

ryankortvelesy.github.io

github.com/Acciorocketships

RESEARCH AREAS

- **Graph Neural Networks**
- Transformers
- Multi-Robot Systems
- Reinforcement Learning
- Self-Supervised Learning
- **Mathematics**

PROJECTS

Generalised Aggregation

- Parametrises the space of aggregation functions, making them learnable
- Increases the representational complexity of GNN architectures, boosting performance on benchmarks
- Defines a "generalised distributive property", which facilitates time and space efficient algorithms

Set Autoencoder

- Introduces a set encoder and set decoder, which define a bijective mapping between sets and fixed-size embeddings
- Enables architectures that produce variable-sized, order-independent outputs
- Serves as the key component in an application-agnostic communication strategy-a GNN trained in an unsupervised manner to reduce partial observability

Integrable Neural Network

- Defines a method for computing analytic integrals over neural networks, allowing one to represent the exact integral of a learned function
- Proposes approaches for applying constraints to the learned function (e.g. positivity, bounded integrals, etc)
- Suggests several applications, including modelling continuous probability distributions, trajectory optimisation, and distance metrics

LANGUAGES / TOOLS

PyTorch JAX

- Python
- Java
- Matlab

Ryan Kortvelesy

Machine Learning Research Scientist

EDUCATION

2019-2023 University of Cambridge PhD, Computer Science Graph Neural Networks for Multi-Agent Learning **University of Pennsylvania** 2016-2019

BSE, Electrical Engineering Minors in Computer Science and Mathematics Graduated Summa Cum Laude

Software Development Engineer I Amazon - Seattle, WA

Intern JHU Applied Physics Lab, NASA - Laurel, MD **Summer 2018**

Summer 2019

Software	Engineering	Intern	

Summer 2017

SELECTED PUBLICATIONS

Mathworks - Natick, MA

Generalised f-Mean Aggregation for Graph Neural Networks Ryan Kortvelesy, Steven Morad, Amanda Prorok	NeurIPS 2023
Permutation-Invariant Set Autoencoders with Fixed-Size Embeddings for Multi-Agent Learning Ryan Kortvelesy, Steven Morad, Amanda Prorok	AAMAS 2023
Reinforcement Learning with Fast and Forgetful Memory Steven Morad, <u>Ryan Kortvelesy</u> , Amanda Prorok	NeurIPS 2023
POPGym: Benchmarking Partially Observable Reinforcement Learning Steven Morad, <u>Ryan Kortvelesy</u> , Matteo Bettini, Stephan Liwicki, Amanda Prorok	ICLR 2023
ModGNN: Expert Policy Approximation in Multi-Agent Systems with a Modular Graph Neural Network Architecture Ryan Kortvelesy, Amanda Prorok	ICRA 2021
Fixed Integral Neural Networks Ryan Kortvelesy	Technical Report 2023
QGNN: Value Factorisation with Graph Neural Networks Ryan Kortvelesy, Amanda Prorok	Under Review