Concurrent Games over Relational Structures SmP, June 2021/23

Glynn Winskel Huawei Research Centre Edinburgh

Propose integration of descriptive complexity with a general theory of games which supports resource.

General reason: to take advantage of a *resourceful* model based on concurrent games and strategies, developed and well tested in semantics; it supports the computational, logical, quantitative aspects, so resource as number of pebbles, degree of parallelism, probabilistic and quantum resource, ...

Specific issues: Oddities, limitations, in presenting strategies as coKleisli maps, homomorphisms $D(A) \rightarrow B$: bias to one-sided games ; composition of strategies = composition of coKleisli maps, is not obviously the usual composition of strategies! When is it so? Where do the comonads come from?

Thanks to: A. Ó Conghaile, S. Huriot-Tattegrain, Y. Montacute

In 2-party games read Player vs. Opponent as Process vs. Environment. Follow the paradigm of Conway, Joyal to achieve compositionality.

Assume operations on (2-party) games:

Dual game G^{\perp} - interchange the role of Player and Opponent; Counter-strategy = strategy for Opponent = strategy for Player in dual game.

Parallel composition of games G || H.

A strategy (for Player) from a game G to a game H =strategy in $G^{\perp} || H$. A strategy (for Player) from a game H to a game K =strategy in $H^{\perp} || K$.

Compose by letting them play against each other in the common game H.

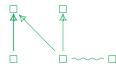
 \rightsquigarrow a category with identity w.r.t. composition, the Copycat strategy in $G^{\perp} || G$, so from G to G ...

Event structures - of the simplest kind

An event structure comprises $(E, \leq, \#)$, consisting of a set of events E

- partially ordered by $\leqslant,$ the causal dependency relation, and
- a binary irreflexive symmetric relation, the conflict relation, which satisfy $\{e' \mid e' \leq e\}$ is finite and $e # e' \leq e'' \implies e # e''$.

Two events are concurrent when neither in conflict nor causally related.



(drawn immediate conflict, and causal dependency)

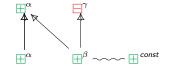
The configurations of an event structure E consist of those subsets $x \subseteq E$ which are Consistent: $\forall e, e' \in x$. $\neg(e \# e')$ and Down-closed: $\forall e, e'. e' \leq e \in x \implies e' \in x$.

Event-structure game w.r.t. a signature

A signature (Σ, C, V) comprises Σ a many-sorted relational signature including equality; a set C event-name constants; a set $V = \{\alpha, \beta, \gamma, \cdots\}$ of variables.

A (Σ, C, V) -signature game comprises an event structure $(E, \leq, \#)$ – its moves are the events E, with a polarity function pol : $E \rightarrow \{+, -\}$ s.t. no immediate conflict $\boxplus \frown \Box$ a variable/constant assignment var : $E \rightarrow C \cup V$ s.t. $e \operatorname{co} e' \Rightarrow \operatorname{var}(e) \neq \operatorname{var}(e')$ a winning condition WC, an assertion in the free logic over (Σ, C, V) .

WC: $\mathbb{E}(\gamma) \rightarrow \exists \beta. \ P(\alpha, \beta) \land Q(\beta)$ Existence predicate involves latest occurrence of variable in a configuration

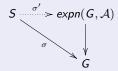


A good reference for free logic: Dana Scott, Identity and Existence. LNM 753, 1979

Games over a structure

A game over a structure (G, \mathcal{A}) is a (Σ, C, V) -game G and Σ -structure \mathcal{A} . It determines a (traditional) concurrent game expn (G, \mathcal{A}) in which each move with a variable \Box^{α} is expanded to its instances $\Box^{a_1} \frown \Box^{a_2} \frown \cdots$

A strategy (σ, ρ) in (G, A) assigns values in A to Player moves of the game G in answer to assignments of Opponent. Described as a map of event structures, it corresponds to a (traditional) concurrent strategy σ' in expn(G, A):



For a configuration x of S and a Σ -assertion φ , x $\models \varphi$ will mean latest assignments to variables in x make φ true. The strategy is winning means x \models WC for all +-maximal configs x of S.

Proposition. The events S of a strategy form a Σ -structure: $R_S(s_1, \dots, s_n)$ iff $x \models R(var(\sigma(s_1)), \dots, var(\sigma(s_n)))$, for some configuration x of S with $s_1, \dots, s_n \in x$. **Corollary.** (G, \mathcal{A}) determines a Σ -structure, on V-events $expn(G, \mathcal{A})_V$. It extends to a comonad over Σ -structures. Event strs. provide the interaction shapes with which to build comonads!

Constructions on signature games

Let G be a (Σ, C, V) -game. Its dual G^{\perp} is the (Σ, C, V) -game obtained by reversing polarities, i.e. the roles of Player and Opponent, with winning condition $\neg WC_G$.

Let G be a (Σ_G, C_G, V_G) -game. Let H be a (Σ_H, C_H, V_H) -game. Their parallel composition G || H is the $(\Sigma_G + \Sigma_H, C_G + C_H, V_G + V_H)$ -game comprising the parallel juxtaposition of event structures with winning condition $WC_G \vee WC_H$.

Let (G, \mathcal{A}) to (H, \mathcal{B}) be games over structures. A winning strategy from (G, \mathcal{A}) to (H, \mathcal{B}) comprises a winning strategy in the game $(G^{\perp} || H, \mathcal{A} + \mathcal{B})$ - its winning condition is $WC_G \to WC_H$.

Theorem. Obtain a (bi)category of winning strategies between games over structures: winning strategies compose with the copycat strategy as identity.

Its maps are reductions: a winning strategy σ from (G, A) to (H, B) reduces the problem of finding a winning strategy in (H, B) to finding a winning strategy in (G, A). A winning strategy in (G, A) is a winning strategy from (\emptyset, \emptyset) to (G, A); its composition with σ is a winning strategy in (H, B).

Spoiler-Duplicator games deconstructed

A Spoiler-Duplicator game is specified by a deterministic concurrent strategy

 $\begin{array}{c}
D \\
\downarrow_{\delta} \\
G^{\perp} \parallel G
\end{array}$

which is an idempotent comonad δ in the bicategory of signature games. Idea: D, itself a signature game, specifies the pattern of strategies from (G, A) to (G, B), whether they follow copycat, are all-in-one, ...

The Spoiler-Duplicator category SD_{δ} has maps $(\sigma, \rho) : \mathcal{A} \longrightarrow {}_{\delta}\mathcal{B}$ those deterministic strategies (σ, ρ) from (G, \mathcal{A}) to (G, \mathcal{B}) which factor openly through δ , i.e. so $S \xrightarrow[\sigma]{\sigma} D$

Characterising SD_{δ} (for $\delta: D \to G^{\perp} || G$)

Assume G has signature (Σ, V, C) . For Σ -structures A and B, define the partial expansion $expn^{-}(D, A + B)$ w.r.t. just Opponent moves. Define D(A, B) to be the set of its Player V-moves.

Strategies $\mathcal{A} \rightarrow \delta \mathcal{B}$ in SD $_{\delta}$ correspond to functions

 $h: D(\mathcal{A}, \mathcal{B}) \to \mathcal{A} + \mathcal{B}$

assigning elements of A and B to V-moves of Player. Composition à la Gol.

Assume G is one-sided, *i.e.* all its V-moves are of Player. Then,

$$h: D(\mathcal{A}) \to \mathcal{B}.$$

It has a coextension $h^{\dagger}: D(\mathcal{A}) \to D(\mathcal{B})$ (relies on the idempotence of δ).

Strategies $\mathcal{A} \longrightarrow_{\delta} \mathcal{B}$ in SD_{δ} correspond to $h : D(\mathcal{A}) \rightarrow \mathcal{B}$ which preserve winning conditions $W_{\mathcal{G}}$ across +-maximal configurations of D; they compose via coextension.

Strategies as coKleisli maps

 $D(\mathcal{A})$ inherits Σ -structure from \mathcal{A} — via the counit of δ each Player V-move e depends on an earlier corresponding assignment \bar{e} of Opponent: $R(e_1, \dots, e_k)$ in $D(\mathcal{A})$ iff $x \models R(\bar{e}_1, \dots, \bar{e}_k)$, some +-maxl config x of $D(\mathcal{A})$. Coextension preserves homomorphisms; $D(_{-})$ a comonad on Σ -structures.

When G is one-sided and δ is copycat, the comonad $D(_)$ is isomorphic to that of expn(G, _)_V on earlier slide — cf. SmP 2021 talk.

Often, depending on the winning conditions W_G , the coKleisli category of $D(_)$ is isomorphic to SD $_{\delta}$, for example in these cases:

for game G and δ as copycat for pebbling comonads [Abramsky, Dawar, Wang]

for game G and δ as copycat for simulation [Abramsky, Shah]

for game G and δ enforcing delay for all-in-one game for trace inclusion

for game G and δ enforcing delay for all-in-one game of the pebble-relation comonad [Montacute, Shah]

Examples: the k-pebble game and simulation game

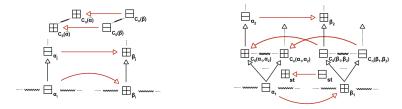


Figure: the *k*-pebble game (left) and the simulation game (right).

The *k*-pebble game $\delta_0 : \mathbb{C}_{G_0} \to G_0^{\perp} || G_0$ with

$$W_{G_0} \equiv \bigwedge_{0 \leq i \leq n} \mathbb{E}(C_i(\vec{\beta})) \to R_i(\vec{\beta}).$$

The simulation game $\delta_1 : \mathrm{CC}_{G_1} \to G_1^{\perp} \| G_1$ with

$$\begin{aligned} \mathcal{W}_{G_1} &\equiv \mathbb{E}(st) \to Start(\beta_1) \land \\ & \bigwedge_{0 \leqslant i \leqslant n} \mathbb{E}(\mathcal{C}_i(\beta_1, \beta_2)) \to \mathcal{R}_i(\beta_1, \beta_2) \land \bigwedge_{0 \leqslant i \leqslant n} \mathbb{E}(\mathcal{C}_i(\beta_2, \beta_1)) \to \mathcal{R}_i(\beta_2, \beta_1) \,. \end{aligned}$$

Example: the trace-inclusion game

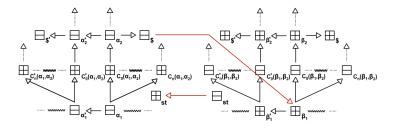


Figure: The trace-inclusion game

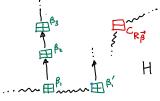
The trace-inclusion game $\delta_2: D \to G_2^\perp \| G_2$ with

$$W_{G_2} \equiv W_{G_1} \wedge \bigwedge_{0 \leqslant i \leqslant n} \mathbb{E}(C'_i(\beta_1, \beta_2)) \to R'_i(\beta'_1, \beta'_2)$$

$$\wedge \bigwedge_{0 \leqslant i \leqslant n} \mathbb{E}(C'_i(\beta_2, \beta_1)) \to R'_i(\beta'_2, \beta'_1)$$

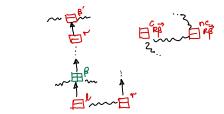
$$\wedge (\mathbb{E}(\beta'_1) \to \beta_1 \Longrightarrow \beta'_1) \wedge (\mathbb{E}(\beta'_2) \to \beta_2 \Longrightarrow \beta'_2) \wedge \mathbb{E}(\$) \wedge \mathbb{E}(\$').$$

Example, Homomorphism game SD_{α_H} where H is:



with winning condition $W_H \equiv \bigwedge_{R\vec{\beta}} \mathbb{E}(c_{R\vec{\beta}}) \to R(\vec{\beta})$ where $\vec{\beta}$ is a tuple of variables.

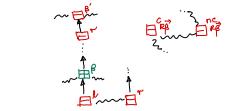
Example, Ehrenfeucht-Fraïssé games $SD_{\alpha_{EF}}$ where EF is:



with winning condition $W_{EF} \equiv (\bigwedge_{R\vec{\beta}} \mathbb{E}(c_{R\vec{\beta}}) \to R(\vec{\beta})) \land (\bigwedge_{R\vec{\beta}} \mathbb{E}(\mathbf{n}c_{R\vec{\beta}}) \to \neg R(\vec{\beta})).$ Example, Homomorphism game SD_{α_H} where *H* is:

with winning condition $W_H \equiv \bigwedge_{R\vec{\beta}} \mathbb{E}(c_{R\vec{\beta}}) \to R(\vec{\beta})$ where $\vec{\beta}$ is a tuple of variables.

Example, Ehrenfeucht-Fraïssé games $SD_{\alpha_{FF}}$ where EF is:



with winning condition $W_{EF} \equiv (\bigwedge_{R\vec{\beta}} \mathbb{E}(c_{R\vec{\beta}}) \to R(\vec{\beta})) \land (\bigwedge_{R\vec{\beta}} \mathbb{E}(nc_{R\vec{\beta}}) \to \neg R(\vec{\beta})).$