Categorical Structure in Theory of Arithmetic^{*a*}

Lingyuan Ye Structure Meets Power, June 25, 2023

ILLC, University of Amsterdam

^aThis talk is based on an eponymous paper by me.

An function $f: \mathbb{N}^k \to \mathbb{N}$ is provably recursive in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\overline{x}, y)$ defines f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Logicians have considered many different arithmetic systems:

• PA, *Ι*Σ_{*n*}, EA, *S*^{*n*}₂, ...

Theorem (★)

Provably recursive functions in $I\Sigma_1$ are exactly p.r. functions.

Aim: Provide a *structural* (categorical) perspective on this.

An function $f: \mathbb{N}^k \to \mathbb{N}$ is provably recursive in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\overline{x}, y)$ defines f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Logicians have considered many different arithmetic systems:

• PA, *Ι*Σ_{*n*}, EA, *S*^{*n*}₂, ...

Theorem (*)

Provably recursive functions in $I\Sigma_1$ are exactly p.r. functions.

Aim: Provide a *structural* (categorical) perspective on this.

An function $f: \mathbb{N}^k \to \mathbb{N}$ is provably recursive in \mathbb{T} if:

- There is a Σ_1 -formula $\varphi_f(\overline{x}, y)$ defines f;
- $\mathbb{T} \vdash \forall \overline{x} \exists_! y \varphi_f(\overline{x}, y).$

Logicians have considered many different arithmetic systems:

• PA, *Ι*Σ_{*n*}, EA, *S*^{*n*}₂, ...

Theorem (*)

Provably recursive functions in $I\Sigma_1$ are exactly p.r. functions.

Aim: Provide a structural (categorical) perspective on this.

Every theory \mathbb{T} has a *syntactic category* $\mathcal{C}[\mathbb{T}]$ encoding it:

- Objects are formulas in T;
- Morphisms $\theta: \varphi(\overline{x}) \to \psi(\overline{y})$ are provably functional formulas,

 $\mathbb{T} \vdash \forall \overline{xy}(\theta(\overline{x},\overline{y}) \to \varphi(\overline{x}) \land \psi(\overline{y})) \land \forall \overline{x}(\varphi(\overline{x}) \to \exists_! \overline{y}\theta(\overline{x},\overline{y}))$

Proposition Sending a model *M* to a functor $\varphi \mapsto M[\varphi]$ gives an equivalence Fun^{*}($\mathcal{C}[\mathbb{T}]$, **Set**) \simeq Mod(\mathbb{T}). Every theory \mathbb{T} has a *syntactic category* $\mathcal{C}[\mathbb{T}]$ encoding it:

- Objects are formulas in \mathbb{T} ;
- Morphisms $\theta: \varphi(\overline{x}) \to \psi(\overline{y})$ are provably functional formulas,

$$\mathbb{T} \vdash \forall \overline{xy}(\theta(\overline{x},\overline{y}) \to \varphi(\overline{x}) \land \psi(\overline{y})) \land \forall \overline{x}(\varphi(\overline{x}) \to \exists_! \overline{y}\theta(\overline{x},\overline{y}))$$

Proposition

Sending a model *M* to a functor $\varphi \mapsto M[\varphi]$ gives an equivalence

 $\operatorname{Fun}^*(\mathcal{C}[\mathbb{T}], \operatorname{Set}) \simeq \operatorname{Mod}(\mathbb{T}).$

Strategy i

Look at a *coherent* theory of arithmetic \mathbb{T} :

- Formulas only contain $\top, \bot, \land, \lor, \exists$, with sequents $\varphi \vdash_{\overline{x}} \psi$;
- Usual peano axioms plus the following induction rule:

$$\frac{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}} \psi(\bar{\mathbf{x}}, \mathbf{0}) \quad \varphi(\bar{\mathbf{x}}) \land \psi(\bar{\mathbf{x}}, \mathbf{y}) \vdash_{\bar{\mathbf{x}}, \mathbf{y}} \psi(\bar{\mathbf{x}}, \mathbf{sy})}{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}, \mathbf{y}} \psi(\bar{\mathbf{x}}, \mathbf{y})}$$

You may think of \mathbb{T} as the Π_2 -fragment of $I\Sigma_1$.

In particular, use [n] to denote $\bigwedge_{1 \le i \le n} x_i = x_i$:

Observation Morphisms from [n] to [1] in $C[\mathbb{T}]$ are exactly provably recursive formulas in $\mathbb{T}(I\Sigma_1)$.

Strategy i

Look at a *coherent* theory of arithmetic \mathbb{T} :

- Formulas only contain $\top, \bot, \land, \lor, \exists$, with sequents $\varphi \vdash_{\overline{x}} \psi$;
- Usual peano axioms plus the following induction rule:

$$\frac{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}} \psi(\bar{\mathbf{x}}, \mathbf{0}) \quad \varphi(\bar{\mathbf{x}}) \land \psi(\bar{\mathbf{x}}, \mathbf{y}) \vdash_{\bar{\mathbf{x}}, \mathbf{y}} \psi(\bar{\mathbf{x}}, \mathbf{sy})}{\varphi(\bar{\mathbf{x}}) \vdash_{\bar{\mathbf{x}}, \mathbf{y}} \psi(\bar{\mathbf{x}}, \mathbf{y})}$$

You may think of \mathbb{T} as the Π_2 -fragment of $I\Sigma_1$.

In particular, use [n] to denote $\bigwedge_{1 \le i \le n} x_i = x_i$:

Observation

Morphisms from [n] to [1] in $C[\mathbb{T}]$ are exactly provably recursive formulas in $\mathbb{T}(I\Sigma_1)$.

According to categorical logic, the standard model $\ensuremath{\mathbb{N}}$ induces:

$$\mathcal{C}[\mathbb{T}] \xrightarrow{N} \mathbf{Set}$$

And *N* maps every $\theta : [n] \to [1]$ to a provably recursive $\mathbb{N}^n \to \mathbb{N}$.

The question now is whether we have a factorisation:

Here **PriM** morally is a category with:

- Objects being Σ_1 -sets (r.e. sets);
- Morphisms being p.r. functions.

The question now is whether we have a factorisation:

Here **PriM** morally is a category with:

- Objects being Σ_1 -sets (r.e. sets);
- Morphisms being p.r. functions.

Conclusion: (\star) is equivalent to the above factorisation.

Technical Goal

To prove $\mathcal{C}[\mathbb{T}]$ is *initial* among some class of categories that include **PriM** and **Set**.

The relevant class is coherent categories equipped with a PNO:

- Coherent: categories that can interpret coherent logic;
- *PNO*: parametrised natural number object.

Examples:

• Set, PriM, any topos with a NNO, ...

Technical Goal

To prove $\mathcal{C}[\mathbb{T}]$ is *initial* among some class of categories that include **PriM** and **Set**.

The relevant class is coherent categories equipped with a PNO:

- Coherent: categories that can interpret coherent logic;
- PNO: parametrised natural number object.

Examples:

• Set, PriM, any topos with a NNO, ...

Technical Goal

To prove $\mathcal{C}[\mathbb{T}]$ is *initial* among some class of categories that include **PriM** and **Set**.

The relevant class is coherent categories equipped with a PNO:

- Coherent: categories that can interpret coherent logic;
- PNO: parametrised natural number object.

Examples:

• Set, PriM, any topos with a NNO, ...

Aim: Prove $\mathcal{C}[\mathbb{T}]$ is initial in this class:

- The syntactic category of any coherent theory is coherent.
- Show [1] is a PNO in $\mathcal{C}[\mathbb{T}]$.

After that, for any (\mathcal{E}, N) , there is an essentially unique coherent functor that maps [1] to N, because $\mathcal{C}[\mathbb{T}]$ is "generated" by [1].

Slogan

(*) is true precisely by the following *structural* reasons:

- Π_2 -fragment of $I\Sigma_1$ presents the *initial* coh. cat. with a PNO.
- PriM is a coherent category with a PNO.

Proof

Aim: Prove $\mathcal{C}[\mathbb{T}]$ is initial in this class:

- The syntactic category of any coherent theory is coherent.
- Show [1] is a PNO in $\mathcal{C}[\mathbb{T}].$

After that, for any (\mathcal{E}, N) , there is an essentially unique coherent functor that maps [1] to N, because $\mathcal{C}[\mathbb{T}]$ is "generated" by [1].

Slogan

(*) is true precisely by the following *structural* reasons:

- Π_2 -fragment of $I\Sigma_1$ presents the *initial* coh. cat. with a PNO.
- **PriM** *is* a coherent category with a PNO.

Proof

Aim: Prove $\mathcal{C}[\mathbb{T}]$ is initial in this class:

- The syntactic category of any coherent theory is coherent.
- Show [1] is a PNO in $\mathcal{C}[\mathbb{T}]$.

After that, for any (\mathcal{E}, N) , there is an essentially unique coherent functor that maps [1] to *N*, because $\mathcal{C}[\mathbb{T}]$ is "generated" by [1].

Slogan

(*) is true precisely by the following *structural* reasons:

- Π_2 -fragment of $I\Sigma_1$ presents the *initial* coh. cat. with a PNO.
- **PriM** *is* a coherent category with a PNO.

Proof

Aim: Prove $\mathcal{C}[\mathbb{T}]$ is initial in this class:

- The syntactic category of any coherent theory is coherent.
- Show [1] is a PNO in $\mathcal{C}[\mathbb{T}]$.

After that, for any (\mathcal{E}, N) , there is an essentially unique coherent functor that maps [1] to *N*, because $\mathcal{C}[\mathbb{T}]$ is "generated" by [1].

Slogan

 (\star) is true precisely by the following *structural* reasons:

- Π_2 -fragment of $I\Sigma_1$ presents the *initial* coh. cat. with a PNO.
- PriM is a coherent category with a PNO.

Perspective

- Initiality is at the center of understanding $\mathbb{T}(I\Sigma_1)$.
 - Glueing argument (Tait computability) proves Σ_1 -completeness.
 - Initiality also implies other constructive features of $\mathbb{T}.$
- Other arithmetic theories, other categorical treatment of complexity classes:
 - PA presents the *initial* Boolean category with a PNO.
 - J. Otto has a categorical treatment of PTIME.

Thanks for Listening!

Perspective

- *Initiality* is at the center of understanding $\mathbb{T}(I\Sigma_1)$.
 - Glueing argument (Tait computability) proves Σ_1 -completeness.
 - Initiality also implies other constructive features of \mathbb{T} .
- Other arithmetic theories, other categorical treatment of complexity classes:
 - PA presents the *initial* Boolean category with a PNO.
 - J. Otto has a categorical treatment of PTIME.

Thanks for Listening!

Perspective

- *Initiality* is at the center of understanding $\mathbb{T}(I\Sigma_1)$.
 - Glueing argument (Tait computability) proves Σ_1 -completeness.
 - Initiality also implies other constructive features of \mathbb{T} .
- Other arithmetic theories, other categorical treatment of complexity classes:
 - PA presents the *initial* Boolean category with a PNO.
 - J. Otto has a categorical treatment of PTIME.

Thanks for Listening!