Profinite λ -terms and parametricity

Vincent Moreau, joint work with Sam van Gool and Paul-André Melliès

Structure meets Power 2023, Boston June the $25^{\rm th}$, 2023

IRIF, Université Paris Cité, Inria Paris

Context of the talk

Regular languages have a central place in theoretical computer science. Profinite methods are well established for words using finite monoids.

Salvati proposed a notion of regular language of λ -terms using semantic tools.

Contribution: definition of profinite λ -terms using the CCC **FinSet** such that

profinite words are in bijection with profinite λ -terms of Church type

and living in harmony with Stone duality and the principles of Reynolds parametricity.

 \rightarrow This is the language side of the story presented at SmP 2022!

Regular languages

Regular languages of words

Let Σ be a finite alphabet, M be a finite monoid and $p: \Sigma \to M$ a set-theoretic function. We write \bar{p} for the associated monoid homomorphism $\Sigma^* \to M$.

For each subset $F \subseteq M$, the set

$$L_F := \{w \in \Sigma^* \mid \bar{p}(w) \in F\}$$

is a regular language. These sets assemble into the Boolean algebra

$$\mathsf{Reg}_{M}\langle \Sigma \rangle := \{L_F : F \subseteq M\}$$
.

When M ranges over all finite monoids, we get in this way all regular languages:

$$\operatorname{\mathsf{Reg}}\langle \Sigma
angle \ = \ \bigcup_{M} \operatorname{\mathsf{Reg}}_{M}\langle \Sigma
angle \ .$$

The Church encoding for words

Any natural number n can be encoded in the simply typed λ -calculus as

$$s: \Phi \Rightarrow \Phi, \ z: \Phi \vdash \underbrace{s(\dots(sz))}_{n \text{ applications}} : \Phi.$$

A natural number is just a word over a one-letter alphabet.

For example, the word abba over the two-letter alphabet $\{a, b\}$

$$a: o \Rightarrow o, b: o \Rightarrow o, c: o \vdash a(b(b(ac))): o.$$

is encoded as the closed λ -term

$$\lambda a. \lambda b. \lambda c. a(b(b(ac)))$$
 : $\underbrace{(o \Rightarrow o)}_{\text{letter } a} \Rightarrow \underbrace{(o \Rightarrow o)}_{\text{letter } b} \Rightarrow \underbrace{o}_{\text{input}} \Rightarrow \underbrace{o}_{\text{output}}$.

For any alphabet
$$\Sigma$$
, we define Church_Σ as $\underbrace{(\mathfrak{o} \Rightarrow \mathfrak{o}) \Rightarrow \ldots \Rightarrow (\mathfrak{o} \Rightarrow \mathfrak{o})}_{|\Sigma| \text{ times}} \Rightarrow \mathfrak{o} \Rightarrow \mathfrak{o}.$

Categorical interpretation

Let \mathbf{C} be a cartesian closed category and Q be one of its objects.

For any simple type A built from o, we define the object $[\![A]\!]_Q$ by induction as

$$\llbracket \mathbb{O} \rrbracket_Q := Q \quad \text{and} \quad \llbracket A \Rightarrow B \rrbracket_Q := \llbracket A \rrbracket_Q \Rightarrow \llbracket B \rrbracket_Q.$$

Using the cartesian closed structure, one defines an interpretation function

$$\llbracket - \rrbracket_Q : \Lambda_{\beta\eta} \langle A \rangle \longrightarrow \mathbf{C}(1, \llbracket A \rrbracket_Q) .$$

In **FinSet** which is cartesian closed, given a finite set Q used to interpret o, every word w over the alphabet $\Sigma = \{a, b\}$, seen as a λ -term, is interpreted as a point

$$\llbracket w \rrbracket_Q \in (Q \Rightarrow Q) \Rightarrow (Q \Rightarrow Q) \Rightarrow Q \Rightarrow Q$$

which describes how the word will interact with a deterministic automaton.

Regular languages of λ -terms

The notion of regular language of λ -terms has been introduced by Salvati.

For any finite set Q and any subset $F \subseteq [A]_Q$, we define the language

$$L_F := \{M \in \Lambda_{\beta\eta}\langle A \rangle \mid \llbracket M \rrbracket_Q \in F\}.$$

All the languages recognized by Q assemble into a Boolean algebra

$$\operatorname{\mathsf{Reg}}_Q\langle A \rangle \ := \ \left\{ L_F \mid F \subseteq \llbracket A \rrbracket_Q \right\} \,.$$

We can then make Q range over all finite sets, and we get the definition

$$\operatorname{\mathsf{Reg}}\langle A \rangle \quad := \quad \bigcup_Q \operatorname{\mathsf{Reg}}_Q \langle A \rangle \; .$$

Notice that $Reg\langle A\rangle$ has no reason to be a Boolean algebra for the moment.

A first observation using logical relations

If Q and Q' are two finite sets and $R \subseteq Q \times Q'$, for any simple type A we have

$$[\![A]\!]_R \subseteq [\![A]\!]_Q \times [\![A]\!]_{Q'}$$

In particular, if $f:Q \twoheadrightarrow Q'$ is a partial surjection, then so is $[\![A]\!]_f:[\![A]\!]_Q \twoheadrightarrow [\![A]\!]_{Q'}$.

Using the fundamental lemma of logical relations, one can deduce that

$$\text{if} \quad |Q| \ \geq \ |Q'| \ , \qquad \text{then} \quad \mathrm{Reg}_{Q'}\langle A \rangle \ \subseteq \ \mathrm{Reg}_Q\langle A \rangle \ .$$

This shows that the diagram

$$\left(\operatorname{Reg}_{Q'} \langle A \rangle \longrightarrow \operatorname{Reg}_{Q} \langle A \rangle \right)_{f:Q \to Q'}$$

is directed so we have

$$\operatorname{\mathsf{Reg}} \langle A \rangle = \operatorname{\mathsf{colim}}_Q \operatorname{\mathsf{Reg}}_Q \langle A \rangle$$
 .

Profiniteness

The monoid of profinite words

A **profinite word** u is a family (u_p) of elements

$$u_p \in M$$
 where M ranges over all finite monoids $p: \Sigma \to M$ ranges over all functions

such that for every function $p: \Sigma \to M$ and homomorphism $\varphi: M \to N$, with M and N finite monoids, we have $u_{\varphi \circ p} = \varphi(u_p)$.

The monoid $\widehat{\Sigma}^*$ of profinite words contains Σ^* as a submonoid, since any word $w=w_1\ldots w_n$, where each $w_i\in\Sigma$, induces a profinite word with components

$$p(w_1) \dots p(w_n)$$
 for all $p : \Sigma \to M$.

A profinite word which is not a word

For any finite monoid M there exists $n(M) \ge 1$ such that for all elements m of M, the element $m^{n(M)}$ is the idempotent power of m, which is unique.

Let a be any letter in Σ . The family of elements

$$u_p := p(a)^{n(M)}$$
 for all $p: \Sigma \to M$

is an idempotent profinite word written a^{ω} which is not a finite word.

There is a more general construction: if u is a profinite word, then one can build another profinite word u^{ω} which is idempotent.

Duality: words

Stone spaces, i.e. compact and totally separated spaces, and continuous maps form a category **Stone**. Boolean algebras and their homomorphisms form a category **BA**.

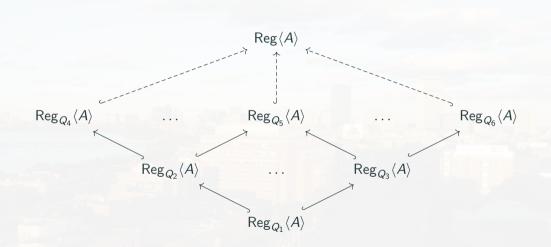
There is an equivalence of categories

Stone
$$\cong$$
 BA $^{\mathrm{op}}$.

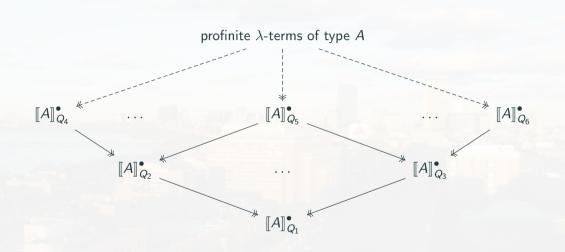
In particular, the monoid of profinite words $\widehat{\Sigma^*}$ has a natural topology such that

$$\widehat{\Sigma^*}$$
 is the Stone dual of $\operatorname{\mathsf{Reg}}\langle \Sigma
angle$.

Dualizing the diagram



Dualizing the diagram



Definition of profinite λ **-terms**

The Stone dual of the finite Boolean algebra $\operatorname{Reg}_Q\langle A\rangle$ is the set

$$\llbracket A \rrbracket_Q^{ullet} \ := \ \{\llbracket M \rrbracket_Q \mid M \in \Lambda_{\beta\eta} \langle A \rangle\} \subseteq \llbracket A \rrbracket_Q.$$

We define $\widehat{\Lambda}_{\beta\eta}\langle A\rangle$ as the limit of the the codirected diagram

$$\left(\llbracket A \rrbracket_f^{\bullet} : \llbracket A \rrbracket_Q^{\bullet} \longrightarrow \llbracket A \rrbracket_{Q'}^{\bullet} \right)_{f:Q \to Q'}$$

and thus, as expected,

$$\widehat{\Lambda}_{eta\eta}\langle A
angle$$
 is the Stone dual of $\operatorname{\mathsf{Reg}}\langle A
angle$.

Concretely: a **profinite** λ -**term** θ of type A is a family of elements $\theta_Q \in [\![A]\!]_Q^{\bullet}$ s.t.

$$\llbracket A
rbracket^{ullet}_f(heta_Q) = heta_{Q'}$$
 for every partial surjection $f: Q woheadrightarrow Q'$.

The CCC of profinite λ -terms

Theorem. The profinite λ -terms assemble into a CCC **ProLam** such that

$$\mathsf{ProLam}(A,B) := \widehat{\Lambda}_{\beta\eta}\langle A \Rightarrow B \rangle .$$

This means that we a compositional notion of profinite λ -calculus.

The interpretation of the simply typed λ -calculus into **ProLam** yields a functor

which sends a simply typed λ -term M of type A on the profinite λ -term

 $[\![M]\!]_Q$ where Q ranges over all finite sets.

This assignment is injective thanks to Statman's finite completeness theorem.

Profinite λ -terms of Church type are profinite words

The Church encoding gives a bijection

$$\Lambda_{\beta\eta}\langle\mathsf{Church}_{\Sigma}\rangle \cong \Sigma^*$$
.

This extends to the profinite setting. Indeed, profinite λ -terms of simple type Church $_{\Sigma}$ are exactly profinite words as we have a homeomorphism

$$\widehat{\Lambda}_{\beta\eta}\langle\mathsf{Church}_{\Sigma}\rangle \quad \cong \quad \widehat{\Sigma^*} \ .$$

The profinite λ -term Ω

We consider the profinite λ -term Ω of type $(\mathfrak{o} \Rightarrow \mathfrak{o}) \Rightarrow \mathfrak{o} \Rightarrow \mathfrak{o}$ such that

$$\Omega_Q$$
: $f \longmapsto \underbrace{f \circ \cdots \circ f}_{n \text{ times}}$

where f^n is the idempotent power of the element f of the finite monoid $Q \Rightarrow Q$.

Using Ω , for any Σ of cardinal n, one gets the profinite λ -term

$$\lambda u \lambda a_1 \dots \lambda a_n. \Omega \left(u \, a_1 \, \dots \, a_n \right) \quad : \quad \mathsf{Church}_{\Sigma} \Rightarrow \mathsf{Church}_{\Sigma}$$

which is the representation in the profinite λ -calculus of the operator

$$(-)^{\omega}$$
 : $\widehat{\Sigma^*}$ \longrightarrow $\widehat{\Sigma^*}$

on profinite words.

Reynolds parametricity

Parametric families

Let A be a simple type. A parametric family θ is a family of elements $\theta_Q \in [\![A]\!]_Q$ s.t.

$$(\theta_Q, \theta_{Q'}) \in \llbracket A
rbracket_R$$
 for all relations $R \subseteq Q \times Q'$.

Two differences with profinite λ -terms:

- ullet the element $heta_Q$ is not asked to be definable...
- ...but the family is parametric with respect to all relations.

A theorem and its partial converse

We first have a general theorem at every type.

Theorem. Every profinite λ -term is a parametric family.

This theorem admits the following converse at Church types.

Theorem. Every parametric family of type Church_{Σ} is a profinite λ -term.

The proof of the converse uses the unfolding terms, which generalize the constructors

 $\lambda s \lambda z.z$: Nat and $\lambda n \lambda s \lambda z.s (n s z)$: Nat \Rightarrow Nat

of the simple type $Nat := Church_1$ to any Church type.

Conclusion

Future work:

- study the situation in other locally finite CCCs (with Tito Nguyen);
- generalize the notion of unfolding term to any simple type;
- investigate the link with the notion of language over monads à la Bojańczyk.

Conclusion

Future work:

- study the situation in other locally finite CCCs (with Tito Nguyen);
- generalize the notion of unfolding term to any simple type;
- investigate the link with the notion of language over monads à la Bojańczyk.

Thank you for your attention!

Any questions?

Bibliography

- [Geh16] Mai Gehrke. "Stone duality, topological algebra, and recognition". In:

 Journal of Pure and Applied Algebra 220.7 (2016), pp. 2711–2747. ISSN: 0022-4049.

 DOI: https://doi.org/10.1016/j.jpaa.2015.12.007.
- [Mel17] Paul-André Melliès. "Higher-order parity automata". In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, 2017. 2017, pp. 1–12.
- [Pin] Jean-Eric Pin. "Profinite Methods in Automata Theory". In: 26th International Symposium on Theoretical Aspects of Computer Science STACS 2009. IBFI Schloss Dagstuhl. URL: https://hal.inria.fr/inria-00359677.
- [Sal09] Sylvain Salvati. "Recognizability in the Simply Typed Lambda-Calculus". In: 16th Workshop on Logic, Language, Information and Computation. Vol. 5514. Lecture Notes in Computer Science. Tokyo Japan: Springer, 2009, pp. 48–60.

Salvati generalizes Kleene

The Church encoding induces an isomorphism of Boolean algebras

$$\mathsf{Reg}\langle\mathsf{Church}_\Sigma\rangle \ \cong \ \mathsf{Reg}\langle\Sigma\rangle$$
 .

Indeed, every automaton ($Q, \delta, q_0, \mathsf{Acc}$) induces a subset

$$F := \left\{q \in \llbracket \mathsf{Church}_{\Sigma} \rrbracket_{Q} \mid q(\delta, q_0) \in \mathsf{Acc} \right\}$$

On the other hand, every $q \in \llbracket \mathsf{Church}_{\Sigma}
rbracket_Q$ induces a finite family of automata

$$(Q, \delta, q_0, \{q(\delta, q_0)\})$$
 for all $\delta : \Sigma \times Q \to Q$ and $q_0 \in Q$

which determines the behavior of q, and from which one gets finite monoids.

Profinite natural numbers

What does $\widehat{\{a\}^*}\cong\widehat{\mathbb{N}}$, the monoid of profinite natural numbers, look like?

Profinite natural numbers

What does $\widehat{\{a\}^*} \cong \widehat{\mathbb{N}}$, the monoid of profinite natural numbers, look like?

Profinite natural numbers

What does $\widehat{\{a\}^*} \cong \widehat{\mathbb{N}}$, the monoid of profinite natural numbers, look like?

$$\prod_{p \text{ prime}} \mathbb{Z}$$

where \mathbb{Z}_p is the ring of p-adic numbers, i.e. $\mathbb{Z}_p \cong \lim_n \mathbb{Z}/p^n\mathbb{Z}$.