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Part I

Context and Motivations



Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}




Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}

P [P]
. g




Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}




Implicit Computational Complexity

Programs Languages
{O, 1}* 2{0,1}*

Recursively Enumerable
Languages



Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}




Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}

Efficient Programs



Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}

Complexity Class
Efficient Programs



Implicit Computational Complexity

Recursion-theoretically Intractable Languages
(e.g., X9-complete). "

Complexity Class
Efficient Programs



Implicit Computational Complexity

Programs Languages
{0,1} 2{0,1}




Implicit Computational Complexity

Recursion-theoretically Tractable Languages

Ezamples: bounded arithmetic, safe recursion, 2{();1}*
light logics, path orders, type systems, etc.
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Two Kinds of Zoos

Syntactic Classes
> Complete problems

exist;

p PSPACE

> Hierarchy theorems

hold.
coNP NP pxp
Semantic Classes
BPP
7PP BQP U Nothing is known about
complete problems nor
about hierarchy theo-

rems.
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INIT (z)
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Programs
() }*
How far can
we go here?

Back to ICC

Languages
2{0,1}"
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Bounded Arithmetic
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PA as a Way to Represent Functions

> Peano Axioms.

> Induction holds in general and for
every formula.

f:S—>S

!
PAFVr3ly Alz,y) = = A(s, f(s)) for every s € S

[PA] := {f:S— S| f is provably total in PA}

Simply too big a class for our purposes!
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Characterizing FP

S

> Induction on notation.

> Induction formulas are ¥%, namely bounded
existential quantifications of sharply bounded
formulas.



Characterizing FP

> Due to Buss [Buss86].

> Many variations
exists.

IS ~ FP
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Characterizing FP

> Arguably the most
difficult step.

> Can be done in various [[S%]] — FP

ways, e.g. through
cut-elimination process,
or by realizability.

/‘\ /\
S PR PDTM

“_ I~

Cobham’s Bounded Re- Polytime Deterministic
cursion on Notation Turing Machines.
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Incepting Randomness into BA
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PA

The Main Idea

- MQPA

A conservative extension of PA
[CIE2021].

The unary predicate Flip models the
access to an oracle providing fair
random bits.

The semantics of a formula is a
measurable set of truth assignments to

S

All computable random functions
from S to distributions over S can be
represented in MQPA.
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The Main Idea

NA/NNND
> The theory stays essentially
the same as Si, but Flip can

now occur in formulas.

> The class [RS3] naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

v
S) = RS,




The Result

[RS;] = {f:S —=D(S)| f can be computed by a PPTM}
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The Proof

> Based on “randomized” realizability.
> Closely follows [CookUrquhart1990].
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> Obtained by extending
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function accessing the
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> Generates functions
from S x 25 to S.



The PrOOf » POR captures functions in

> Based on “randomized” realizability. SSXQS;
> Closely follows [CookUrquhart1990]. > PPTM rather captures

. . N
functions in S%2".

/\/\

RS, POR PPTM

“_ U~

> Obtained by extending
PR with a basic
function accessing the
random bit oracle.

> Generates functions
from S x 25 to S.
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Towards BPP
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Are We There, Yet? Actually, No!

Programs Languages

* ~fn 1) *
Rs]_ {O’ 1} This is not even a class of
2 1. languages!
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BPP Through Counting Quantifiers

From. ..

| , RS) - Vz.3ly. Az, y)
f:S—=D(S) € [RSy] f = RandomFunction(A)

. To

RS; - Va.3ly. Az, y)
(LCS)€[CRS) <  E=Vz.3y.CiA(z,y)
L = Language(A)

Theorem

[CRS;] = BPP
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Getting Rid of Counting Quantification

From. . .
RS; - Va.3ly. Az, y)

(L ¢S\ e IORSIL L Ao Tas OF Al o y)
7 » We can internalize Error Bounds into plain
arithmetic, making Flip to disappear. 4)

> This goes via threshold quantifiers.
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Getting Rid of Counting Quantification

From. ..
RS; - Va.3ly. Az, y)
(LCS)€e[CRSY] <  |[Vzdy.CiA(z,y)
L = Language(A)

Ta
> Polynomial Identity

Testing. RS% = \V/I'El'yA(ﬂj', y)
(L - S| »In BPP, but'currently not VCCHyTWOThIrdS[A] (LU, y)
known to be in P. L = Language(A)

Theorem

VT[T @ RS;] C BPP

Theorem
PIT € [PA © RS)]



Wrapping Up

ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by
simple enough languages, thus revealing their structure.

Semantic classes like BPP are not known to be enumerable, due to the error bound
intrinsic in their definitions.

We can however enumerate subclasses of BPP by internalizing the error bound check.
What would be the consequences of [PA @ RS3] = BPP?
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ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by
simple enough languages, thus revealing their structure.

Semantic classes like BPP are not known to be enumerable, due to the error bound
intrinsic in their definitions.

We can however enumerate subclasses of BPP by internalizing the error bound check.
What would be the consequences of [PA @ RS3] = BPP?

Thank you! Questions?
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