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Complexity and Arithmetic

An function f ∶ Nk → N is provably recursive in T if:

• There is a Σ1-formula φf(x, y) defines f ;
• T ⊢ ∀x∃!yφf(x, y).

Logicians have considered many different arithmetic systems:

• PA, IΣn, EA, S
n
2 , …

Theorem (⋆)
Provably recursive functions in IΣ1 are exactly p.r. functions.

Aim: Provide a structural (categorical) perspective on this.
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Bridge from Categorical Logic

Every theory T has a syntactic category C[T] encoding it:
• Objects are formulas in T;

• Morphisms θ ∶ φ(x) → ψ(y) are provably functional formulas,

T ⊢ ∀xy(θ(x, y) → φ(x) ∧ ψ(y)) ∧∀x(φ(x) → ∃!yθ(x, y))
Proposition
Sending a model M to a functor φ↦ M[φ] gives an equivalence

Fun∗(C[T], Set) ≃ Mod(T).
2/7
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Strategy i

Look at a coherent theory of arithmetic T:

• Formulas only contain ⊤,⊥,∧,∨,∃, with sequents φ ⊢x ψ;

• Usual peano axioms plus the following induction rule:

φ(x) ⊢x ψ(x, 0) φ(x) ∧ ψ(x, y) ⊢x,y ψ(x, sy)
φ(x) ⊢x,y ψ(x, y)

You may think of T as the Π2-fragment of IΣ1.

In particular, use [n] to denote ⋀1≤i≤n xi = xi:

Observation
Morphisms from [n] to [1] in C[T] are exactly provably recursive
formulas in T (IΣ1).
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Strategy ii

According to categorical logic, the standard model N induces:

C[T] N // Set

And N maps every θ ∶ [n] → [1] to a provably recursive Nn → N.
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Strategy ii

The question now is whether we have a factorisation:

C[T]
##H

H
H

H
N // Set

PriM
- 

<<xxxxxxxxx

Here PriM morally is a category with:

• Objects being Σ1-sets (r.e. sets);

• Morphisms being p.r. functions.
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H
N // Set

PriM
- 

<<xxxxxxxxx

Here PriM morally is a category with:

• Objects being Σ1-sets (r.e. sets);

• Morphisms being p.r. functions.

Conclusion: (⋆) is equivalent to the above factorisation.
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Strategy iii

Technical Goal
To prove C[T] is initial among some class of categories that
include PriM and Set.

The relevant class is coherent categories equipped with a PNO:

• Coherent: categories that can interpret coherent logic;

• PNO: parametrised natural number object.

Examples:

• Set, PriM, any topos with a NNO, …
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Proof

Aim: Prove C[T] is initial in this class:

• The syntactic category of any coherent theory is coherent.

• Show [1] is a PNO in C[T].
After that, for any (E ,N), there is an essentially unique coherent
functor that maps [1] to N, because C[T] is “generated” by [1].
Slogan(⋆) is true precisely by the following structural reasons:

• Π2-fragment of IΣ1 presents the initial coh. cat. with a PNO.

• PriM is a coherent category with a PNO.
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Perspective

• Initiality is at the center of understanding T (IΣ1).
• Glueing argument (Tait computability) proves Σ1-completeness.
• Initiality also implies other constructive features of T.

• Other arithmetic theories, other categorical treatment of
complexity classes:

• PA presents the initial Boolean category with a PNO.
• J. Otto has a categorical treatment of PTIME.

Thanks for Listening!
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