

(Joint with Tomás Jakl and Nihil Shah)

The composition method (a.k.a. the decomposition method)

$$\frac{\text{Typical Formulation}}{\text{If we have model equivalences:}}$$

$$A_1 \equiv e, B_1, \dots, A_n \equiv e_n B_n$$
Then
$$Op(A_1, \dots, A_n) \equiv e Op(B_1, \dots, B_n)$$

Example 5
1) If
$$A_1 \equiv FO B_1$$
 and $A_2 \equiv FO B_2$ then
 $A_1 \times A_2 \equiv FO B_1 \times B_2$
 $A_1 + A_2 \equiv FO B_1 + B_2$
2) The same for MSO and coproducts, but not products
3) (A non-example) If $A_1 \equiv M_L B_1$ and $A_2 \equiv M_L B_2$
then not necessarily $A_1 + A_2 \equiv M_L B_1 + B_2$

Game Compad Equivalences
For a game comonad
$$C$$
, we consider:
1) $A \rightleftharpoons B$ in $R(\sigma)_{C}$, denoted $A \equiv_{\exists^{+}C} B$ and $A \rightrightarrows_{\exists^{+}C} B$
2) $A \cong B$ in $R(\sigma)_{C}$, denoted $A \equiv_{\#C} B$
3) There is a span of open pathwise-embeddings in $R(\sigma)^{C}$
 R , denoted $A \equiv_{\#C} B$
FA FB
Example
For the Ehrenfeucht-Fraisse comonad E_{k}
1) Corresponds to equivalence in the \exists^{+} fragment of FO
2) Corresponds to equivalence in FO extended with combing
3) Corresponds to FO equivalence
All up to quartifier depth k.

Game Comonado and FVM Theorems

In the setting of game commands, there are three makeral classes of FVM theorem to consider:

1)
$$A_{1} \equiv_{\exists e_{1}} B_{1}, ..., A_{n} \equiv_{\exists e_{n}} B_{n}$$
 implies $O_{p}(A_{1}, ..., A_{n}) \equiv_{\exists t_{D}} O_{p}(B_{1}, ..., B_{n})$
2) $A_{1} \equiv_{\#e_{1}} B_{1}, ..., A_{n} \equiv_{\#e_{n}} B$ implies $O_{p}(A_{1}, ..., A_{n}) \equiv_{\#D} O_{p}(B_{1}, ..., B_{n})$
3) $A_{1} \equiv_{e_{1}} B_{1}, ..., A_{n} \equiv_{e_{n}} B_{n}$ implies $O_{p}(A_{1}, ..., A_{n}) \equiv_{D} O_{p}(B_{1}, ..., B_{n})$

Dealing with
$$\exists \exists t$$

(onsider binory H. If $A_1 \equiv \exists^* c_1 B_1$, $A_2 \equiv \exists^* c_2 B_2$,
we then have morphisms
 $C_1 A_1 \stackrel{t_1}{\longrightarrow} B_1$ and $C_2 A_2 \stackrel{t_2}{\longrightarrow} B_2$

Assuming H is functorial, we can form

$$H(\mathbb{L}_{1}A_{1},\mathbb{C}_{2}A_{2}) \xrightarrow{H(4_{1},f_{2})} H(B_{1},B_{2})$$

Dealing with
$$\exists_{\exists^{\dagger}}$$
 (Continued)
Assuming a family of morphisms, we can form the composite.
 $\widetilde{D}H(A_1, A_2) \xrightarrow{K_{A_1,A_2}} H(\mathbb{C}_1A_1, \mathbb{C}_2A_2) \xrightarrow{H(\frac{1}{2}, \frac{1}{2})} H(B_1, B_2)$

-

end so

$$H(A_1, A_2) \Longrightarrow_{\exists^{\dagger} D} H(B_1, B_2)$$

The General $\Rightarrow_{\exists^{\dagger}}$ and $\equiv_{\exists^{\dagger}}$ FVM Theorem

Theorem III.2. Let $\mathbb{C}_1, \ldots, \mathbb{C}_n$ and \mathbb{D} be comonads on categories $\mathcal{C}_1, \ldots, \mathcal{C}_n$, and \mathcal{D} respectively, and

 $H\colon \mathcal{C}_1\times\cdots\times\mathcal{C}_n\to\mathcal{D}$

a functor. If for every $A_1 \in obj(\mathcal{C}_1), \ldots, A_n \in obj(\mathcal{C}_n)$ there exists a morphism

 $\mathbb{D}(H(A_1,\ldots,A_n)) \xrightarrow{\kappa_{A_1,\ldots,A_n}} H(\mathbb{C}_1(A_1),\ldots,\mathbb{C}_n(A_n)) \quad (4)$ in \mathcal{D} , then

$$A_1 \Longrightarrow_{\exists^+ \mathbb{C}_1} B_1, \ldots, A_n \Longrightarrow_{\exists^+ \mathbb{C}_n} B_n$$

implies

$$H(A_1,\ldots,A_n) \Longrightarrow_{\exists^+ \mathbb{D}} H(B_1,\ldots,B_n)$$

The same result holds when replacing $\Rightarrow_{\exists^+\mathbb{C}}$ with $\equiv_{\exists^+\mathbb{C}}$.

Dealing with uncory
$$\equiv_{\#}$$

Assuming $A \equiv_{\#_{\mathbb{C}}} B$, there are morphisms:
 $f: \mathbb{C}A \rightarrow B$ and $g \ \mathbb{C}B \rightarrow A$
which are mutually inverse in the kleisli category of \mathbb{C} .

-

Continuing from the assumptions used for
$$\equiv_{\exists +}$$
, we would
like the composites:
 $D HA \xrightarrow{Ka} H CA \xrightarrow{H(q)} H B$ and $D H B \xrightarrow{KB} H CB \xrightarrow{H(q)} H A$
are mutually invoce in the kleisli category of D .

Suggests two axioms:
1)
$$\kappa_B \cdot (H(f) \cdot \kappa_A)^* = H(f^*) \cdot \kappa_A$$

2) $\epsilon_A \cdot \kappa_A = \epsilon_{H(A)}$

Dealing with unary
$$\equiv_{\#}$$
 kleisli Laws
The axions on the previous slide are equivalent to requiring
 $\mathbb{D} H(A) \xrightarrow{\kappa_A} H(\mathbb{C} A)$
constitute a kleisli law. These correspond to liftings:

N-any Kleisli laws:

$$D \circ H \xrightarrow{K} H \circ \mathcal{T}C_i$$

bijectively correspond to liftings:
 $\mathcal{T}C_i : \stackrel{H}{\longrightarrow} D_{\mathcal{D}}$
 $\mathcal{T}C_i : \stackrel{H}{\longrightarrow} D_{\mathcal{D}}$
 $\mathcal{T}C_i : \stackrel{H}{\longrightarrow} D_{\mathcal{D}}$

The general = FVM Theorem

Theorem IV.4. Let $\mathbb{C}_1, \ldots, \mathbb{C}_n$ and \mathbb{D} be comonads on categories $\mathcal{C}_1, \ldots, \mathcal{C}_n$ and \mathcal{D} , respectively, and $H: \prod_i \mathcal{C}_i \to \mathcal{D}$ a functor. If there exists a Kleisli law of type

$$\mathbb{D} \circ H \Rightarrow H \circ \prod_i \mathbb{C}_i$$

then

$$A_1 \equiv_{\#\mathbb{C}_1} B_1 \ \dots, \ A_n \equiv_{\#\mathbb{C}_n} B_n$$

implies

$$H(A_1,\ldots,A_n) \equiv_{\#\mathbb{D}} H(B_1,\ldots,B_n).$$

Wanted
$$F(A_1+A_2)$$
 l_1+l_2 R_1+R_2 r_1+r_2 Wanted $F(B_1+B_2)$
 FA_1+FA_2 FB_1+FB_2

The feet are the wrong form - we seem to be stuck.

<u>Notc</u>

There is a cononical map
$$F(A)+F(B) \longrightarrow F(A+B)$$
, but this will not
in general be an open pathwise embedding. If ow example was
for products, the corresponding cononical map would point in the
wrong direction.

Plan B - Direct Construction

We explicitly construct an interleaving bifunctor (-)S(-)This yields a span:

Recall for vector spaces X,Y and Z that a function

$$h: X \times Y \longrightarrow Z$$
is bilinear if
i) $\forall x \in X$ $h(x, -)$ is linear.
i) $\forall y \in Y$ $h(-, y)$ is linear.
Abo recall there is a tensor product of vector spaces
which is universal in that:

$$\frac{|\text{inear maps } X \otimes Y \longrightarrow Z}{\text{bilinear maps } X \times Y \longrightarrow Z}$$

Question : Where does this structure cone from abstractly ?

Vector Spaces as Eilenberg-Moore Algebras Let S be a semiring. There is a Set monad Vs with: · Vs (A) (finitely supported) formal sums of the form : \sum siai Unit n(a) = a (the trivial sum) • Multiplication : $\sum_{i} s_{i} \sum_{j} s_{j} a_{ij} \xrightarrow{\mu} \sum_{i} \sum_{j} s_{i} s_{j} a_{ij}$ Examples · For a ring Set "s is the category of S-semimodules · For a ring Set "R is the category of R-modules . For a field F Set" is the category of F vector spaces · Set Vin is the category of Abelian monoids · Set Vz is the category of Abelian groups

Examples
• List monad

$$(a, [b_1, ..., b_n]) \mapsto [(a, b_1), ..., (a, b_n)]$$

• For \mathbb{V}^{s}
 $(a, \sum_{i} s_i b_i) \mapsto \sum_{i} s_i (a, b_i)$

Commutative Monads

We can define a dual strength st' as:
st':=
$$T(A) \otimes B \xrightarrow{\cong} B \otimes T(A) \xrightarrow{st} T(B \otimes A) \xrightarrow{T(\cong)} T(A \otimes B)$$

$$\frac{\text{List}}{\text{dsb}([a_1,...,a_n],[b_1,...,b_n]):=[(a_1,b_1),...,(a_n,b_1),...,(a_1,b_m),...,(a_n,b_m)]} \\ \text{dst}'([a_1,...,a_n],[b_1,...,b_n]):=[(a_1,b_1),...,(a_1,b_n),...,(a_n,b_n)] \\ \text{So list is not commutative.} \\ \frac{\mathbb{V}^{5}}{\text{dst}(\sum_{i} s_{i}a_{i},\sum_{j} r_{j}b_{j}):=\sum_{i,j} r_{j} s_{i}(a_{i},b_{j})} \\ \text{dst}'(\sum_{i} s_{i}a_{i},\sum_{j} r_{j}b_{j}):=\sum_{i,j} s_{i}r_{j}(a_{i},b_{j}) \\ \text{dst}'(\sum_{i} s_{i}a_{i},\sum_{j} r_{j}b_{j}):=\sum_{i,j} s_{i}r_{j}(a_{i},b_{j}) \\ \text{So } \mathbb{V}^{5} \text{ is commutative iff S has a commutative multiplication} \\ \end{array}$$

A Set monad presented by (Σ, E) is commutative iff all the operations in Σ are homomorphisms write each other. This is unrelated to commutativity in the sense a+b=b+a.

Some standard results

Classical Results of Kock (See also Jacobs, Seal)
If TT is a commutative monad
i) The SMC structure lifts to a structure on
$$\mathcal{V}_{TT}$$

such that:
 $A \otimes B = A \otimes_{TT} B$ (on objects)
2) If \mathcal{V}^{T} has coequalizers of reflexive pairs the SMC
structure lifts to \otimes^{TT} on \mathcal{V}^{TT} such that
i) $F(A) \otimes^{T} F(B) \cong F(A \otimes B)$
ii) The tensor is universal in that:
 $\frac{\text{bimorphism}(\mu, \beta) \longrightarrow \mathcal{V}}{\text{morphisms}(\mu, \beta) \longrightarrow \mathcal{V}}$

Back to logic

Analising if we have a binary operation
$$\circledast$$
 such that:
i) \circledast induces an SAC structure on $R(\sigma)$
2) We can identify a strength for our compressed of interest C_{k}
3) Our compand is commutative
4) $R(\sigma)^{C_{k}}$ has equalizers of reflexive pairs
Then:
i) In $R(\sigma)_{C_{k}}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{2} = A_{1} \circledast_{A_{2}} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{1} \circledast_{C_{k}} B_{2} = B_{1} \circledast B_{2}$
 \circledast preserves \rightleftharpoons and \cong in $R(\sigma)_{C_{k}}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{2} = A_{1} \circledast_{A_{2}} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{1} \circledast_{C_{k}} B_{2} = B_{1} \circledast B_{2}$
 \circledast preserves \rightleftharpoons and \cong in $R(\sigma)_{C_{k}}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{2} = A_{1} \circledast_{A_{2}} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{1} \circledast_{B_{2}} \circledast_{B_{2}} \otimes B_{2}$
 \circledast preserves \rightleftharpoons and \cong in $R(\sigma)_{C_{k}}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{2} = A_{1} \circledast_{A_{2}} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{1} \circledast_{B_{2}} \otimes B_{2}$
 $\circledast preserves \rightleftharpoons and \cong in $R(\sigma)_{C_{k}}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{2} \Leftrightarrow A_{2} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{2} \circledast_{B_{2}} \otimes B_{2} \otimes B_{2}$
 $(f_{1}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}) \rightarrow A_{1} \And A_{1} \And A_{2} \otimes A_{2} \xrightarrow{f_{1} \circledast_{C_{k}}} B_{2} \otimes B_$$

Worst Tak Ever!

That was somewhat inderwhelming We need to identify and wify monoidal structure
We need to identify and wify a strangth such that we command is commutative
We need to verify a technical condition on R(r)^{CK} Even then: o Ue can only deal with binary operations o We can only work with a single base category (signature) o We can only work with a single command (logic) Questions 1) How much of this staff do we really need 3 1) What role do the various assumptions really plays 3) How far can we generalize 3

For a function
$$H: \mathbb{C} \longrightarrow \mathbb{D}$$
, monades $\mathfrak{S}: \mathbb{C} \longrightarrow \mathbb{C}$ and $\mathbb{T}: \mathbb{D} \longrightarrow \mathbb{D}$,
 \mathfrak{S} -algebra (A, κ) and \mathbb{T} -algebra (B, β) , and $\lambda: H\mathfrak{S}A \longrightarrow \mathbb{T}HA$,
 $h: H(A) \longrightarrow B$ is a bimorphism if:

Generalizing the classical results i) If D^T has coequalizers of reflexive pairs there exists an algebra. H(a) such that we have bijection: Bimorphisms or -> B Merphisms Ar -> B 2) If furthermore λ: H\$A → THA is natural in A, then Ĥ extends to a functor C*→D^T. 3) If also & satisfies: $\begin{array}{c} H \$^{2}A \xrightarrow{\lambda} TH \$A \xrightarrow{TT} T^{2}HA \\ H \mu & \textcircled{} & \textcircled{} & \swarrow \mu \\ H \$A \xrightarrow{\lambda} THA \end{array}$ $H \Rightarrow A \xrightarrow{\lambda} THA$ $H_{\eta} \xrightarrow{0} \eta$ Then $\widehat{H}F(A) \cong FH(A)$.

The main theorem

Up to introduction of a suitable factorisation system, some assumptions about paths, and one renaining condition (52') relating all three:

Theorem V.13. Let $\mathbb{C}_1, \ldots, \mathbb{C}_n$ and \mathbb{D} be comonads on categories $\mathcal{C}_1, \ldots, \mathcal{C}_n$ and \mathcal{D} , respectively, and $H: \prod_i \mathcal{C}_i \to \mathcal{D}$ a functor which preserves embeddings. If there exists a Kleisli law of type

$$\mathbb{D} \circ H \Rightarrow H \circ \prod_i \mathbb{C}_i$$

satisfying (S2'), then

$$A_1 \equiv_{\mathbb{C}_1} B_1, \ldots, A_n \equiv_{\mathbb{C}_n} B_n$$

implies

 $H(A_1,\ldots,A_n) \equiv_{\mathbb{D}} H(B_1,\ldots,B_n).$

Theorem VI.4. If \mathbb{C} preserves embeddings and if for any surjective morphism of coalgebras $(A, \alpha) \rightarrow (B, \beta)$ in $\mathsf{EM}(\mathbb{C})$, if (A, α) is a path then so is (B, β) , then

 $A_1 \equiv_{\mathbb{C}} A_2 \text{ and } B_1 \equiv_{\mathbb{C}} B_2$ implies $A_1 \times A_2 \equiv_{\mathbb{C}} B_1 \times B_2$