THEOREM PROVERS WITH INFORMAL PROOFS 11th International Conference on Learning Representations Iclr 2023,
  • Collins, KM., Barker, M., Espinosa Zarlenga, M., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems Aies 2023 Proceedings of the 2023 Aaai ACM Conference on AI Ethics and Society,
    Doi: 10.1145/3600211.3604692
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023. Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Zarlenga, ME., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023. Towards Robust Metrics For Concept Representation Evaluation Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023, v. 37
    Doi: 10.1609/aaai.v37i10.2636126392
  • Yang, M., Stylianides, AJ. and Jamnik, M., 2023. Teachers’ multiple and adaptive noticing driven by their framing of professional obligations in the context of a proving activity Proceedings of the International Group for the Psychology of Mathematics Education, v. 4
  • Colarusso, F., Cheng, PCH., Garcia Garcia, G., Stockdill, A., Raggi, D. and Jamnik, M., 2023. A novel interaction for competence assessment using micro-behaviors: Extending CACHET to graphs and charts Conference on Human Factors in Computing Systems Proceedings,
    Doi: 10.1145/3544548.3581519
  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2023. Human Visual Consistency-Checking in the Real World Ontologies Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
    Doi: 10.1109/VL-HCC57772.2023.00044
  • Collins, KM., Barker, M., Zarlenga, ME., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems. AIES,
  • Zarlenga, ME., Collins, K., Dvijotham, K., Weller, A., Shams, Z. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models. NeurIPS,
  • Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga, ME., Magister, LC., Tonda, A., Lió, P., Precioso, F., Jamnik, M. and Marra, G., 2023. Interpretable Neural-Symbolic Concept Reasoning Proceedings of Machine Learning Research, v. 202
  • Yang, M., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Chinese teachers’ professional noticing of students’ reasoning in the context of Lakatos-style proving activity.
    Doi: 10.17863/CAM.95065
  • Cheng, P., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022 (Accepted for publication). Representational interpretive structure: Theory and notation
    Doi: 10.17863/CAM.94952
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022 (Accepted for publication). Evaluating colour in concept diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • Deslis, D., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Two Primary School Teachers’ Mathematical Knowledge of Content, Students, and Teaching Practices relevant to Lakatos-style Investigation of Proof Tasks
    Doi: 10.17863/CAM.94953
  • Apperly, I., Bundy, A., Cohn, A., Colton, S., Cussens, J., D'Avila Garcez, A., Hahn, U., Jamnik, M., Jay, C., Mareschal, D., Sammut, C., Schmid, U., Seed, A., Stahl, BC., Steedman, M. and Tamaddoni-Nezhad, A., 2022. Preface Ceur Workshop Proceedings, v. 3227
  • Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, M., Jamnik, M. and Lio, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations Ceur Workshop Proceedings, v. 3318
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P. and Jamnik, M., 2022. Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off Advances in Neural Information Processing Systems, v. 35
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygóźdz, T., Miłos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers Advances in Neural Information Processing Systems, v. 35
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models Advances in Neural Information Processing Systems, v. 35
  • Scherer, P., Liò, P. and Jamnik, M., 2022. Distributed Representations of Graphs for Drug Pair Scoring Proceedings of Machine Learning Research, v. 198
  • Stockdill, A., Stapleton, G., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2022. Examining Experts' Recommendations of Representational Systems for Problem Solving Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2022-September
    Doi: 10.1109/VL/HCC53370.2022.9833141
  • Słowik, A., Bottou, L., Holden, SB. and Jamnik, M., 2022. On the Relation between Distributionally Robust Optimization and Data Curation (Student Abstract) Proceedings of the 36th Aaai Conference on Artificial Intelligence Aaai 2022, v. 36
    Doi: 10.1609/aaai.v36i11.21663
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PCH., 2022. Oruga: An Avatar of Representational Systems Theory Ceur Workshop Proceedings, v. 3227
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models. NeurIPS,
  • Stockdill, A., Garcia, GG., Cheng, PCH., Raggi, D. and Jamnik, M., 2022. Cognitive Analysis for Representation Change Ceur Workshop Proceedings, v. 3227
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygózdz, T., Milos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers. NeurIPS,
  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks
  • Ayers, EW., Jamnik, M. and Gowers, WT., 2021. A graphical user interface framework for formal verification Leibniz International Proceedings in Informatics, LIPIcs, v. 193
    Doi: 10.4230/LIPIcs.ITP.2021.4
  • Deslis, D., Stylianides, AJ. and Jamnik, M., 2021. PRIMARY SCHOOL TEACHERS’ MATHEMATICAL KNOWELEDGE FOR LAKATOS-STYLE PROOF INSTRUCTION Proceedings of the International Group for the Psychology of Mathematics Education, v. 2
  • Kazhdan, D., Dimanov, B., Terre, HA., Jamnik, M., Liò, P. and Weller, A., 2021. Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
  • Slowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2021. Structural Inductive Biases in Emergent Communication. CogSci,
  • Margeloiu, A., Ashman, M., Bhatt, U., Chen, Y., Jamnik, M. and Weller, A., 2021. Do Concept Bottleneck Models Learn as Intended?
  • Słowik, A., Mangla, C., Jamnik, M., Holden, S. and Paulson, L., 2020 (No publication date). Bayesian Optimisation for Heuristic Configuration in Automated Theorem Proving EPiC Series in Computing, v. 71
    Doi: 10.29007/q91g
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now you see me (CME): Concept-based model extraction Ceur Workshop Proceedings, v. 2699
  • Raggi, D., Stapleton, G., Stockdill, A., Jamnik, M., Garcia, GG. and Cheng, PCH., 2020. How to (Re)represent it? Proceedings International Conference on Tools with Artificial Intelligence Ictai, v. 2020-November
    Doi: 10.1109/ICTAI50040.2020.00185
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Correspondence-based analogies for choosing problem representations Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2020-August
    Doi: 10.1109/VL/HCC50065.2020.9127258
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian optimisation for premise selection in automated theorem proving (student abstract) Aaai 2020 34th Aaai Conference on Artificial Intelligence,
  • Dimanov, B., Bhatt, U., Jamnik, M. and Weller, A., 2020. You shouldn’t trust me: Learning models which conceal unfairness from multiple explanation methods. Frontiers in Artificial Intelligence and Applications: ECAI 2020,
    Doi: 10.3233/FAIA200380
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Cross-domain correspondences for explainable recommendations CEUR Workshop Proceedings, v. 2582
  • Wang, D., Jamnik, M. and Lio, P., 2020. Abstract Diagrammatic Reasoning with Multiplex Graph Networks
  • Gupta, A., Słowik, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Analyzing structural priors in multi-agent communication Ala 2020 Adaptive and Learning Agents Workshop at Aamas 2020,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2020. Dissecting Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12169 LNAI
    Doi: 10.1007/978-3-030-54249-8_11
  • Slowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), v. 34
    Doi: 10.1609/aaai.v34i10.7232
  • Cheng, PC-H., Garcia, GG., Sutherland, HEA., Raggi, D., Stockdill, A. and Jamnik, M., 2019. Elucidating the Cognitive Anatomy of Representation Systems. CogSci,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2019. Inspection and Selection of Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11617 LNAI
    Doi: 10.1007/978-3-030-23250-4_16
  • Ayers, EW., Gowers, WT. and Jamnik, M., 2019. A Human-Oriented Term Rewriting System Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11793 LNAI
    Doi: 10.1007/978-3-030-30179-8_6
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018 (No publication date). Reasoning with Concept Diagrams about Antipatterns Kalpa Publications in Computing, v. 1
    Doi: 10.29007/4ckv
  • Wang, D., Jamnik, M. and Lio, P., 2018 (Accepted for publication). Investigating diagrammatic reasoning with deep neural networks
    Doi: 10.1007/978-3-319-91376-6_36
  • Shams, Z., Sato, Y., Jamnik, M. and Stapleton, G., 2018. Accessible reasoning with diagrams: From cognition to automation Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_25
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2018. Deductive reasoning about expressive statements using external graphical representations. CogSci,
  • Stapleton, G., Shimojima, A. and Jamnik, M., 2018. The observational advantages of euler diagrams with existential import Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_29
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018. Icon: A diagrammatic theorem prover for ontologies Principles of Knowledge Representation and Reasoning Proceedings of the 16th International Conference Kr 2018,
  • Shams, Y., Jamnik, M., Stapleton, G. and Sato, Y., 2017 (Accepted for publication). Reasoning with concept diagrams about antipatterns
    Doi: 10.1007/978-3-319-62075-6_18
  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2017. How network-based and set-based visualizations aid consistency checking in ontologies ACM International Conference Proceeding Series, v. Part F130152
    Doi: 10.1145/3105971.3105988
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2017. Reasoning with concept diagrams about antipatterns in ontologies Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10383 LNAI
    Doi: 10.1007/978-3-319-62075-6_18
  • 2016. Diagrammatic Representation and Inference - 9th International Conference, Diagrams 2016, Philadelphia, PA, USA, August 7-10, 2016, Proceedings Diagrams, v. 9781
  • Stapleton, G., Jamnik, M. and Shimojima, A., 2016. Effective representation of information: Generalizing free rides Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 9781
    Doi: 10.1007/978-3-319-42333-3_28
  • Sarkar, A., Spott, M., Blackwell, AF. and Jamnik, M., 2016. Visual discovery and model-driven explanation of time series patterns Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2016-November
    Doi: 10.1109/VLHCC.2016.7739668
  • Sarkar, A., Jamnik, M., Blackwell, AF. and Spott, M., 2015. Interactive visual machine learning in spreadsheets Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc, v. 2015-December
    Doi: 10.1109/VLHCC.2015.7357211
  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2015. Interaction with uncertainty in visualisations Eurographics Conference on Visualization Eurovis 2015 Short Papers,
    Doi: 10.2312/eurovisshort.20151138
  • Urbas, M. and Jamnik, M., 2014. A framework for heterogeneous reasoning in formal and informal domains Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 8578 LNAI
    Doi: 10.1007/978-3-662-44043-8_28
  • Urbas, M. and Jamnik, M., 2012. Diabelli: A Heterogeneous Proof System. IJCAR, v. 7364
  • Urbas, M., Jamnik, M., Stapleton, G. and Flower, J., 2012. Speedith: A Diagrammatic Reasoner for Spider Diagrams. Diagrams, v. 7352
  • Urbas, M. and Jamnik, M., 2011. Heterogeneous proofs: Spider diagrams meet higher-order provers Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 6898 LNCS
    Doi: 10.1007/978-3-642-22863-6_29
  • Urbas, M. and Jamnik, M., 2010. Heterogeneous Reasoning in Real Arithmetic DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 6170
  • Ridsdale, M., Jamnik, M., Benton, N. and Berdine, J., 2008. Diagrammatic reasoning in separation logic Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 5223 LNAI
    Doi: 10.1007/978-3-540-87730-1_50
  • Benzmuller, C., Sorge, V., Jamnik, M. and Kerber, M., 2005. Can a higher-order and a first-order theorem prover cooperate? LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, v. 3452
  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2004. An experimental comparison of diagrammatic and algebraic logics DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • Winterstein, D., Bundy, A. and Jamnik, M., 2004. On differences between the real and physical plane DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Automatic learning in proof planning ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, v. 77
  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Learn Omega-matic: System Description. CADE, v. 2392
  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2002. Using animation in diagrammatic theorem proving DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2317
  • Jamnik, M., Kerber, M. and Benzmuller, C., 2001. Towards learning new methods in proof planning SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Experiments with an Agent-Oriented Reasoning System. KI/ÖGAI, v. 2174
  • Benzmuller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Resource guided concurrent deduction SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • Winterstein, D., Bundy, A. and Jamnik, M., 2000. A proposal for automating diagrammatic reasoning in continuous domains THEORY AND APPLICATION OF DIAGRAMS, PROCEEDINGS, v. 1889
  • Jamnik, M., Bundy, A. and Green, I., 1998. Verification of Diagrammatic Proofs Aaai Fall Symposium Technical Report, v. FS-98-04
  • Jamnik, M., Bundy, A. and Green, I., 1998. DIAMOND: Diagrammatic Reasoning System Demonstration Aaai Fall Symposium Technical Report, v. FS-98-04
  • Jamnik, M., Bundy, A. and Green, P., 1997. Automation of diagrammatic reasoning IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2,
  • Jamnik, M., Bundy, A. and Green, I., 1997. Automation of Diagrammatic Reasoning Aaai Fall Symposium Technical Report, v. FS-97-03
  • Jamnik, M., 1997. Automation of Diagrammatic Proofs in Mathematics. IJCAI,
  • Theses / dissertations

  • Jiang, Q., 2025 (No publication date). Language models for verifiable mathematical automation: Interaction, integration, and autoformalization
    Doi: http://doi.org/10.17863/CAM.115428
  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers’ mathematical knowledge and views
    Doi: http://doi.org/10.17863/CAM.115816
  • Margeloiu, A., 2025 (No publication date). Tabular Machine Learning on Small-Size and High-Dimensional Data
    Doi: http://doi.org/10.17863/CAM.117151
  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers' mathematical knowledge and views
  • Scherer, P., 2024 (No publication date). Distributional and relational inductive biases for graph representation learning in biomedicine
    Doi: 10.17863/CAM.107338
  • Yang, M., 2024 (No publication date). Chinese Teachers’ Noticing in the Context of Lakatos-Style Proving Activity: A mixed-methods study to investigate its patterns and underlying mechanisms
    Doi: http://doi.org/10.17863/CAM.112706
  • Kazhdan, D., 2024 (No publication date). Enhancing Interpretability: The Role of Concept-based Explanations Across Data Types
    Doi: http://doi.org/10.17863/CAM.109227
  • Słowik, A., 2023 (No publication date). Out-of-distribution generalisation in machine learning
    Doi: 10.17863/CAM.101537
  • Stockdill, A., 2022 (No publication date). Automating representation change across domains for reasoning
    Doi: 10.17863/CAM.84749
  • Ayers, E., 2022 (No publication date). A Tool for Producing Verified, Explainable Proofs
    Doi: 10.17863/CAM.81869
  • Dimanov, B., 2021 (No publication date). Interpretable Deep Learning: Beyond Feature-Importance with Concept-based Explanations
  • Wang, D., 2021 (No publication date). Neural Diagrammatic Reasoning
  • Journal articles

  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2025. Measuring Cross-Modal Interactions in Multimodal Models Proceedings of the Aaai Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i20.35452
  • Riddell, A., Worley, JR., Begum-Miah, F., Bell, S., Casford, S., Fulton, AJ., Irfan, MO., Kane, J., Kane, O., King, C., Kinsella, Z., Lay, J., Liu, B., Matthews, Z., Murthy, M., Pallucca, C., Pinilla, K., Prowse, L., Simidjievski, N., Sionakidis, A., Whitehorn, D., Xian, K., Provenzano, E., Schouten, PC., Jamnik, M., Liò, P., Tarantino, S., Anand, A., Hua, K., Rebbeck, CA., Woitek, R., Allajbeu, I., Hannon, GJ. and Abraham, JE., 2025. Abstract LB339: SYNERGIA Breast Cancer - Revolutionizing breast cancer care with multi-modal data integration for personalised treatment and future trials Cancer Research, v. 85
    Doi: http://doi.org/10.1158/1538-7445.am2025-lb339
  • Zarlenga, ME., Dominici, G., Barbiero, P., Shams, Z. and Jamnik, M., 2025. Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts. CoRR, v. abs/2504.17921
  • Buczynski, W., Steffek, F., Jamnik, M., Cuzzolin, F. and Sahakian, B., 2025. Future themes in regulating artificial intelligence in investment management Computer Law and Security Review, v. 56
    Doi: http://doi.org/10.1016/j.clsr.2025.106111
  • Koloski, B., Margeloiu, A., Jiang, X., Skrlj, B., Simidjievski, N. and Jamnik, M., 2025. LLM Embeddings for Deep Learning on Tabular Data. CoRR, v. abs/2502.11596
  • Jiang, X., Simidjievski, N. and Jamnik, M., 2025. How Well Does Your Tabular Generator Learn the Structure of Tabular Data? CoRR, v. abs/2503.09453
  • Collins, KM., Jiang, Q., Frieder, S., Wong, L., Zilka, M., Bhatt, U., Lukasiewicz, T., Wu, Y., Tenenbaum, JB., Hart, W., Gowers, T., Li, W., Weller, A. and Jamnik, M., 2024 (Accepted for publication). Evaluating Language Models for Mathematics through Interactions. Proceedings of the National Academy of Sciences of the United States of America, v. 121
    Doi: 10.1073/pnas.2318124121
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models Advances in Neural Information Processing Systems, v. 37
  • Buzzard, Z., Hemker, K., Simidjievski, N. and Jamnik, M., 2024. PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis. CoRR, v. abs/2411.18225
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data Advances in Neural Information Processing Systems, v. 37
  • Raman, N., Zarlenga, ME., Heo, J. and Jamnik, M., 2024. Do Concept Bottleneck Models Obey Locality? CoRR, v. abs/2401.01259
  • Zarlenga, ME., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2024. Efficient Bias Mitigation Without Privileged Information. CoRR, v. abs/2409.17691
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2024. GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data Transactions on Machine Learning Research, v. 2024
  • Dong, T., Jamnik, M. and Liò, P., 2024. Sphere Neural-Networks for Rational Reasoning. CoRR, v. abs/2403.15297
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023 (Published online). Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Espinosa Zarlenga, M., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023 (Published online). Towards Robust Metrics for Concept Representation Evaluation Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i10.26392
  • Zarlenga, ME., Weller, A., Collins, KM., Shams, Z., Dvijotham, K. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models Advances in Neural Information Processing Systems, v. 36
  • Jiang, AQ., Li, W. and Jamnik, M., 2023. Multilingual Mathematical Autoformalization. CoRR, v. abs/2311.03755
  • Leelarathna, N., Margeloiu, A., Jamnik, M. and Simidjievski, N., 2023. Enhancing Representation Learning on High-Dimensional, Small-Size Tabular Data: A Divide and Conquer Method with Ensembled VAEs. CoRR, v. abs/2306.15661
  • Kazhdan, D., Dimanov, B., Magister, LC., Barbiero, P., Jamnik, M. and Liò, P., 2023. GCI: A (G)raph (C)oncept (I)nterpretation Framework. CoRR, v. abs/2302.04899
  • Lishkova, Y., Scherer, P., Ridderbusch, S., Jamnik, M., Liò, P., Ober-Blöbaum, S. and Offen, C., 2022 (Accepted for publication). Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery IFAC-PapersOnLine, v. 56
    Doi: 10.1016/j.ifacol.2023.10.1457
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Liò, P. and Jamnik, M., 2022. Concept Embedding Models. CoRR, v. abs/2209.09056
  • Margeloiu, A., Simidjievski, N., Lio', P. and Jamnik, M., 2022. Graph-Conditioned MLP for High-Dimensional Tabular Biomedical Data. CoRR, v. abs/2211.06302
  • Scherer, P., Trebacz, M., Simidjievski, N., Viñas, R., Shams, Z., Andrés-Terré, H., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinform., v. 38
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PC-H., 2022. Representational Systems Theory: A Unified Approach to Encoding, Analysing and Transforming Representations. CoRR, v. abs/2206.03172
  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Liò, P. and Jamnik, M., 2022. Encoding Concepts in Graph Neural Networks. CoRR, v. abs/2207.13586
  • Scherer, P., Trębacz, M., Simidjievski, N., Viñas, R., Shams, Z., Terre, HA., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinformatics, v. 38
    Doi: 10.1093/bioinformatics/btab830
  • Buczynski, W., Steffek, F., Cuzzolin, F., Jamnik, M. and Sahakian, B., 2022. Hard Law and Soft Law Regulations of Artificial Intelligence in Investment Management Cambridge Yearbook of European Legal Studies, v. 24
    Doi: 10.1017/cel.2022.10
  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks. CoRR, v. abs/2111.12628
  • Trębacz, M., Shams, Z., Jamnik, M., Scherer, P., Simidjievski, N., Terre, HA. and Liò, P., 2020 (Published online). Using ontology embeddings for structural inductive bias in gene expression data analysis arxiv,
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now You See Me (CME): Concept-based Model Extraction. CoRR, v. abs/2010.13233
  • Kazhdan, D., Dimanov, B., Jamnik, M. and Liò, P., 2020. MEME: Generating RNN Model Explanations via Model Extraction
  • Margeloiu, A., Simidjievski, N., Jamnik, M. and Weller, A., 2020. Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training
  • Kiat, NQW., Wang, D. and Jamnik, M., 2020. Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices
  • Scherer, P., Trȩbacz, M., Simidjievski, N., Shams, Z., Terre, HA., Liò, P. and Jamnik, M., 2020. Incorporating network based protein complex discovery into automated model construction
  • Zhao, Y., Wang, D., Bates, D., Mullins, R., Jamnik, M. and Lio, P., 2020. Learned Low Precision Graph Neural Networks
  • Wang, D., Jamnik, M. and Lio, P., 2020. ABSTRACT DIAGRAMMATIC REASONING WITH MULTIPLEX GRAPH NETWORKS 8th International Conference on Learning Representations Iclr 2020,
  • Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres Terre, H., Shams, Z., Jamnik, M. and Liò, P., 2019. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet, v. 10
    Doi: 10.3389/fgene.2019.01205
  • Bundy, A. and Jamnik, M., 2019. A Common Type of Rigorous Proof that Resists Hilbert’s Programme
    Doi: 10.1007/978-3-030-28483-1_3
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2019. Human inference beyond syllogisms: an approach using external graphical representations. Cogn Process, v. 20
    Doi: 10.1007/s10339-018-0877-2
  • Wang, D., Jamnik, M. and Lio, P., 2019. Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2019. Bayesian Optimisation with Gaussian Processes for Premise Selection
  • Oliver, I., Howse, J., Stapleton, G., Shams, Z. and Jamnik, M., 2019. Exploring and conceptualising attestation Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 11530 LNAI
    Doi: 10.1007/978-3-030-23182-8_10
  • Scherer, P., Andres-Terre, H., Lio, P. and Jamnik, M., 2019. Decoupling feature propagation from the design of graph auto-encoders
  • Linker, S., Burton, J. and Jamnik, M., 2017. Tactical diagrammatic reasoning Electronic Proceedings in Theoretical Computer Science, EPTCS, v. 239
    Doi: 10.4204/EPTCS.239.3
  • Stapleton, G., Jamnik, M. and Shimojima, A., 2017. What Makes an Effective Representation of Information: A Formal Account of Observational Advantages Journal of Logic, Language and Information, v. 26
    Doi: 10.1007/s10849-017-9250-6
  • Urbas, M., Jamnik, M. and Stapleton, G., 2015. Speedith: A Reasoner for Spider Diagrams Journal of Logic Language and Information, v. 24
    Doi: 10.1007/s10849-015-9229-0
  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2014. Teach and try: A simple interaction technique for exploratory data modelling by end users Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc,
    Doi: 10.1109/VLHCC.2014.6883022
  • Stapleton, G., Jamnik, M. and Urbas, M., 2013. Designing inference rules for spider diagrams Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc,
    Doi: 10.1109/VLHCC.2013.6645238
  • Jamnik, M., 2008. How can machines reason? Aisb 2008 Convention Communication Interaction and Social Intelligence Proceedings of the Aisb 2008 Symposium on Logic and the Simulation of Interaction and Reasoning,
  • Benzmüller, C., Sorge, V., Jamnik, M. and Kerber, M., 2008. Combined reasoning by automated cooperation Journal of Applied Logic, v. 6
    Doi: 10.1016/j.jal.2007.06.003
  • Dennis, LA., Jamnik, M. and Pollet, M., 2006. On the comparison of proof planning systems: γcLAM Ωmega and IsaPlanner Electronic Notes in Theoretical Computer Science, v. 151
    Doi: 10.1016/j.entcs.2005.11.025
  • Jamnik, M. and Bundy, A., 2005. Psychological validity of schematic proofs LECT NOTES ARTIF INT, v. 2605
  • Bundy, A., Jamnik, M. and Fugard, A., 2005. What is a proof? PHILOS T ROY SOC A, v. 363
    Doi: 10.1098/rsta.2005.1651
  • Jamnik, M., Kerber, M., Pollet, M. and Benzmuller, C., 2003. Automatic learning of proof methods in proof planning LOGIC J IGPL, v. 11
    Doi: 10.1093/jigpal/11.6.647
  • Jamnik, M. and Janičić, P., 2003. Learning strategies for mechanised building of decision procedures Electronic Notes in Theoretical Computer Science, v. 86
    Doi: 10.1016/S1571-0661(04)80662-5
  • Jamnik, M., Bundy, A. and Green, I., 1999. On automating diagrammatic proofs of arithmetic arguments Journal of Logic Language and Information, v. 8
    Doi: 10.1023/A:1008323427489
  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 1999. Agent based mathematical reasoning Electronic Notes in Theoretical Computer Science, v. 23
    Doi: 10.1016/S1571-0661(05)82522-8
  • Book chapters

  • Espinosa Zarlenga, M., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2025. Efficient Bias Mitigation Without Privileged Information
    Doi: http://doi.org/10.1007/978-3-031-73220-1_9
  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Jamnik, M. and Liò, P., 2023. Concept Distillation in Graph Neural Networks
    Doi: 10.1007/978-3-031-44070-0_12
  • Hemker, K., Shams, Z. and Jamnik, M., 2023. CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs
    Doi: 10.1007/978-3-031-39539-0_6
  • Cheng, PCH., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022. Representational Interpretive Structure: Theory and Notation
    Doi: 10.1007/978-3-031-15146-0_4
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022. Evaluating Colour in Concept Diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2021 (Accepted for publication). Considerations in Representation Selection for Problem Solving: A Review
    Doi: 10.1007/978-3-030-86062-2_4
  • Cheng, PCH., Garcia, GG., Raggi, D., Stockdill, A. and Jamnik, M., 2021 (Accepted for publication). Cognitive Properties of Representations: A Framework
    Doi: 10.1007/978-3-030-86062-2_43
  • Jamnik, M., 2021. Logical Reasoning with Diagrams
    Doi: 10.7551/mitpress/11252.003.0078
  • Jamnik, M. and Cheng, P., 2021. Endowing Machines with the Expert Human Ability to Select Representations: Why and How
    Doi: 10.1093/oso/9780198862536.003.0018
  • Jamnik, M., 2021. Logical reasoning with diagrams
    Doi: 10.17863/CAM.81063
  • Jamnik, M., 2021. Human-Like Computational Reasoning: Diagrams and Other Representations
    Doi: 10.1007/978-3-030-77879-8_7
  • Colarusso, F., Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2021. Observing Strategies of Drawing Data Representations
    Doi: 10.1007/978-3-030-86062-2_55
  • Jamnik, M., Bundy, A. and Green, I., 2002. On Automating Diagrammatic Proofs of Arithmetic Arguments
    Doi: 10.1007/978-1-4471-0109-3_18
  • Internet publications

  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M. and Holden, SB., 2020. Towards Graph Representation Learning in Emergent Communication
  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Structural Inductive Biases in Emergent Communication
  • Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P. and Jamnik, M., 2020. Probabilistic Dual Network Architecture Search on Graphs
  • Jamnik, M., Home Page
  • Books

  • Jamnik, M., Uesaka, Y. and Schwartz, SE., 2016. Preface
  • 2012. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-31223-6
  • 2012. Automated Reasoning
    Doi: 10.1007/978-3-642-31365-3
  • Jamnik, M., Goel, AK. and Narayanan, NH., 2010. Preface
  • Jamnik, M., Goel, A. and Narayanan, H., 2010. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface
  • 2010. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-14600-8
  • 2010. Diagrammatic Representation and Inference, 6th International Conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010. Proceedings
  • Conference proceedings

    2025 (Published online)

  • Dong, T., Jamnik, M. and Liò, P., 2025 (Published online). Neural Reasoning for Sure Through Constructing Explainable Models Proceedings of the AAAI Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i11.33262
  • 2025 (Accepted for publication)

  • Hemker, K., Simidjievski, N. and Jamnik, M., 2025 (Accepted for publication). Multimodal Lego: Model Merging and Fine-Tuning Across Topologies and Modalities in Biomedicine
    Doi: http://doi.org/10.17863/CAM.117032
  • 2025

  • Matjasec, U., Simidjievski, N. and Jamnik, M., 2025. RO-FIGS: Efficient and Expressive Tree-Based Ensembles for Tabular Data. CoRR, v. abs/2504.06927
  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2025. Measuring Cross-Modal Interactions in Multimodal Models. AAAI,
  • Matjasec, U., Simidjievski, N. and Jamnik, M., 2025. RO-FIGS: Efficient and Expressive Tree-Based Ensembles for Tabular Data 2025 IEEE Symposium on Trustworthy Explainable and Responsible Computational Intelligence Citrex 2025,
    Doi: 10.1109/CITREx64975.2025.10974939
  • Dong, T., Jamnik, M. and Liò, P., 2025. Neural Reasoning for Sure Through Constructing Explainable Models Proceedings of the Aaai Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i11.33262
  • 2024 (Published online)

  • Cheng, P., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Index systems: Enumerating their forms and explaining their diversity with representational interpretive structure theory
    Doi: http://doi.org/10.17863/CAM.117030
  • Colarusso, F., Cheng, P., Grau, R., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2024 (Published online). Decoding expertise: Exploring cognitive micro-behavioural measurements for visualization competence
    Doi: http://doi.org/10.17863/CAM.117031
  • 2024

  • Raman, N., Zarlenga, ME. and Jamnik, M., 2024. Understanding Inter-Concept Relationships in Concept-Based Models Proceedings of Machine Learning Research, v. 235
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models. NeurIPS,
  • Jiang, AQ., Ziarko, A., Piotrowski, B., Li, W., Jamnik, M. and Miłos, P., 2024. Repurposing Language Models into Embedding Models: Finding the Compute-Optimal Recipe Advances in Neural Information Processing Systems, v. 37
  • Jiang, AQ., Li, W. and Jamnik, M., 2024. Multi-language Diversity Benefits Autoformalization Advances in Neural Information Processing Systems, v. 37
  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data. NeurIPS,
  • Rex, E., Zarlenga, ME., Margeloiu, A. and Jamnik, M., 2024. From Must to May: Enabling Test-Time Feature Imputation and Interventions Ceur Workshop Proceedings, v. 3841
  • 2024. Proceedings of the KDD Workshop on Human-Interpretable AI 2024 co-located with 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD 2024), Centre de Convencions Internacional de Barcelona, Spain, August 26, 2024. HI-AI@KDD, v. 3841
  • Lo, A., Jiang, AQ., Li, W. and Jamnik, M., 2024. End-to-End Ontology Learning with Large Language Models Advances in Neural Information Processing Systems, v. 37
  • Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2024. A Human Information Processing Theory of the Interpretation of Visualizations: Demonstrating Its Utility Conference on Human Factors in Computing Systems Proceedings,
    Doi: 10.1145/3613904.3642276
  • Wu, L., Choi, S., Raggi, D., Stockdill, A., Garcia, GG., Colarusso, F., Cheng, PCH. and Jamnik, M., 2024. Generation of Visual Representations for Multi-Modal Mathematical Knowledge Proceedings of the AAAI Conference on Artificial Intelligence, v. 38
    Doi: 10.1609/aaai.v38i21.30586
  • Jiang, X., Margeloiu, A., Simidjievski, N. and Jamnik, M., 2024. ProtoGate: Prototype-based Neural Networks with Global-to-local Feature Selection for Tabular Biomedical Data Proceedings of Machine Learning Research, v. 235
  • Komorowska, UJ., Mathis, S., Didi, K., Vargas, F., Lio, P. and Jamnik, M., 2024. Dynamics-Informed Protein Design with Structure Conditioning
  • Raggi, D., Stapleton, G., Stockdill, A., Garcia, GG., Cheng, PCH. and Jamnik, M., 2024. Oruga: Implementation and Use of Representational Systems Theory Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 14960 LNAI
    Doi: 10.1007/978-3-031-66997-2_20
  • Ciravegna, G., Zarlenga, ME., Barbiero, P., Giannini, F., Shams, Z., Garreau, D., Jamnik, M. and Cerquitelli, T., 2024. Workshop on Human-Interpretable AI Ceur Workshop Proceedings, v. 3841
    Doi: 10.1145/3637528.3671499
  • 2023

  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023. Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Zarlenga, ME., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023. Towards Robust Metrics For Concept Representation Evaluation Proceedings of the 37th Aaai Conference on Artificial Intelligence Aaai 2023, v. 37
    Doi: 10.1609/aaai.v37i10.2636126392
  • Yang, M., Stylianides, AJ. and Jamnik, M., 2023. Teachers’ multiple and adaptive noticing driven by their framing of professional obligations in the context of a proving activity Proceedings of the International Group for the Psychology of Mathematics Education, v. 4
  • Colarusso, F., Cheng, PCH., Garcia Garcia, G., Stockdill, A., Raggi, D. and Jamnik, M., 2023. A novel interaction for competence assessment using micro-behaviors: Extending CACHET to graphs and charts Conference on Human Factors in Computing Systems Proceedings,
    Doi: 10.1145/3544548.3581519
  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2023. Human Visual Consistency-Checking in the Real World Ontologies Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC,
    Doi: 10.1109/VL-HCC57772.2023.00044
  • Collins, KM., Barker, M., Zarlenga, ME., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems. AIES,
  • Zarlenga, ME., Collins, K., Dvijotham, K., Weller, A., Shams, Z. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models. NeurIPS,
  • Barbiero, P., Ciravegna, G., Giannini, F., Zarlenga, ME., Magister, LC., Tonda, A., Lió, P., Precioso, F., Jamnik, M. and Marra, G., 2023. Interpretable Neural-Symbolic Concept Reasoning Proceedings of Machine Learning Research, v. 202
  • Jiang, AQ., Welleck, S., Zhou, JP., Li, W., Liu, J., Jamnik, M., Lacroix, T., Lample, G. and Wu, Y., 2023. DRAFT, SKETCH, AND PROVE: GUIDING FORMAL THEOREM PROVERS WITH INFORMAL PROOFS 11th International Conference on Learning Representations Iclr 2023,
  • Collins, KM., Barker, M., Espinosa Zarlenga, M., Raman, N., Bhatt, U., Jamnik, M., Sucholutsky, I., Weller, A. and Dvijotham, K., 2023. Human Uncertainty in Concept-Based AI Systems Aies 2023 Proceedings of the 2023 Aaai ACM Conference on AI Ethics and Society,
    Doi: 10.1145/3600211.3604692
  • 2022 (Accepted for publication)

  • Yang, M., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Chinese teachers’ professional noticing of students’ reasoning in the context of Lakatos-style proving activity.
    Doi: 10.17863/CAM.95065
  • Cheng, P., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022 (Accepted for publication). Representational interpretive structure: Theory and notation
    Doi: 10.17863/CAM.94952
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022 (Accepted for publication). Evaluating colour in concept diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • Deslis, D., Stylianides, A. and Jamnik, M., 2022 (Accepted for publication). Two Primary School Teachers’ Mathematical Knowledge of Content, Students, and Teaching Practices relevant to Lakatos-style Investigation of Proof Tasks
    Doi: 10.17863/CAM.94953
  • 2022

  • Scherer, P., Liò, P. and Jamnik, M., 2022. Distributed Representations of Graphs for Drug Pair Scoring Proceedings of Machine Learning Research, v. 198
  • Stockdill, A., Stapleton, G., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2022. Examining Experts' Recommendations of Representational Systems for Problem Solving Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2022-September
    Doi: 10.1109/VL/HCC53370.2022.9833141
  • Słowik, A., Bottou, L., Holden, SB. and Jamnik, M., 2022. On the Relation between Distributionally Robust Optimization and Data Curation (Student Abstract) Proceedings of the 36th Aaai Conference on Artificial Intelligence Aaai 2022, v. 36
    Doi: 10.1609/aaai.v36i11.21663
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models. NeurIPS,
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PCH., 2022. Oruga: An Avatar of Representational Systems Theory Ceur Workshop Proceedings, v. 3227
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygózdz, T., Milos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers. NeurIPS,
  • Stockdill, A., Garcia, GG., Cheng, PCH., Raggi, D. and Jamnik, M., 2022. Cognitive Analysis for Representation Change Ceur Workshop Proceedings, v. 3227
  • Apperly, I., Bundy, A., Cohn, A., Colton, S., Cussens, J., D'Avila Garcez, A., Hahn, U., Jamnik, M., Jay, C., Mareschal, D., Sammut, C., Schmid, U., Seed, A., Stahl, BC., Steedman, M. and Tamaddoni-Nezhad, A., 2022. Preface Ceur Workshop Proceedings, v. 3227
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Lio, P. and Jamnik, M., 2022. Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off Advances in Neural Information Processing Systems, v. 35
  • Cardozo, S., Montero, GI., Kazhdan, D., Dimanov, B., Wijaya, M., Jamnik, M. and Lio, P., 2022. Explainer Divergence Scores (EDS): Some Post-Hoc Explanations May be Effective for Detecting Unknown Spurious Correlations Ceur Workshop Proceedings, v. 3318
  • Jiang, AQ., Li, W., Tworkowski, S., Czechowski, K., Odrzygóźdz, T., Miłos, P., Wu, Y. and Jamnik, M., 2022. Thor: Wielding Hammers to Integrate Language Models and Automated Theorem Provers Advances in Neural Information Processing Systems, v. 35
  • Wu, Y., Jiang, AQ., Li, W., Rabe, MN., Staats, C., Jamnik, M. and Szegedy, C., 2022. Autoformalization with Large Language Models Advances in Neural Information Processing Systems, v. 35
  • 2021

  • Kazhdan, D., Dimanov, B., Terre, HA., Jamnik, M., Liò, P. and Weller, A., 2021. Is Disentanglement all you need? Comparing Concept-based & Disentanglement Approaches
  • Deslis, D., Stylianides, AJ. and Jamnik, M., 2021. PRIMARY SCHOOL TEACHERS’ MATHEMATICAL KNOWELEDGE FOR LAKATOS-STYLE PROOF INSTRUCTION Proceedings of the International Group for the Psychology of Mathematics Education, v. 2
  • Slowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2021. Structural Inductive Biases in Emergent Communication. CogSci,
  • Margeloiu, A., Ashman, M., Bhatt, U., Chen, Y., Jamnik, M. and Weller, A., 2021. Do Concept Bottleneck Models Learn as Intended?
  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks
  • Ayers, EW., Jamnik, M. and Gowers, WT., 2021. A graphical user interface framework for formal verification Leibniz International Proceedings in Informatics, LIPIcs, v. 193
    Doi: 10.4230/LIPIcs.ITP.2021.4
  • 2020 (No publication date)

  • Słowik, A., Mangla, C., Jamnik, M., Holden, S. and Paulson, L., 2020 (No publication date). Bayesian Optimisation for Heuristic Configuration in Automated Theorem Proving EPiC Series in Computing, v. 71
    Doi: 10.29007/q91g
  • 2020

  • Gupta, A., Słowik, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Analyzing structural priors in multi-agent communication Ala 2020 Adaptive and Learning Agents Workshop at Aamas 2020,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2020. Dissecting Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 12169 LNAI
    Doi: 10.1007/978-3-030-54249-8_11
  • Slowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 34(10), v. 34
    Doi: 10.1609/aaai.v34i10.7232
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now you see me (CME): Concept-based model extraction Ceur Workshop Proceedings, v. 2699
  • Raggi, D., Stapleton, G., Stockdill, A., Jamnik, M., Garcia, GG. and Cheng, PCH., 2020. How to (Re)represent it? Proceedings International Conference on Tools with Artificial Intelligence Ictai, v. 2020-November
    Doi: 10.1109/ICTAI50040.2020.00185
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2020. Bayesian optimisation for premise selection in automated theorem proving (student abstract) Aaai 2020 34th Aaai Conference on Artificial Intelligence,
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Correspondence-based analogies for choosing problem representations Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2020-August
    Doi: 10.1109/VL/HCC50065.2020.9127258
  • Dimanov, B., Bhatt, U., Jamnik, M. and Weller, A., 2020. You shouldn’t trust me: Learning models which conceal unfairness from multiple explanation methods. Frontiers in Artificial Intelligence and Applications: ECAI 2020,
    Doi: 10.3233/FAIA200380
  • Wang, D., Jamnik, M. and Lio, P., 2020. Abstract Diagrammatic Reasoning with Multiplex Graph Networks
  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG., Sutherland, HEA., Cheng, PCH. and Sarkar, A., 2020. Cross-domain correspondences for explainable recommendations CEUR Workshop Proceedings, v. 2582
  • 2019

  • Cheng, PC-H., Garcia, GG., Sutherland, HEA., Raggi, D., Stockdill, A. and Jamnik, M., 2019. Elucidating the Cognitive Anatomy of Representation Systems. CogSci,
  • Raggi, D., Stockdill, A., Jamnik, M., Garcia Garcia, G., Sutherland, HEA. and Cheng, PCH., 2019. Inspection and Selection of Representations Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11617 LNAI
    Doi: 10.1007/978-3-030-23250-4_16
  • Ayers, EW., Gowers, WT. and Jamnik, M., 2019. A Human-Oriented Term Rewriting System Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 11793 LNAI
    Doi: 10.1007/978-3-030-30179-8_6
  • 2018 (No publication date)

  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018 (No publication date). Reasoning with Concept Diagrams about Antipatterns Kalpa Publications in Computing, v. 1
    Doi: 10.29007/4ckv
  • 2018 (Accepted for publication)

  • Wang, D., Jamnik, M. and Lio, P., 2018 (Accepted for publication). Investigating diagrammatic reasoning with deep neural networks
    Doi: 10.1007/978-3-319-91376-6_36
  • 2018

  • Shams, Z., Sato, Y., Jamnik, M. and Stapleton, G., 2018. Accessible reasoning with diagrams: From cognition to automation Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_25
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2018. Deductive reasoning about expressive statements using external graphical representations. CogSci,
  • Stapleton, G., Shimojima, A. and Jamnik, M., 2018. The observational advantages of euler diagrams with existential import Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 10871 LNAI
    Doi: 10.1007/978-3-319-91376-6_29
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2018. Icon: A diagrammatic theorem prover for ontologies Principles of Knowledge Representation and Reasoning Proceedings of the 16th International Conference Kr 2018,
  • 2017 (Accepted for publication)

  • Shams, Y., Jamnik, M., Stapleton, G. and Sato, Y., 2017 (Accepted for publication). Reasoning with concept diagrams about antipatterns
    Doi: 10.1007/978-3-319-62075-6_18
  • 2017

  • Sato, Y., Stapleton, G., Jamnik, M., Shams, Z. and Blake, A., 2017. How network-based and set-based visualizations aid consistency checking in ontologies ACM International Conference Proceeding Series, v. Part F130152
    Doi: 10.1145/3105971.3105988
  • Shams, Z., Jamnik, M., Stapleton, G. and Sato, Y., 2017. Reasoning with concept diagrams about antipatterns in ontologies Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10383 LNAI
    Doi: 10.1007/978-3-319-62075-6_18
  • 2016

  • Stapleton, G., Jamnik, M. and Shimojima, A., 2016. Effective representation of information: Generalizing free rides Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 9781
    Doi: 10.1007/978-3-319-42333-3_28
  • Sarkar, A., Spott, M., Blackwell, AF. and Jamnik, M., 2016. Visual discovery and model-driven explanation of time series patterns Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC, v. 2016-November
    Doi: 10.1109/VLHCC.2016.7739668
  • 2016. Diagrammatic Representation and Inference - 9th International Conference, Diagrams 2016, Philadelphia, PA, USA, August 7-10, 2016, Proceedings Diagrams, v. 9781
  • 2015

  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2015. Interaction with uncertainty in visualisations Eurographics Conference on Visualization Eurovis 2015 Short Papers,
    Doi: 10.2312/eurovisshort.20151138
  • Sarkar, A., Jamnik, M., Blackwell, AF. and Spott, M., 2015. Interactive visual machine learning in spreadsheets Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc, v. 2015-December
    Doi: 10.1109/VLHCC.2015.7357211
  • 2014

  • Urbas, M. and Jamnik, M., 2014. A framework for heterogeneous reasoning in formal and informal domains Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 8578 LNAI
    Doi: 10.1007/978-3-662-44043-8_28
  • 2012

  • Urbas, M. and Jamnik, M., 2012. Diabelli: A Heterogeneous Proof System. IJCAR, v. 7364
  • Urbas, M., Jamnik, M., Stapleton, G. and Flower, J., 2012. Speedith: A Diagrammatic Reasoner for Spider Diagrams. Diagrams, v. 7352
  • 2011

  • Urbas, M. and Jamnik, M., 2011. Heterogeneous proofs: Spider diagrams meet higher-order provers Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 6898 LNCS
    Doi: 10.1007/978-3-642-22863-6_29
  • 2010

  • Urbas, M. and Jamnik, M., 2010. Heterogeneous Reasoning in Real Arithmetic DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 6170
  • 2008

  • Ridsdale, M., Jamnik, M., Benton, N. and Berdine, J., 2008. Diagrammatic reasoning in separation logic Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 5223 LNAI
    Doi: 10.1007/978-3-540-87730-1_50
  • 2005

  • Benzmuller, C., Sorge, V., Jamnik, M. and Kerber, M., 2005. Can a higher-order and a first-order theorem prover cooperate? LOGIC FOR PROGRAMMING, ARTIFICIAL INTELLIGENCE, AND REASONING, PROCEEDINGS, v. 3452
  • 2004

  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2004. An experimental comparison of diagrammatic and algebraic logics DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • Winterstein, D., Bundy, A. and Jamnik, M., 2004. On differences between the real and physical plane DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2980
  • 2002

  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Learn Omega-matic: System Description. CADE, v. 2392
  • Jamnik, M., Kerber, M. and Pollet, M., 2002. Automatic learning in proof planning ECAI 2002: 15TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, v. 77
  • Winterstein, D., Bundy, A., Gurr, C. and Jamnik, M., 2002. Using animation in diagrammatic theorem proving DIAGRAMMATIC REPRESENTATION AND INFERENCE, v. 2317
  • 2001

  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Experiments with an Agent-Oriented Reasoning System. KI/ÖGAI, v. 2174
  • Benzmuller, C., Jamnik, M., Kerber, M. and Sorge, V., 2001. Resource guided concurrent deduction SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • Jamnik, M., Kerber, M. and Benzmuller, C., 2001. Towards learning new methods in proof planning SYMBOLIC COMPUTATION AND AUTOMATED REASONING,
  • 2000

  • Winterstein, D., Bundy, A. and Jamnik, M., 2000. A proposal for automating diagrammatic reasoning in continuous domains THEORY AND APPLICATION OF DIAGRAMS, PROCEEDINGS, v. 1889
  • 1998

  • Jamnik, M., Bundy, A. and Green, I., 1998. DIAMOND: Diagrammatic Reasoning System Demonstration Aaai Fall Symposium Technical Report, v. FS-98-04
  • Jamnik, M., Bundy, A. and Green, I., 1998. Verification of Diagrammatic Proofs Aaai Fall Symposium Technical Report, v. FS-98-04
  • 1997

  • Jamnik, M., 1997. Automation of Diagrammatic Proofs in Mathematics. IJCAI,
  • Jamnik, M., Bundy, A. and Green, I., 1997. Automation of Diagrammatic Reasoning Aaai Fall Symposium Technical Report, v. FS-97-03
  • Jamnik, M., Bundy, A. and Green, P., 1997. Automation of diagrammatic reasoning IJCAI-97 - PROCEEDINGS OF THE FIFTEENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2,
  • Theses / dissertations

    2025 (No publication date)

  • Margeloiu, A., 2025 (No publication date). Tabular Machine Learning on Small-Size and High-Dimensional Data
    Doi: http://doi.org/10.17863/CAM.117151
  • Jiang, Q., 2025 (No publication date). Language models for verifiable mathematical automation: Interaction, integration, and autoformalization
    Doi: http://doi.org/10.17863/CAM.115428
  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers’ mathematical knowledge and views
    Doi: http://doi.org/10.17863/CAM.115816
  • Deslis, D., 2025 (No publication date). Lakatos-style proving activity in primary school: A mixed-methods study to explore and support teachers' mathematical knowledge and views
  • 2024 (No publication date)

  • Yang, M., 2024 (No publication date). Chinese Teachers’ Noticing in the Context of Lakatos-Style Proving Activity: A mixed-methods study to investigate its patterns and underlying mechanisms
    Doi: http://doi.org/10.17863/CAM.112706
  • Kazhdan, D., 2024 (No publication date). Enhancing Interpretability: The Role of Concept-based Explanations Across Data Types
    Doi: http://doi.org/10.17863/CAM.109227
  • Scherer, P., 2024 (No publication date). Distributional and relational inductive biases for graph representation learning in biomedicine
    Doi: 10.17863/CAM.107338
  • 2023 (No publication date)

  • Słowik, A., 2023 (No publication date). Out-of-distribution generalisation in machine learning
    Doi: 10.17863/CAM.101537
  • 2022 (No publication date)

  • Ayers, E., 2022 (No publication date). A Tool for Producing Verified, Explainable Proofs
    Doi: 10.17863/CAM.81869
  • Stockdill, A., 2022 (No publication date). Automating representation change across domains for reasoning
    Doi: 10.17863/CAM.84749
  • 2021 (No publication date)

  • Dimanov, B., 2021 (No publication date). Interpretable Deep Learning: Beyond Feature-Importance with Concept-based Explanations
  • Wang, D., 2021 (No publication date). Neural Diagrammatic Reasoning
  • Journal articles

    2025

  • Koloski, B., Margeloiu, A., Jiang, X., Skrlj, B., Simidjievski, N. and Jamnik, M., 2025. LLM Embeddings for Deep Learning on Tabular Data. CoRR, v. abs/2502.11596
  • Jiang, X., Simidjievski, N. and Jamnik, M., 2025. How Well Does Your Tabular Generator Learn the Structure of Tabular Data? CoRR, v. abs/2503.09453
  • Wenderoth, L., Hemker, K., Simidjievski, N. and Jamnik, M., 2025. Measuring Cross-Modal Interactions in Multimodal Models Proceedings of the Aaai Conference on Artificial Intelligence, v. 39
    Doi: 10.1609/aaai.v39i20.35452
  • Riddell, A., Worley, JR., Begum-Miah, F., Bell, S., Casford, S., Fulton, AJ., Irfan, MO., Kane, J., Kane, O., King, C., Kinsella, Z., Lay, J., Liu, B., Matthews, Z., Murthy, M., Pallucca, C., Pinilla, K., Prowse, L., Simidjievski, N., Sionakidis, A., Whitehorn, D., Xian, K., Provenzano, E., Schouten, PC., Jamnik, M., Liò, P., Tarantino, S., Anand, A., Hua, K., Rebbeck, CA., Woitek, R., Allajbeu, I., Hannon, GJ. and Abraham, JE., 2025. Abstract LB339: SYNERGIA Breast Cancer - Revolutionizing breast cancer care with multi-modal data integration for personalised treatment and future trials Cancer Research, v. 85
    Doi: http://doi.org/10.1158/1538-7445.am2025-lb339
  • Zarlenga, ME., Dominici, G., Barbiero, P., Shams, Z. and Jamnik, M., 2025. Avoiding Leakage Poisoning: Concept Interventions Under Distribution Shifts. CoRR, v. abs/2504.17921
  • Buczynski, W., Steffek, F., Jamnik, M., Cuzzolin, F. and Sahakian, B., 2025. Future themes in regulating artificial intelligence in investment management Computer Law and Security Review, v. 56
    Doi: http://doi.org/10.1016/j.clsr.2025.106111
  • 2024 (Accepted for publication)

  • Collins, KM., Jiang, Q., Frieder, S., Wong, L., Zilka, M., Bhatt, U., Lukasiewicz, T., Wu, Y., Tenenbaum, JB., Hart, W., Gowers, T., Li, W., Weller, A. and Jamnik, M., 2024 (Accepted for publication). Evaluating Language Models for Mathematics through Interactions. Proceedings of the National Academy of Sciences of the United States of America, v. 121
    Doi: 10.1073/pnas.2318124121
  • 2024

  • Hemker, K., Simidjievski, N. and Jamnik, M., 2024. HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data Advances in Neural Information Processing Systems, v. 37
  • Raman, N., Zarlenga, ME., Heo, J. and Jamnik, M., 2024. Do Concept Bottleneck Models Obey Locality? CoRR, v. abs/2401.01259
  • Zarlenga, ME., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2024. Efficient Bias Mitigation Without Privileged Information. CoRR, v. abs/2409.17691
  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2024. GCondNet: A Novel Method for Improving Neural Networks on Small High-Dimensional Tabular Data Transactions on Machine Learning Research, v. 2024
  • Dong, T., Jamnik, M. and Liò, P., 2024. Sphere Neural-Networks for Rational Reasoning. CoRR, v. abs/2403.15297
  • Margeloiu, A., Jiang, X., Simidjievski, N. and Jamnik, M., 2024. TabEBM: A Tabular Data Augmentation Method with Distinct Class-Specific Energy-Based Models Advances in Neural Information Processing Systems, v. 37
  • Buzzard, Z., Hemker, K., Simidjievski, N. and Jamnik, M., 2024. PATHS: A Hierarchical Transformer for Efficient Whole Slide Image Analysis. CoRR, v. abs/2411.18225
  • 2023 (Published online)

  • Margeloiu, A., Simidjievski, N., Liò, P. and Jamnik, M., 2023 (Published online). Weight Predictor Network with Feature Selection for Small Sample Tabular Biomedical Data Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i8.26090
  • Espinosa Zarlenga, M., Barbiero, P., Shams, Z., Kazhdan, D., Bhatt, U., Weller, A. and Jamnik, M., 2023 (Published online). Towards Robust Metrics for Concept Representation Evaluation Proceedings of the AAAI Conference on Artificial Intelligence, v. 37
    Doi: 10.1609/aaai.v37i10.26392
  • 2023

  • Jiang, AQ., Li, W. and Jamnik, M., 2023. Multilingual Mathematical Autoformalization. CoRR, v. abs/2311.03755
  • Zarlenga, ME., Weller, A., Collins, KM., Shams, Z., Dvijotham, K. and Jamnik, M., 2023. Learning to Receive Help: Intervention-Aware Concept Embedding Models Advances in Neural Information Processing Systems, v. 36
  • Leelarathna, N., Margeloiu, A., Jamnik, M. and Simidjievski, N., 2023. Enhancing Representation Learning on High-Dimensional, Small-Size Tabular Data: A Divide and Conquer Method with Ensembled VAEs. CoRR, v. abs/2306.15661
  • Kazhdan, D., Dimanov, B., Magister, LC., Barbiero, P., Jamnik, M. and Liò, P., 2023. GCI: A (G)raph (C)oncept (I)nterpretation Framework. CoRR, v. abs/2302.04899
  • 2022 (Accepted for publication)

  • Lishkova, Y., Scherer, P., Ridderbusch, S., Jamnik, M., Liò, P., Ober-Blöbaum, S. and Offen, C., 2022 (Accepted for publication). Discrete Lagrangian Neural Networks with Automatic Symmetry Discovery IFAC-PapersOnLine, v. 56
    Doi: 10.1016/j.ifacol.2023.10.1457
  • 2022

  • Scherer, P., Trębacz, M., Simidjievski, N., Viñas, R., Shams, Z., Terre, HA., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinformatics, v. 38
    Doi: 10.1093/bioinformatics/btab830
  • Buczynski, W., Steffek, F., Cuzzolin, F., Jamnik, M. and Sahakian, B., 2022. Hard Law and Soft Law Regulations of Artificial Intelligence in Investment Management Cambridge Yearbook of European Legal Studies, v. 24
    Doi: 10.1017/cel.2022.10
  • Zarlenga, ME., Barbiero, P., Ciravegna, G., Marra, G., Giannini, F., Diligenti, M., Shams, Z., Precioso, F., Melacci, S., Weller, A., Liò, P. and Jamnik, M., 2022. Concept Embedding Models. CoRR, v. abs/2209.09056
  • Margeloiu, A., Simidjievski, N., Lio', P. and Jamnik, M., 2022. Graph-Conditioned MLP for High-Dimensional Tabular Biomedical Data. CoRR, v. abs/2211.06302
  • Scherer, P., Trebacz, M., Simidjievski, N., Viñas, R., Shams, Z., Andrés-Terré, H., Jamnik, M. and Liò, P., 2022. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Bioinform., v. 38
  • Raggi, D., Stapleton, G., Jamnik, M., Stockdill, A., Garcia, GG. and Cheng, PC-H., 2022. Representational Systems Theory: A Unified Approach to Encoding, Analysing and Transforming Representations. CoRR, v. abs/2206.03172
  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Liò, P. and Jamnik, M., 2022. Encoding Concepts in Graph Neural Networks. CoRR, v. abs/2207.13586
  • 2021

  • Zarlenga, ME., Shams, Z. and Jamnik, M., 2021. Efficient Decompositional Rule Extraction for Deep Neural Networks. CoRR, v. abs/2111.12628
  • 2020 (Published online)

  • Trębacz, M., Shams, Z., Jamnik, M., Scherer, P., Simidjievski, N., Terre, HA. and Liò, P., 2020 (Published online). Using ontology embeddings for structural inductive bias in gene expression data analysis arxiv,
  • 2020

  • Zhao, Y., Wang, D., Bates, D., Mullins, R., Jamnik, M. and Lio, P., 2020. Learned Low Precision Graph Neural Networks
  • Wang, D., Jamnik, M. and Lio, P., 2020. ABSTRACT DIAGRAMMATIC REASONING WITH MULTIPLEX GRAPH NETWORKS 8th International Conference on Learning Representations Iclr 2020,
  • Kazhdan, D., Dimanov, B., Jamnik, M., Liò, P. and Weller, A., 2020. Now You See Me (CME): Concept-based Model Extraction. CoRR, v. abs/2010.13233
  • Kazhdan, D., Dimanov, B., Jamnik, M. and Liò, P., 2020. MEME: Generating RNN Model Explanations via Model Extraction
  • Margeloiu, A., Simidjievski, N., Jamnik, M. and Weller, A., 2020. Improving Interpretability in Medical Imaging Diagnosis using Adversarial Training
  • Kiat, NQW., Wang, D. and Jamnik, M., 2020. Pairwise Relations Discriminator for Unsupervised Raven's Progressive Matrices
  • Scherer, P., Trȩbacz, M., Simidjievski, N., Shams, Z., Terre, HA., Liò, P. and Jamnik, M., 2020. Incorporating network based protein complex discovery into automated model construction
  • 2019

  • Wang, D., Jamnik, M. and Lio, P., 2019. Unsupervised and interpretable scene discovery with Discrete-Attend-Infer-Repeat
  • Słowik, A., Mangla, C., Jamnik, M., Holden, SB. and Paulson, LC., 2019. Bayesian Optimisation with Gaussian Processes for Premise Selection
  • Oliver, I., Howse, J., Stapleton, G., Shams, Z. and Jamnik, M., 2019. Exploring and conceptualising attestation Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 11530 LNAI
    Doi: 10.1007/978-3-030-23182-8_10
  • Scherer, P., Andres-Terre, H., Lio, P. and Jamnik, M., 2019. Decoupling feature propagation from the design of graph auto-encoders
  • Simidjievski, N., Bodnar, C., Tariq, I., Scherer, P., Andres Terre, H., Shams, Z., Jamnik, M. and Liò, P., 2019. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice. Front Genet, v. 10
    Doi: 10.3389/fgene.2019.01205
  • Bundy, A. and Jamnik, M., 2019. A Common Type of Rigorous Proof that Resists Hilbert’s Programme
    Doi: 10.1007/978-3-030-28483-1_3
  • Sato, Y., Stapleton, G., Jamnik, M. and Shams, Z., 2019. Human inference beyond syllogisms: an approach using external graphical representations. Cogn Process, v. 20
    Doi: 10.1007/s10339-018-0877-2
  • 2017

  • Linker, S., Burton, J. and Jamnik, M., 2017. Tactical diagrammatic reasoning Electronic Proceedings in Theoretical Computer Science, EPTCS, v. 239
    Doi: 10.4204/EPTCS.239.3
  • Stapleton, G., Jamnik, M. and Shimojima, A., 2017. What Makes an Effective Representation of Information: A Formal Account of Observational Advantages Journal of Logic, Language and Information, v. 26
    Doi: 10.1007/s10849-017-9250-6
  • 2015

  • Urbas, M., Jamnik, M. and Stapleton, G., 2015. Speedith: A Reasoner for Spider Diagrams Journal of Logic Language and Information, v. 24
    Doi: 10.1007/s10849-015-9229-0
  • 2014

  • Sarkar, A., Blackwell, AF., Jamnik, M. and Spott, M., 2014. Teach and try: A simple interaction technique for exploratory data modelling by end users Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc,
    Doi: 10.1109/VLHCC.2014.6883022
  • 2013

  • Stapleton, G., Jamnik, M. and Urbas, M., 2013. Designing inference rules for spider diagrams Proceedings of IEEE Symposium on Visual Languages and Human Centric Computing Vl Hcc,
    Doi: 10.1109/VLHCC.2013.6645238
  • 2008

  • Benzmüller, C., Sorge, V., Jamnik, M. and Kerber, M., 2008. Combined reasoning by automated cooperation Journal of Applied Logic, v. 6
    Doi: 10.1016/j.jal.2007.06.003
  • Jamnik, M., 2008. How can machines reason? Aisb 2008 Convention Communication Interaction and Social Intelligence Proceedings of the Aisb 2008 Symposium on Logic and the Simulation of Interaction and Reasoning,
  • 2006

  • Dennis, LA., Jamnik, M. and Pollet, M., 2006. On the comparison of proof planning systems: γcLAM Ωmega and IsaPlanner Electronic Notes in Theoretical Computer Science, v. 151
    Doi: 10.1016/j.entcs.2005.11.025
  • 2005

  • Jamnik, M. and Bundy, A., 2005. Psychological validity of schematic proofs LECT NOTES ARTIF INT, v. 2605
  • Bundy, A., Jamnik, M. and Fugard, A., 2005. What is a proof? PHILOS T ROY SOC A, v. 363
    Doi: 10.1098/rsta.2005.1651
  • 2003

  • Jamnik, M., Kerber, M., Pollet, M. and Benzmuller, C., 2003. Automatic learning of proof methods in proof planning LOGIC J IGPL, v. 11
    Doi: 10.1093/jigpal/11.6.647
  • Jamnik, M. and Janičić, P., 2003. Learning strategies for mechanised building of decision procedures Electronic Notes in Theoretical Computer Science, v. 86
    Doi: 10.1016/S1571-0661(04)80662-5
  • 1999

  • Jamnik, M., Bundy, A. and Green, I., 1999. On automating diagrammatic proofs of arithmetic arguments Journal of Logic Language and Information, v. 8
    Doi: 10.1023/A:1008323427489
  • Benzmüller, C., Jamnik, M., Kerber, M. and Sorge, V., 1999. Agent based mathematical reasoning Electronic Notes in Theoretical Computer Science, v. 23
    Doi: 10.1016/S1571-0661(05)82522-8
  • Book chapters

    2025

  • Espinosa Zarlenga, M., Sankaranarayanan, S., Andrews, JTA., Shams, Z., Jamnik, M. and Xiang, A., 2025. Efficient Bias Mitigation Without Privileged Information
    Doi: http://doi.org/10.1007/978-3-031-73220-1_9
  • 2023

  • Magister, LC., Barbiero, P., Kazhdan, D., Siciliano, F., Ciravegna, G., Silvestri, F., Jamnik, M. and Liò, P., 2023. Concept Distillation in Graph Neural Networks
    Doi: 10.1007/978-3-031-44070-0_12
  • Hemker, K., Shams, Z. and Jamnik, M., 2023. CGXplain: Rule-Based Deep Neural Network Explanations Using Dual Linear Programs
    Doi: 10.1007/978-3-031-39539-0_6
  • 2022

  • Cheng, PCH., Stockdill, A., Garcia Garcia, G., Raggi, D. and Jamnik, M., 2022. Representational Interpretive Structure: Theory and Notation
    Doi: 10.1007/978-3-031-15146-0_4
  • McGrath, S., Blake, A., Stapleton, G., Touloumis, A., Chapman, P., Jamnik, M. and Shams, Z., 2022. Evaluating Colour in Concept Diagrams
    Doi: 10.1007/978-3-031-15146-0_14
  • 2021 (Accepted for publication)

  • Stockdill, A., Raggi, D., Jamnik, M., Garcia, GG. and Cheng, PCH., 2021 (Accepted for publication). Considerations in Representation Selection for Problem Solving: A Review
    Doi: 10.1007/978-3-030-86062-2_4
  • Cheng, PCH., Garcia, GG., Raggi, D., Stockdill, A. and Jamnik, M., 2021 (Accepted for publication). Cognitive Properties of Representations: A Framework
    Doi: 10.1007/978-3-030-86062-2_43
  • 2021

  • Colarusso, F., Cheng, PCH., Garcia, GG., Raggi, D. and Jamnik, M., 2021. Observing Strategies of Drawing Data Representations
    Doi: 10.1007/978-3-030-86062-2_55
  • Jamnik, M., 2021. Logical Reasoning with Diagrams
    Doi: 10.7551/mitpress/11252.003.0078
  • Jamnik, M. and Cheng, P., 2021. Endowing Machines with the Expert Human Ability to Select Representations: Why and How
    Doi: 10.1093/oso/9780198862536.003.0018
  • Jamnik, M., 2021. Logical reasoning with diagrams
    Doi: 10.17863/CAM.81063
  • Jamnik, M., 2021. Human-Like Computational Reasoning: Diagrams and Other Representations
    Doi: 10.1007/978-3-030-77879-8_7
  • 2002

  • Jamnik, M., Bundy, A. and Green, I., 2002. On Automating Diagrammatic Proofs of Arithmetic Arguments
    Doi: 10.1007/978-1-4471-0109-3_18
  • Internet publications

    2020

  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M., Holden, SB. and Pal, C., 2020. Structural Inductive Biases in Emergent Communication
  • Zhao, Y., Wang, D., Gao, X., Mullins, R., Lio, P. and Jamnik, M., 2020. Probabilistic Dual Network Architecture Search on Graphs
  • Słowik, A., Gupta, A., Hamilton, WL., Jamnik, M. and Holden, SB., 2020. Towards Graph Representation Learning in Emergent Communication
  • Jamnik, M., Home Page
  • Books

    2016

  • Jamnik, M., Uesaka, Y. and Schwartz, SE., 2016. Preface
  • 2012

  • 2012. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-31223-6
  • 2012. Automated Reasoning
    Doi: 10.1007/978-3-642-31365-3
  • 2010

  • 2010. Diagrammatic Representation and Inference
    Doi: 10.1007/978-3-642-14600-8
  • Jamnik, M., Goel, A. and Narayanan, H., 2010. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Preface
  • 2010. Diagrammatic Representation and Inference, 6th International Conference, Diagrams 2010, Portland, OR, USA, August 9-11, 2010. Proceedings
  • Jamnik, M., Goel, AK. and Narayanan, NH., 2010. Preface

  • Read more at: Dr Guy Emerson

    Dr Guy Emerson

    I am a computational linguist. I develop models of human language, implement those models computationally, and test them using real-world data. My motivations are twofold: to shed light on what it means to know a language, and to push forward the limits of machine learning and artificial intelligence. For more information, see my homepage on Cambridge Language Sciences.



    Read more at: Chelsea Edmonds

    Chelsea Edmonds

    I recently completed my PhD (awaiting graduation in October 2024) in the Programming, Logic, and Semantics group in the Computer Laboratory at the University of Cambridge, where I was a member of Darwin College. My supervisor was Prof. Larry Paulson, and I was a member of the ALEXANDRIA project group team investigating large scale formal proof for the working mathematician.

    Theses / dissertations

  • Edmonds, C., 2024 (No publication date). Formalising Combinatorial Structures and Proof Techniques in Isabelle/HOL
    Doi: 10.17863/CAM.108886
  • Conference proceedings

  • Edmonds, C. and Paulson, LC., 2024. Formal Probabilistic Methods for Combinatorial Structures using the Lovász Local Lemma Cpp 2024 Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs Co Located with Popl 2024,
    Doi: 10.1145/3636501.3636946
  • Koutsoukou-Argyraki, A., Bakšys, M. and Edmonds, C., 2023. A Formalisation of the Balog-Szemerédi-Gowers Theorem in Isabelle/HOL Cpp 2023 Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs Co Located with Popl 2023,
    Doi: 10.1145/3573105.3575680
  • Edmonds, C. and Paulson, LC., 2022. Formalising Fisher's Inequality: Formal Linear Algebraic Proof Techniques in Combinatorics 13th International Conference on Interactive Theorem Proving (2022). 11:1-11:19,
  • Edmonds, C. and Paulson, LC., 2022. Formalising Fisher's Inequality: Formal Linear Algebraic Proof Techniques in Combinatorics Leibniz International Proceedings in Informatics Lipics, v. 237
    Doi: 10.4230/LIPIcs.ITP.2022.11
  • Edmonds, C. and Paulson, LC., 2021. A Modular First Formalisation of Combinatorial Design Theory Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 12833 LNAI
    Doi: 10.1007/978-3-030-81097-9_1
  • Journal articles

  • Edmonds, C., Koutsoukou-Argyraki, A. and Paulson, LC., 2023. Formalising Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions in Isabelle/HOL Journal of Automated Reasoning, v. 67
    Doi: 10.1007/s10817-022-09650-2
  • Theses / dissertations

    2024 (No publication date)

  • Edmonds, C., 2024 (No publication date). Formalising Combinatorial Structures and Proof Techniques in Isabelle/HOL
    Doi: 10.17863/CAM.108886
  • Conference proceedings

    2024

  • Edmonds, C. and Paulson, LC., 2024. Formal Probabilistic Methods for Combinatorial Structures using the Lovász Local Lemma Cpp 2024 Proceedings of the 13th ACM SIGPLAN International Conference on Certified Programs and Proofs Co Located with Popl 2024,
    Doi: 10.1145/3636501.3636946
  • 2023

  • Koutsoukou-Argyraki, A., Bakšys, M. and Edmonds, C., 2023. A Formalisation of the Balog-Szemerédi-Gowers Theorem in Isabelle/HOL Cpp 2023 Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and Proofs Co Located with Popl 2023,
    Doi: 10.1145/3573105.3575680
  • 2022

  • Edmonds, C. and Paulson, LC., 2022. Formalising Fisher's Inequality: Formal Linear Algebraic Proof Techniques in Combinatorics 13th International Conference on Interactive Theorem Proving (2022). 11:1-11:19,
  • Edmonds, C. and Paulson, LC., 2022. Formalising Fisher's Inequality: Formal Linear Algebraic Proof Techniques in Combinatorics Leibniz International Proceedings in Informatics Lipics, v. 237
    Doi: 10.4230/LIPIcs.ITP.2022.11
  • 2021

  • Edmonds, C. and Paulson, LC., 2021. A Modular First Formalisation of Combinatorial Design Theory Lecture Notes in Computer Science Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics, v. 12833 LNAI
    Doi: 10.1007/978-3-030-81097-9_1
  • Journal articles

    2023

  • Edmonds, C., Koutsoukou-Argyraki, A. and Paulson, LC., 2023. Formalising Szemerédi’s Regularity Lemma and Roth’s Theorem on Arithmetic Progressions in Isabelle/HOL Journal of Automated Reasoning, v. 67
    Doi: 10.1007/s10817-022-09650-2