Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

Melissa Antonelli Isabel Oitavem

Ugo Dal Lago D. Paolo Pistone

Davide Davoli

Structure Meets Power, Boston, June 25th 2023

Part I

Context and Motivations

Two Kinds of Zoos

Syntactic Classes

P PSPACE L		
coNP	NP EXP	•••

Semantic Classes

Two Kinds of Zoos

Semantic Classes

Two Kinds of Zoos

Semantic Classes

Back to ICC

Back to ICC

Back to ICC

Part II

Bounded Arithmetic

 $\mathsf{PA} \vdash \forall x. \exists ! y. A(x, y)$

▶ Peano Axioms.

 Induction holds in general and for every formula.

 $\mathsf{PA} \vdash \forall x. \exists ! y. A(x, y)$

- ▶ Peano Axioms.
- Induction holds in general and for every formula.

 $\mathsf{PA} \vdash \forall x. \exists ! y. A(x, y)$

 $f: \mathbb{S} \to \mathbb{S}$ $\models A(s, f(s))$ for every $s \in \mathbb{S}$

- Peano Axioms.
- Induction holds in general and for every formula.

 $\mathsf{PA} \vdash \forall x. \exists ! y. A(x, y) \qquad \Longrightarrow \qquad \begin{array}{c} f: \mathbb{S} \to \mathbb{S} \\ \models A(s, f(s)) \text{ for every } s \in \mathbb{S} \end{array}$

 $\llbracket \mathsf{PA} \rrbracket := \{ f : \mathbb{S} \to \mathbb{S} \mid f \text{ is provably total in } \mathsf{PA} \}$

- ▶ Peano Axioms.
- Induction holds in general and for every formula.

 $\mathsf{PA} \vdash \forall x. \exists ! y. A(x, y) \qquad \Longrightarrow \qquad \begin{array}{c} f: \mathbb{S} \to \mathbb{S} \\ \models A(s, f(s)) \text{ for every } s \in \mathbb{S} \end{array}$

- ► Induction **on notation**.
- Induction formulas are Σ₁^b, namely bounded existential quantifications of sharply bounded formulas.

► Arguably the most difficult step. $\llbracket \mathsf{S}_2^1 \rrbracket = \mathbf{F} \mathbf{P}$ ► Can be done in various ways, e.g. through cut-elimination process, or by realizability. S_{2}^{1} PDTM \mathcal{PR} Polytime Cobham's Bounded Re-Deterministic Turing Machines. cursion on Notation

Part III

Incepting Randomness into **BA**

PA **c**1 2

PA → MQPA S_2^1

PA ----- MQPA

- A conservative extension of PA [CIE2021].
- The unary predicate Flip models the access to an oracle providing fair random bits.
- The semantics of a formula is a measurable set of truth assignments to S
- All computable random functions from S to distributions over S can be represented in MQPA.

The Result

$\llbracket \mathsf{RS}_2^1 \rrbracket = \{ f : \mathbb{S} \to \mathbb{D}(\mathbb{S}) \mid f \text{ can be computed by a } \mathbf{PPTM} \}$

The Proof

The Proof

Part IV Towards **BPP**

Are We There, Yet?

Are We There, Yet? Actually, No!

$$f: \mathbb{S} \to \mathbb{D}(\mathbb{S}) \in \llbracket \mathsf{RS}_2^1 \rrbracket \quad \Leftrightarrow \quad \begin{array}{c} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ f = RandomFunction(A) \end{array}$$

$$f: \mathbb{S} \to \mathbb{D}(\mathbb{S}) \in \llbracket \mathsf{RS}_2^1 \rrbracket \quad \Leftrightarrow \quad \begin{array}{c} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ f = RandomFunction(A) \end{array}$$

-1

$$(L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_2^1 \rrbracket \iff \begin{array}{c} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ \models \forall x. \exists y. \mathbf{C}^{\frac{2}{3}} A(x, y) \\ L = Language(A) \end{array}$$

$$f: \mathbb{S} \to \mathbb{D}(\mathbb{S}) \in \llbracket \mathsf{RS}_2^1 \rrbracket \quad \Leftrightarrow \quad \begin{array}{c} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ f = RandomFunction(A) \end{array}$$

$$\begin{bmatrix} \text{Counting Quantifier} \\ \llbracket \mathbf{C}^{\frac{t}{s}}B \rrbracket = \begin{cases} 2^{\mathbb{S}} & \text{if } \mu\llbracket B \rrbracket \ge \llbracket t \rrbracket \\ \emptyset & \text{otherwise} \end{cases} \\ (L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_{2}^{1} \rrbracket \Leftrightarrow \qquad \models \forall x. \exists y. \mathbf{C}^{\frac{2}{3}}A(x, y) \\ L = Language(A) \end{cases}$$

$$f: \mathbb{S} \to \mathbb{D}(\mathbb{S}) \in \llbracket \mathsf{RS}_2^1 \rrbracket \quad \Leftrightarrow \quad \begin{array}{c} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ f = RandomFunction(A) \end{array}$$

-1

$$(L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_2^1 \rrbracket \iff \begin{array}{l} \mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y) \\ \models \forall x. \exists y. \mathbf{C}^{\frac{2}{3}} A(x, y) \\ L = Language(A) \end{array}$$

$$\label{eq:cross_state} \begin{split} & Theorem \\ [\![\mathbf{CRS}_2^1]\!] = \mathbf{BPP} \end{split}$$

Getting Rid of Counting Quantification From... $(L \subseteq S) \in [[CRS_2^1]] \Leftrightarrow \models \forall x. \exists y. C^{\frac{3}{2}}A(x, y)$ L = Language(A)

Getting Rid of Counting Quantification From... $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_2^1 \rrbracket \Leftrightarrow \models \forall x. \exists y. \mathbf{C}^2 A(x, y)$ L = Language(A)... То $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in [[\mathsf{T} \oplus \mathsf{RS}_2^1]] \quad \Leftrightarrow \quad \mathsf{T} \vdash \forall x. \exists y. \mathsf{TwoThirds}[A](x, y)$ L = Language(A)

Getting Rid of Counting Quantification
From...

$$RS_{2}^{1} \vdash \forall x.\exists ! y.A(x,y)$$

 $(L \subseteq \mathbb{S}) \in \llbracket CRS^{1} \rrbracket \Leftrightarrow \sqsubseteq \forall x.\exists ! y.A(x,y)$
 $\bullet We \text{ can internalize Error Bounds into plain arithmetic, making Flip to disappear.}$
 $\bullet This goes via threshold quantifiers.$
 $RS_{2}^{1} \vdash \forall x.\exists ! y.A(x,y)$
 $L \subseteq \mathbb{S}) \in \llbracket T \oplus RS_{2}^{1} \rrbracket \Leftrightarrow T \vdash \forall x.\exists y.TwoThirds[A](x,y)$
 $L = Language(A)$

Getting Rid of Counting Quantification From... $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_2^1 \rrbracket \iff \models \forall x. \exists y. \mathbf{C}^{\frac{2}{3}} A(x, y)$ L = Language(A)... То $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in [[\mathsf{T} \oplus \mathsf{RS}_2^1]] \quad \Leftrightarrow \quad \mathsf{T} \vdash \forall x. \exists y. \mathsf{TwoThirds}[A](x, y)$ L = Language(A)Theorem $\forall \mathsf{T}. \[\mathsf{T} \oplus \mathsf{RS}_2^1\] \subset \mathbf{BPP}$

Getting Rid of Counting Quantification From... $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in \llbracket \mathbf{CRS}_2^1 \rrbracket \iff \models \forall x. \exists y. \mathbf{C}^{\frac{2}{3}} A(x, y)$ L = Language(A)... То $\mathsf{RS}_2^1 \vdash \forall x. \exists ! y. A(x, y)$ $(L \subseteq \mathbb{S}) \in [[\mathsf{T} \oplus \mathsf{RS}_2^1]] \quad \Leftrightarrow \quad \mathsf{T} \vdash \forall x. \exists y. \mathsf{TwoThirds}[A](x, y)$ L = Language(A)Theorem $\forall \mathsf{T}. \[\mathsf{T} \oplus \mathsf{RS}_2^1\] \subset \mathbf{BPP}$

 $\begin{array}{l} Theorem\\ \texttt{PIT} \in \llbracket \mathsf{PA} \oplus \mathsf{RS}_2^1 \rrbracket \end{array}$

Wrapping Up

- ► ICC and bounded arithmetic can be seen as ways to *enumerate* complexity classes by simple enough languages, thus revealing their structure.
- ► Semantic classes like **BPP** are not known to be enumerable, due to the *error bound* intrinsic in their definitions.
- ▶ We can however enumerate *subclasses* of **BPP** by *internalizing* the error bound check.
- ▶ What would be the consequences of $\llbracket \mathsf{PA} \oplus \mathsf{RS}_2^1 \rrbracket = \mathbf{BPP}$?

Wrapping Up

- ► ICC and bounded arithmetic can be seen as ways to *enumerate* complexity classes by simple enough languages, thus revealing their structure.
- ► Semantic classes like **BPP** are not known to be enumerable, due to the *error bound* intrinsic in their definitions.
- ▶ We can however enumerate *subclasses* of **BPP** by *internalizing* the error bound check.
- What would be the consequences of $\llbracket \mathsf{PA} \oplus \mathsf{RS}_2^1 \rrbracket = \mathbf{BPP}$?

Thank you! Questions?