Enumerating Error Bounded Polytime Algorithms Through Arithmetical Theories

Melissa Antonelli Ugo Dal Lago Davide Davoli
Isabel Oitavem Paolo Pistone

erc

Structure Meets Power, Boston, June 25th 2023

Part I

Context and Motivations

Implicit Computational Complexity

Programs
$\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

Implicit Computational Complexity

Programs
$\{0,1\}^{*}$
Languages
$2^{\{0,1\}^{*}}$

Implicit Computational Complexity

Programs
$\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

[^0]
Implicit Computational Complexity

Programs
$\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

Implicit Computational Complexity

Implicit Computational Complexity

Programs
$\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

Implicit Computational Complexity

Two Kinds of Zoos

Syntactic Classes

P PSPACE
 L NP
 EXP

Semantic Classes

Two Kinds of Zoos

Syntactic Classes

- Complete problems exist;
- Hierarchy theorems hold.

Semantic Classes

Two Kinds of Zoos

Syntactic Classes

- Complete problems exist;
- Hierarchy theorems hold.

Semantic Classes

P

BPP

BPP

$$
\begin{array}{cllc}
x \in \mathcal{L} & \Rightarrow & \operatorname{Pr}\left[b_{i}\right] \geq \frac{2}{3} & \text { Not the same as } \\
x \notin \mathcal{L} & \Rightarrow & \operatorname{Pr}\left[\neg b_{i}\right] \geq \frac{2}{3} & x \in \mathcal{L} \quad \Leftrightarrow \quad \operatorname{Pr}\left[b_{i}\right] \geq \frac{2}{3}
\end{array}
$$

BPP

$$
\begin{aligned}
x \in \mathcal{L} & \Rightarrow & \operatorname{Pr}\left[b_{i}\right] \geq \frac{2}{3} \\
x \notin \mathcal{L} & \Rightarrow & \operatorname{Pr}\left[\neg b_{i}\right] \geq \frac{2}{3}
\end{aligned} \quad x \in \mathcal{L} \quad \Leftrightarrow \quad \operatorname{Pr}\left[b_{i}\right] \geq \frac{2}{3}
$$

Back to ICC

Programs $\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

Back to ICC

Programs $\{0,1\}^{*}$

Languages
$2^{\{0,1\}^{*}}$

Back to ICC

Part II

Bounded Arithmetic

PA as a Way to Represent Functions

$$
\mathrm{PA} \vdash \forall x \cdot \exists!y \cdot A(x, y)
$$

PA as a Way to Represent Functions

- Peano Axioms.
- Induction holds in general and for every formula.

PA $\vdash \forall x . \exists!y \cdot A(x, y)$

PA as a Way to Represent Functions

- Peano Axioms.
- Induction holds in general and for every formula.

PA $\vdash \forall x . \exists!y \cdot A(x, y) \quad \Longrightarrow$

$$
f: \mathbb{S} \rightarrow \mathbb{S}
$$

$$
\models A(s, f(s)) \text { for every } s \in \mathbb{S}
$$

PA as a Way to Represent Functions

- Peano Axioms.
- Induction holds in general and for every formula.

$\llbracket \mathrm{PA} \rrbracket:=\{f: \mathbb{S} \rightarrow \mathbb{S} \mid f$ is provably total in PA$\}$

PA as a Way to Represent Functions

- Peano Axioms.
- Induction holds in general and for every formula.

$\llbracket \mathrm{PA} \rrbracket:=\{f: \mathbb{S} \rightarrow \mathbb{S} \mid f$ is provably total in PA$\}$

Simply too big a class for our purposes!

Characterizing FP

$$
\llbracket \mathrm{S}_{2}^{1} \rrbracket
$$

Characterizing FP

$$
\llbracket S_{2}^{1} \rrbracket
$$

- Induction on notation.
- Induction formulas are Σ_{1}^{b}, namely bounded existential quantifications of sharply bounded formulas.

Characterizing FP

- Due to Buss [Buss86].
- Many variations exists.
$\left[S_{2}^{2}\right]=\mathrm{FP}$

Characterizing FP

$$
\llbracket \mathbb{S}_{2}^{1} \rrbracket=\mathbf{F P}
$$

Characterizing FP

$$
\llbracket \mathrm{S}_{2}^{1} \rrbracket=\mathrm{FP}
$$

Characterizing FP

$$
\llbracket \mathrm{S}_{2}^{1} \rrbracket=\mathrm{FP}
$$

Characterizing FP

- Arguably the most difficult step.
- Can be done in various ways, e.g. through

$$
\llbracket \mathrm{S}_{2}^{1} \rrbracket=\mathrm{FP}
$$ cut-elimination process, or by realizability.

Part III

Incepting Randomness into BA

The Main Idea

PA

 S_{2}^{1}

The Main Idea

$$
\begin{aligned}
& \mathrm{PA} \longrightarrow \mathrm{MQPA} \\
& \mathrm{~S}_{2}^{1}
\end{aligned} \longrightarrow
$$

The Main Idea

The Main Idea

The Main Idea

The Result

$\llbracket \mathrm{RS}_{2}^{1} \rrbracket=\{f: \mathbb{S} \rightarrow \mathbb{D}(\mathbb{S}) \mid f$ can be computed by a PPTM $\}$

The Proof

RS_{2}^{1}

The Proof

The Proof

- Based on "randomized" realizability.
- Closely follows [CookUrquhart1990].
RS_{2}^{1}

POR_{2}^{1}

- Obtained by extending $\mathcal{P} \mathcal{R}$ with a basic function accessing the random bit oracle.
- Generates functions from $\mathbb{S} \times 2^{\mathbb{S}}$ to \mathbb{S}.

The Proof

- $\mathcal{P O R}$ captures functions in
- Based on "randomized" realizability.
- Closely follows [CookUrquhart1990]. $\mathbb{S}^{S \times 2^{s}}$;
- PPTM rather captures functions in $\mathbb{S}^{\mathbb{S} \times 2^{\mathrm{N}}}$.
RS_{2}^{1}
- Obtained by extending $\mathcal{P R}$ with a basic function accessing the random bit oracle.
- Generates functions from $\mathbb{S} \times 2^{\mathbb{S}}$ to \mathbb{S}.

Part IV

Towards BPP

Are We There, Yet?

Are We There, Yet? Actually, No!

BPP Through Counting Quantifiers

From...

$$
f: \mathbb{S} \rightarrow \mathbb{D}(\mathbb{S}) \in \llbracket \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad f=\begin{gathered}
\mathrm{RS}_{2}^{1} \vdash \forall x \cdot \exists!y \cdot A(x, y) \\
\text { RandomFunction }(A)
\end{gathered}
$$

BPP Through Counting Quantifiers

From. . .

$$
f: \mathbb{S} \rightarrow \mathbb{D}(\mathbb{S}) \in \llbracket \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \begin{gathered}
\mathrm{RS}_{2}^{1} \vdash \forall x \cdot \exists!y \cdot A(x, y) \\
=\text { RandomFunction }(A)
\end{gathered}
$$

... To

$$
\begin{aligned}
(L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad & \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

BPP Through Counting Quantifiers

From...

$$
f: \mathbb{S} \rightarrow \mathbb{D}(\mathbb{S}) \in \llbracket \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \begin{gathered}
\mathrm{RS}_{2}^{1} \vdash \forall x . \exists \text { ! } y . A(x, y) \\
f=\text { RandomFunction }(A)
\end{gathered}
$$

$$
\begin{aligned}
& \text { Counting Quantifier } \\
& \llbracket \mathbf{C}^{\frac{t}{s}} B \rrbracket= \begin{cases}2^{\mathbb{S}} & \text { if } \mu \llbracket B \rrbracket \geq \llbracket t \rrbracket \\
\emptyset & \text { otherwise }\end{cases} \\
& \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

BPP Through Counting Quantifiers

From...

$$
\begin{aligned}
& f: \mathbb{S} \rightarrow \mathbb{D}(\mathbb{S}) \in \llbracket \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \mathrm{RS}_{2}^{1} \vdash \forall x . \exists!y \cdot A(x, y) \\
& f=\text { RandomFunction }(A) \\
& \text {... To } \\
& (L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

Theorem
$\llbracket \mathrm{CRS}_{2}^{1} \rrbracket=\mathrm{BPP}$

Getting Rid of Counting Quantification

From...

$$
\begin{aligned}
(L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad & \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

Getting Rid of Counting Quantification

From...

$$
\begin{aligned}
& \mathrm{RS}_{2}^{1} \vdash \forall x . \exists!y \cdot A(x, y) \\
& (L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\text { Language }(A) \\
& \text {... To } \\
& \mathrm{RS}_{2}^{1} \vdash \forall x . \exists!y \cdot A(x, y) \\
& (L \subseteq \mathbb{S}) \in \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \mathrm{~T} \vdash \forall x . \exists y \text {.TwoThirds }[A](x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

Getting Rid of Counting Quantification

From...

$$
\mathrm{RS}_{2}^{1} \vdash \forall x \cdot \exists!y \cdot A(x, y)
$$

- This goes via threshold quantifiers.

$$
\mathrm{RS}_{2} \forall x \cdot \exists!y \cdot A(x, y)
$$

$$
\begin{gathered}
(L \subseteq \mathbb{S}) \in \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \mathrm{~T} \vdash \forall x . \exists y . \mathrm{Two} \operatorname{Thirds}[A](x, y) \\
L=\operatorname{Language}(A)
\end{gathered}
$$

Getting Rid of Counting Quantification

From...

$$
\begin{aligned}
(L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket & \Leftrightarrow \quad \models \forall x \cdot \exists y \cdot \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& \ldots=\operatorname{Language}(A) \\
& \ldots \quad \mathrm{RS}_{2}^{1} \vdash \forall x \cdot \exists!y \cdot A(x, y)
\end{aligned}
$$

$(L \subseteq \mathbb{S}) \in \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \mathrm{~T} \vdash \forall x . \exists y$.TwoThirds $[A](x, y)$ $L=$ Language (A)

Theorem
 $\forall \mathrm{T} . \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \subseteq \mathrm{BPP}$

Getting Rid of Counting Quantification

From...

$$
\begin{aligned}
& (L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \models \forall x . \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\text { Language }(A) \\
& \text {... To } \\
& \mathrm{RS}_{2}^{1} \vdash \forall x \text {. ヨ! } y . A(x, y) \\
& (L \subseteq \mathbb{S}) \in \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \mathrm{~T} \vdash \forall x . \exists y \text {.TwoThirds }[A](x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

Theorem
 $\forall \mathrm{T} . \llbracket \mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \subseteq \mathrm{BPP}$

Theorem
 $\mathrm{PIT} \in \llbracket \mathrm{PA} \oplus \mathrm{RS}_{2}^{1} \rrbracket$

Getting Rid of Counting Quantification

From...

$$
(L \subseteq \mathbb{S}) \in \llbracket \mathrm{CRS}_{2}^{1} \rrbracket \quad \Leftrightarrow \quad \begin{aligned}
& \models x \cdot \exists y . \mathbf{C}^{\frac{2}{3}} A(x, y) \\
& L=\operatorname{Language}(A)
\end{aligned}
$$

Theorem
 $\forall \mathrm{T} .\left\lfloor\mathrm{T} \oplus \mathrm{RS}_{2}^{1} \rrbracket \subseteq \mathrm{BPP}\right.$

Theorem

$$
\mathrm{PIT} \in \llbracket \mathrm{PA} \oplus \mathrm{RS}_{2}^{1} \rrbracket
$$

Wrapping Up

- ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by simple enough languages, thus revealing their structure.
- Semantic classes like BPP are not known to be enumerable, due to the error bound intrinsic in their definitions.
- We can however enumerate subclasses of BPP by internalizing the error bound check.
- What would be the consequences of $\llbracket \mathrm{PA} \oplus \mathrm{RS}_{2}^{1} \rrbracket=\mathbf{B P P}$?

Wrapping Up

- ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by simple enough languages, thus revealing their structure.
- Semantic classes like BPP are not known to be enumerable, due to the error bound intrinsic in their definitions.
- We can however enumerate subclasses of BPP by internalizing the error bound check.
- What would be the consequences of $\llbracket \mathrm{PA} \oplus \mathrm{RS}_{2}^{1} \rrbracket=\mathbf{B P P}$?

Thank you! Questions?

[^0]: Efficient Programs

