
Enumerating Error Bounded
Polytime Algorithms

Through Arithmetical Theories
Melissa Antonelli Ugo Dal Lago Davide Davoli

Isabel Oitavem Paolo Pistone

Structure Meets Power, Boston, June 25th 2023

Part I

Context and Motivations

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

P JP K

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

JP K

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

JP K

Recursively Enumerable
Languages

Efficient Programs
Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
Languages

Efficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
Languages

Efficient Programs
Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
Languages

Efficient Programs
Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).

Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).
Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Implicit Computational Complexity

Programs Languages
{0, 1}∗ 2{0,1}

∗

Recursively Enumerable
LanguagesEfficient Programs

Complexity Class

Recursion-theoretically Intractable
(e.g., Σ0

3-complete).

Recursion-theoretically Tractable

Examples: bounded arithmetic, safe recursion,
light logics, path orders, type systems, etc.

Two Kinds of Zoos

P

NP

PSPACE L

EXP

BPP

ZPP

Syntactic Classes

Semantic Classes

BQP

· · ·

· · ·

coNP

I Complete problems
exist;

I Hierarchy theorems
hold.

Nothing is known about
complete problems nor
about hierarchy theo-
rems.

Two Kinds of Zoos

P

NP

PSPACE L

EXP

BPP

ZPP

Syntactic Classes

Semantic Classes

BQP

· · ·

· · ·

coNP

I Complete problems
exist;

I Hierarchy theorems
hold.

Nothing is known about
complete problems nor
about hierarchy theo-
rems.

Two Kinds of Zoos

P

NP

PSPACE L

EXP

BPP

ZPP

Syntactic Classes

Semantic Classes

BQP

· · ·

· · ·

coNP

I Complete problems
exist;

I Hierarchy theorems
hold.

Nothing is known about
complete problems nor
about hierarchy theo-
rems.

P

INIT (x)

FINAL(b)

x ∈ L ⇔ b

≤ p(|x|)

BPP
INIT (x)

FINAL(bn)

x ∈ L ⇒ Pr[bi] ≥ 2
3

≤ p(|x|)

FINAL(b1) · · ·

x 6∈ L ⇒ Pr[¬bi] ≥ 2
3

Not the same as

x ∈ L ⇔ Pr[bi] ≥
2

3

Not all efficient machines
compute a language!

BPP
INIT (x)

FINAL(bn)

x ∈ L ⇒ Pr[bi] ≥ 2
3

≤ p(|x|)

FINAL(b1) · · ·

x 6∈ L ⇒ Pr[¬bi] ≥ 2
3

Not the same as

x ∈ L ⇔ Pr[bi] ≥
2

3

Not all efficient machines
compute a language!

BPP
INIT (x)

FINAL(bn)

x ∈ L ⇒ Pr[bi] ≥ 2
3

≤ p(|x|)

FINAL(b1) · · ·

x 6∈ L ⇒ Pr[¬bi] ≥ 2
3

Not the same as

x ∈ L ⇔ Pr[bi] ≥
2

3

Not all efficient machines
compute a language!

Back to ICC

Programs Languages
{0, 1}∗ 2{0,1}

∗

BPP

How far can
we go here?

Back to ICC

Programs Languages
{0, 1}∗ 2{0,1}

∗

BPP

How far can
we go here?

Back to ICC

Programs Languages
{0, 1}∗ 2{0,1}

∗

BPP

How far can
we go here?

Part II

Bounded Arithmetic

PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!

PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!

PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!

PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!

PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!

Characterizing FP

JS12K

= FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K

= FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K = FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K = FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K = FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K = FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Characterizing FP

JS12K = FP

I Induction on notation.
I Induction formulas are Σb

1, namely bounded
existential quantifications of sharply bounded
formulas.

I Due to Buss [Buss86].
I Many variations

exists.

S12 PR PDTM

Cobham’s Bounded Re-
cursion on Notation

Polytime Deterministic
Turing Machines.

I Arguably the most
difficult step.

I Can be done in various
ways, e.g. through
cut-elimination process,
or by realizability.

Part III

Incepting Randomness into BA

The Main Idea

PA

S12

MQPA

?

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

The Main Idea

PA

S12

MQPA

?

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

The Main Idea

PA

S12

MQPA

?

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

The Main Idea

PA

S12

MQPA

RS12

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

The Main Idea

PA

S12

MQPA

RS12

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.

The Result

JRS1
2K = {f : S→ D(S) | f can be computed by a PPTM}

The Proof

RS12 POR PPTM

I Obtained by extending
PR with a basic
function accessing the
random bit oracle.

I Generates functions
from S× 2S to S.

I Based on “randomized” realizability.
I Closely follows [CookUrquhart1990].

I POR captures functions in
SS×2S ;

I PPTM rather captures
functions in SS×2N .

The Proof

RS12 POR PPTM

I Obtained by extending
PR with a basic
function accessing the
random bit oracle.

I Generates functions
from S× 2S to S.

I Based on “randomized” realizability.
I Closely follows [CookUrquhart1990].

I POR captures functions in
SS×2S ;

I PPTM rather captures
functions in SS×2N .

The Proof

RS12 POR PPTM

I Obtained by extending
PR with a basic
function accessing the
random bit oracle.

I Generates functions
from S× 2S to S.

I Based on “randomized” realizability.
I Closely follows [CookUrquhart1990].

I POR captures functions in
SS×2S ;

I PPTM rather captures
functions in SS×2N .

The Proof

RS12 POR PPTM

I Obtained by extending
PR with a basic
function accessing the
random bit oracle.

I Generates functions
from S× 2S to S.

I Based on “randomized” realizability.
I Closely follows [CookUrquhart1990].

I POR captures functions in
SS×2S ;

I PPTM rather captures
functions in SS×2N .

Part IV

Towards BPP

Are We There, Yet?

Actually, No!

Programs Languages
{0, 1}∗ 2{0,1}

∗

BPP?

RS12

This is not even a class of
languages!

Are We There, Yet? Actually, No!

Programs Languages
{0, 1}∗ 2{0,1}

∗

BPP?

RS12
This is not even a class of

languages!

BPP Through Counting Quantifiers
From. . .

f : S→ D(S) ∈ JRS1
2K ⇔ RS1

2 ` ∀x.∃!y.A(x, y)
f = RandomFunction(A)

. . . To

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

Counting Quantifier

JC
t
sBK =

{
2S if µJBK ≥ JtK

JsK
∅ otherwise

Theorem
JCRS1

2K = BPP

BPP Through Counting Quantifiers
From. . .

f : S→ D(S) ∈ JRS1
2K ⇔ RS1

2 ` ∀x.∃!y.A(x, y)
f = RandomFunction(A)

. . . To

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

Counting Quantifier

JC
t
sBK =

{
2S if µJBK ≥ JtK

JsK
∅ otherwise

Theorem
JCRS1

2K = BPP

BPP Through Counting Quantifiers
From. . .

f : S→ D(S) ∈ JRS1
2K ⇔ RS1

2 ` ∀x.∃!y.A(x, y)
f = RandomFunction(A)

. . . To

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

Counting Quantifier

JC
t
sBK =

{
2S if µJBK ≥ JtK

JsK
∅ otherwise

Theorem
JCRS1

2K = BPP

BPP Through Counting Quantifiers
From. . .

f : S→ D(S) ∈ JRS1
2K ⇔ RS1

2 ` ∀x.∃!y.A(x, y)
f = RandomFunction(A)

. . . To

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

Counting Quantifier

JC
t
sBK =

{
2S if µJBK ≥ JtK

JsK
∅ otherwise

Theorem
JCRS1

2K = BPP

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Getting Rid of Counting Quantification
From. . .

(L ⊆ S) ∈ JCRS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
L = Language(A)

. . . To

(L ⊆ S) ∈ JT⊕ RS1
2K ⇔

RS1
2 ` ∀x.∃!y.A(x, y)

T ` ∀x.∃y.TwoThirds[A](x, y)
L = Language(A)

I We can internalize Error Bounds into plain
arithmetic, making Flip to disappear.

I This goes via threshold quantifiers.

Theorem
∀T. JT⊕ RS1

2K ⊆ BPP

Theorem
PIT ∈ JPA⊕ RS1

2K

I Polynomial Identity
Testing.

I In BPP, but currently not
known to be in P.

Wrapping Up

I ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by
simple enough languages, thus revealing their structure.

I Semantic classes like BPP are not known to be enumerable, due to the error bound
intrinsic in their definitions.

I We can however enumerate subclasses of BPP by internalizing the error bound check.
I What would be the consequences of JPA⊕ RS12K = BPP?

Thank you! Questions?

Wrapping Up

I ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by
simple enough languages, thus revealing their structure.

I Semantic classes like BPP are not known to be enumerable, due to the error bound
intrinsic in their definitions.

I We can however enumerate subclasses of BPP by internalizing the error bound check.
I What would be the consequences of JPA⊕ RS12K = BPP?

Thank you! Questions?

	Context and Motivations
	Bounded Arithmetic
	Incepting Randomness into BA
	Towards BPP

