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Part I

Context and Motivations
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Part II

Bounded Arithmetic



PA as a Way to Represent Functions

PA ` ∀x.∃!y.A(x, y)

I Peano Axioms.
I Induction holds in general and for
every formula.

=⇒ f : S→ S
|= A(s, f(s)) for every s ∈ S

JPAK := {f : S→ S | f is provably total in PA}

Simply too big a class for our purposes!
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I Can be done in various
ways, e.g. through
cut-elimination process,
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Incepting Randomness into BA



The Main Idea
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MQPA

?

I A conservative extension of PA
[CIE2021].

I The unary predicate Flip models the
access to an oracle providing fair
random bits.

I The semantics of a formula is a
measurable set of truth assignments to
S

I All computable random functions
from S to distributions over S can be
represented in MQPA.

I The theory stays essentially
the same as S12, but Flip can
now occur in formulas.

I The class JRS12K naturally
becomes a class of random
functions, namely functions
from S to distributions over S.
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The Result

JRS1
2K = {f : S→ D(S) | f can be computed by a PPTM}



The Proof

RS12 POR PPTM

I Obtained by extending
PR with a basic
function accessing the
random bit oracle.

I Generates functions
from S× 2S to S.

I Based on “randomized” realizability.
I Closely follows [CookUrquhart1990].

I POR captures functions in
SS×2S ;

I PPTM rather captures
functions in SS×2N .
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. . . To

(L ⊆ S) ∈ JCRS1
2K ⇔
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2 ` ∀x.∃!y.A(x, y)
|= ∀x.∃y.C 2

3A(x, y)
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Counting Quantifier

JC
t
sBK =

{
2S if µJBK ≥ JtK

JsK
∅ otherwise

Theorem
JCRS1

2K = BPP
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I ICC and bounded arithmetic can be seen as ways to enumerate complexity classes by
simple enough languages, thus revealing their structure.

I Semantic classes like BPP are not known to be enumerable, due to the error bound
intrinsic in their definitions.

I We can however enumerate subclasses of BPP by internalizing the error bound check.
I What would be the consequences of JPA⊕ RS12K = BPP?

Thank you! Questions?
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