A categorical account of composition methods in logic
(Joint with Tomáš Jake and Nihil Shah)

The composition method (a.k.a. He decomposition method)

$\stackrel{?}{\underline{\underline{e}}}$

Feferman - Vanght-Mostowski Theorems
Typical Formulation
If we have model equivalences:

$$
A_{1} \equiv \ell_{1}, B_{1}, \ldots, A_{n} \equiv \ell_{n} B_{n}
$$

Then

$$
O_{p}\left(A_{1}, \ldots, A_{n}\right) \equiv_{l} O_{p}\left(B_{1}, \ldots, B_{n}\right)
$$

Examples

1) If $A_{1} \equiv_{F 0} B_{1}$ and $A_{2} \equiv$ Fo B_{2} then:

$$
\begin{aligned}
& \cdot A_{1} \times A_{2} \equiv_{F_{0}} B_{1} \times B_{2} \\
& - \\
& -A_{1}+A_{2} \equiv_{F 0} B_{1}+B_{2}
\end{aligned}
$$

2) The same for MSO and coproducts, but not products
3) (A non-example) If $A_{1} \equiv_{M L} B_{1}$ and $A_{2} \Xi_{M L} B_{2}$ then not necesswily $A_{1}+A_{2} \equiv_{M L} \quad B_{1}+B_{2}$

Game Comonad Equivalences
For a game comonad \mathbb{C}, we consider:

1) $A \rightleftarrows B$ in $R(\sigma)_{\mathbb{C}}$, denoted $A \equiv \Xi_{\exists^{+} \subset} B$ and $A \exists_{\exists^{+} \subset} B$
2) $A \cong B$ in $R(\sigma)_{\mathbb{C}}$, denoted $A \equiv_{\# \mathbb{C}} B$
3) There is a span of open pathwise-embeddings in $R(\sigma)^{\mathbb{C}}$

Example
For the Ehrenfencht-Fraisse conosad \mathbb{E}_{k}

1) Correponds to equivalence in the \exists^{+}fragment of $F O$
2) Corresponds to equivalence in FO extended with counting
3) Corresponds to FO equivalence

All up to quantifier depth k.

Game Comonads and FVM Theorems
In the setting of game comonads, there we three natural classes of FVM theorem to consider:

1) $A_{1} \equiv_{a^{+} \mathbb{C}_{1}} B_{1}, \ldots, A_{n} \equiv_{3^{+} C_{n}} B_{n}$ implies $O_{p}\left(A_{1}, \ldots, A_{n}\right) \equiv_{\exists+\mathbb{T}} O_{p}\left(B_{1}, \ldots, B_{n}\right)$
2) $A_{1} \equiv_{\# C_{1}}, B_{1}, \ldots, A_{n} \equiv_{\# C_{n}} B$ implies $O_{p}\left(A_{1}, \ldots, A_{n}\right) \equiv_{\# \mathbb{D}} O_{p}\left(B_{1}, \ldots, B_{n}\right)$
3) $A_{1} \equiv c_{1}, B_{1}, \ldots, A_{n} \equiv{c_{n}}_{n} B_{n}$ implies $O_{p}\left(A_{1}, \ldots, A_{n}\right) \equiv_{\infty} O_{p}\left(B_{1}, \ldots, B_{n}\right)$

Dealing with $\Rightarrow_{9^{+}}$
Consider binary H. If $A_{1} \equiv_{\exists+C_{1}} B_{1}, A_{2} \equiv_{\exists+C_{2}} B_{2}$,
we then have morphisms

$$
\mathbb{C}_{1} A_{1} \xrightarrow{t_{1}} B_{1} \text { and } \mathbb{C}_{2} A_{2} \xrightarrow{t_{2}} B_{2}
$$

Assuming H is factorial, we can form

$$
H\left(C_{1} A_{1}, \mathbb{C}_{2} A_{2}\right) \xrightarrow{H\left(C_{1}, t_{1}\right)} H\left(B_{1}, B_{2}\right)
$$

Dealing with $\Rightarrow_{3^{+}}$(Continued)
Assuming a family of maphhisus, we con form the composite.

$$
\overbrace{\mathbb{D} H\left(A_{1}, A_{2}\right) \xrightarrow{K_{m_{1}, M_{2}}^{K}} H\left(\mathbb{C}_{1} A_{1} \mathbb{C}_{2} A_{2}\right)}^{H\left(t_{1}, t_{)}\right.} H\left(B_{1}, B_{2}\right)
$$

and so

$$
H\left(A_{1}, A_{2}\right) \Rightarrow_{3^{+} \mathbb{D}} H\left(B_{1}, B_{2}\right)
$$

Theorem III.2. Let $\mathbb{C}_{1}, \ldots, \mathbb{C}_{n}$ and \mathbb{D} be comonads on categories $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$, and \mathcal{D} respectively, and

$$
H: \mathcal{C}_{1} \times \cdots \times \mathcal{C}_{n} \rightarrow \mathcal{D}
$$

a functor. If for every $A_{1} \in \operatorname{obj}\left(\mathcal{C}_{1}\right), \ldots, A_{n} \in \operatorname{obj}\left(\mathcal{C}_{n}\right)$ there exists a morphism

$$
\begin{equation*}
\mathbb{D}\left(H\left(A_{1}, \ldots, A_{n}\right)\right) \xrightarrow{\kappa_{A_{1}, \ldots, A_{n}}} H\left(\mathbb{C}_{1}\left(A_{1}\right), \ldots, \mathbb{C}_{n}\left(A_{n}\right)\right) \tag{4}
\end{equation*}
$$

in \mathcal{D}, then

$$
A_{1} \Rightarrow_{\exists+\mathbb{C}_{1}} B_{1}, \ldots, A_{n} \Rightarrow_{\exists+\mathbb{C}_{n}} B_{n}
$$

implies

$$
H\left(A_{1}, \ldots, A_{n}\right) \Rightarrow_{\exists+\mathbb{D}} H\left(B_{1}, \ldots, B_{n}\right)
$$

The same result holds when replacing $\Rightarrow_{\exists+\mathbb{C}}$ with $\equiv_{\exists+\mathbb{C}}$.

Dealing with uncoy $\equiv_{\text {\# }}$
Assuming $A \equiv_{\# \mathbb{C}} B$, there are morphisms:

$$
f: \mathbb{C} A \rightarrow B \text { and } g \mathbb{C} B \rightarrow A
$$

which are mutually inverse in the kleisli category of \mathbb{C}.
Continuing from the assumptions used for \equiv_{3+}, we would like H_{c} composites.

$$
\mathbb{D} H A \xrightarrow{\mathrm{KQ}_{2}} H \mathbb{C A} \xrightarrow{H(t)} H B \text { and } \mathbb{D} H B \xrightarrow{\mathrm{~K}_{0}} H \mathbb{C B} \xrightarrow{H(g)} H_{A}
$$

are mutually muse in the kereisli category of \mathbb{D}.

Dealing with uncoy $\equiv_{\text {\# }}$

$$
\begin{aligned}
& \left(H(g) \cdot k_{B}\right) \cdot\left(H(f) \cdot k_{A}\right) \\
= & \langle\text { definition }\rangle \\
& H(g) \cdot k_{B} \cdot\left(H(f) \cdot k_{A}\right)^{*} \\
= & \langle Z\rangle \\
& H(g) \cdot H\left(f^{*}\right) \cdot k_{A} \\
= & \langle\text { functoriality }\rangle \\
& H\left(g \cdot f^{*}\right) \cdot k_{A} \\
= & \langle\text { definition }\rangle \\
& H(g \cdot f) \cdot k_{A} \\
= & \langle\text { assumption }\rangle \\
& \varepsilon_{A} \cdot k_{A} \\
= & \langle ?\rangle \\
& \varepsilon_{H(A)}
\end{aligned}
$$

Suggests two axioms:

1) $k_{B} \cdot\left(H(f) \cdot k_{A}\right)^{*}=H\left(f^{*}\right) \cdot k_{A}$
2) $\varepsilon_{A} \cdot k_{A}=\varepsilon_{H(A)}$

Dealing with unary $\equiv_{\text {te }}$, kleisli Laws
The axioms on the previous slide are equivalent to requiring

$$
\left(\mathbb{D} H(A) \xrightarrow{k_{A}} H(\mathbb{C} A)\right.
$$

constitute a kkisisi law. These correspond to liftings:

Dealing with Ex, the gewoul case
n-ary kleisli laws:

$$
\mathbb{D} \circ H \stackrel{K}{\Longrightarrow} H \circ \mathbb{T}_{i} \mathbb{C}_{i}
$$

bjectively comespond to liftungs:

The general $\equiv_{\#}$ FVM Theorem

Theorem IV.4. Let $\mathbb{C}_{1}, \ldots, \mathbb{C}_{n}$ and \mathbb{D} be comonads on categories $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ and \mathcal{D}, respectively, and $H: \prod_{i} \mathcal{C}_{i} \rightarrow \mathcal{D} a$ functor. If there exists a Kleisli law of type

$$
\mathbb{D} \circ H \Rightarrow H \circ \prod_{i} \mathbb{C}_{i}
$$

then

$$
A_{1} \equiv \# \mathbb{C}_{1} B_{1} \ldots, A_{n} \equiv \# \mathbb{C}_{n} B_{n}
$$

implies

$$
H\left(A_{1}, \ldots, A_{n}\right) \equiv_{\# \mathbb{D}} H\left(B_{1}, \ldots, B_{n}\right)
$$

$F O_{k}$ Equivalence and Coproducts
Given spans:

and

we would like to construct a span

Focus: Spans of the right shape, ignoring open pathwise embedding issues

Plan A - Use Coproducts
$R(\sigma)^{\mathbb{E}_{k}}$ has coproducts, so we can form the span:

The feet are the wrong form - we seem to be stuck.
Dote
There is a canonical map $F(A)+F(B) \longrightarrow F(A+B)$, but this will not in general be on open pathnise embedding. It ow example was for products, the corresponding canonical map would point in the wrong direction.

Plan B - Direct Construction
We explicitly construct an 'interleaving' bifuctor (-) S(-) This yields a span:

Questions

1) Where did this cone from?
2) What is the general pattern and its scope?

Bilinear Maps
Recall for vector spaces X, Y and Z that a function

$$
h: X \times Y \longrightarrow Z
$$

is bilinear if

1) $\forall x \in X \quad h(x,-)$ is linear.
2) $\forall y \in Y \quad h(-, y)$ is linear.

Also recall there is a tensor product of vector spaces which is universal in that:
$\xrightarrow[\text { bilinear maps } X \times Y \longrightarrow Z]{\text { linear maps } X \odot Y \longrightarrow Z}$

Question: Where does this structure cone from abstractly?

Vector Spaces as Eilenberg-Moore Abeberas
Let S be a semiring. There is a Set monad V_{s} with:

- V_{s} (A) (finitely supported) formal sums of the form:

$$
\sum_{i} s_{i} a_{i}
$$

- Unit $\eta(a)=a$ (the trivial sum)
- Multiplication :

$$
\sum_{i} s_{i} \sum_{j} s_{j} a_{i j} \stackrel{\mu}{\mapsto} \sum_{i} \sum_{j} s_{i} s_{j} a_{i j}
$$

Examples

- For arbitrary S Set ${ }^{V / S}$ is the category of S-semimodules
- For a ring Set V_{R} is the category of R-modules
- For a field F Sot ${ }^{w F}$ is the category of F vector spaces
- Set ${ }^{2 \pi}$ is the category of Abelian monoids
- Set V_{z} is the category of Abelian groups

Special Classes of Monads
Definitions

1) A symmetric monoidal category (SMC) is a category S with:

- A unit object I
- A bifuctor $0: \nu \times V \rightarrow V$
- Natural isomorphisms:

$$
I \otimes A \cong A \quad A \oplus I \cong A \quad(A \otimes B) \otimes C \cong A \otimes(B \otimes C) \quad A \otimes B \cong B \otimes A
$$

Subject to several coherence axioms
2) A strength for a functor $T: V \rightarrow C$ on on $S M C$ is a nit.

$$
\text { st : } A \otimes T(B) \longrightarrow T(A \otimes B)
$$

Subject to coherence axioms writ. the SMC structure.
A strong functor is a functor with a strength
3) A strong monad is a monad (π, η, μ) such that st satisfies additional coherence axioms wart. η and μ.

Set Monads are all strong
Canonical strength for (Set, $x, 1$)
For Set monad T define:

$$
\begin{aligned}
s t: & A \times \pi B \\
(a, t) & \longmapsto \pi(A \times B) \\
& \longrightarrow\left(\lambda_{y} \cdot(a, y)\right)(t)
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { - List monad } \\
& \text { (} \left.a,\left[b_{1}, \ldots, b_{n}\right]\right) \mapsto\left[\left(a, b_{1}\right), \ldots,\left(a, b_{n}\right)\right] \\
& \text { For } \left.V^{s}, \sum_{i} s_{i} b_{i}\right) \mapsto \sum_{i} s_{i}\left(a, b_{i}\right)
\end{aligned}
$$

Commutative Monads

We con define a dual sbength $s^{\prime \prime}$ as:

$$
s t^{\prime}:=\pi(A) \oplus B \xrightarrow{\cong} B \oplus \pi(A) \xrightarrow{s t} \pi(B \otimes A) \xrightarrow{\pi(\cong)} \pi(A \oplus B)
$$

We can then define two double sbrugth maps:

$$
\begin{aligned}
& d s t:=\pi A \otimes \pi B \xrightarrow{s t} \pi(\pi A \otimes B) \xrightarrow{\Pi_{s t}} \pi^{2}(A \otimes B) \xrightarrow{\mu} \pi(A \otimes B) \\
& d s t^{\prime}:=\pi A \otimes \pi B \xrightarrow{s t^{\prime}} \pi(A \otimes \pi B) \xrightarrow{\Pi_{s t}} \pi^{2}(A \otimes B) \xrightarrow{\mu} \pi(A \otimes B)
\end{aligned}
$$

A monad is commutative if $d s t=d s t^{\prime}$

Commutativity for Set Monads
List

$$
\begin{aligned}
& \operatorname{dst}\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right):=\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{1}\right), \ldots,\left(a_{1}, b_{m}\right), \ldots,\left(a_{n}, b_{m}\right)\right] \\
& \operatorname{dst}\left(\left[a_{1}, \ldots, a_{n}\right],\left[b_{1}, \ldots, b_{n}\right]\right):=\left[\left(a_{1}, b_{1}\right), \ldots,\left(a_{1}, b_{m}\right), \ldots,\left(a_{n}, b_{1}\right), \ldots,\left(a_{n}, b_{m}\right)\right]
\end{aligned}
$$

S_{0} list is not commutative.

$$
\begin{aligned}
& V^{3} \\
& \operatorname{dst}\left(\sum_{i} s_{i} a_{i}, \sum_{j} r_{j} b_{j}\right):=\sum_{i j} r_{j} s_{i}\left(a_{i}, b_{j}\right) \\
& \operatorname{dst} t^{\prime}\left(\sum_{i} s_{i} a_{i}, \sum_{j} r_{j} b_{j}\right):=\sum_{i j} s_{i} r_{j}\left(a_{i}, b_{j}\right)
\end{aligned}
$$

So V^{s} is commutative of $S^{i j}$ has a commutative multiplication
Algebraic Intuition
A Set monad presented by (Σ, E) is commutative it all the opoations in $\sum_{\text {ar }}$ homomorphisms writ. each other. This is unrelated to commutativity in the sense $a+b=b+a$.

Bilinewity Abstractly (Finally!)
Bimorphisms
For a commutative monad T, and algebras $(A, \alpha),(B, \beta),(C, \gamma)$ we say that $h: A \otimes B \rightarrow C$ is bilinear or a bimorphism if the following diagram commutes:

Examples

- For vector spaces or (semi) modules over a commentative (semi)ring this is the usual notion of bilinewity.
- For Abelian manoids or groups this is the usual notion of bimorphism.

Some standard results
Classical Results of Kock (See also Jacobs, Seal)
If π is a commutative monad

1) The SMC structure lifts to a structure θ_{π} on \cup_{π} such that:
$A \otimes B=A \otimes_{\pi} B$ (on objects)
2) If V^{π} has coequalizers of reflexive pairs the SMC structure lifts $\pi^{60} \otimes^{\pi}$ on V^{π} such that
i) $F(A) \Theta^{\pi} F(B) \cong F(A \oplus B)$
ii) The tensor is miversal in that:

$$
\frac{\text { dimorphism }(\alpha, \beta) \longrightarrow \gamma}{\text { morphisms } \alpha \otimes^{\pi} \beta \longrightarrow \gamma}
$$

Back to logie
Dualising if ve have a binary operation \&uch that:

1) \otimes induces an SMC structure on $R(\sigma)$
2) We can identity a strungth for ow comonad of interest \mathbb{C}_{k}
3) Our comonad is commutative
4) $R(\sigma)^{\mathbb{C}_{k}}$ has equalizers of reflexive pairs

Then:

1) In $R(\sigma)_{\mathbb{C}_{k}}$

$$
\left(f_{:}: A_{1} \rightarrow B_{1}, f_{2}: A_{2} \rightarrow B_{2}\right) \mapsto A_{1} \otimes A_{2}=A_{1} \otimes_{\alpha_{k}} A_{2} \xrightarrow{f_{1} \otimes_{C_{k}} f_{2}} B_{1} \otimes_{C_{k}} B_{2}=B_{1} \otimes B_{2}
$$

\otimes preserrs \rightleftarrows and \cong in $R(\sigma)_{C_{k}}$
2) In $R(\sigma)^{G_{k}}$

We can construct spons of the right shape for two sided equivalence

Worst Talk Ever!
That was somewhat underwhelming

- We need to identify and verity monoidal structure
- We need to identity and verify a strength such that ow cononad is commutative
- We need to verity a technical condition on $R(\sigma)^{\mathbb{C}_{k}}$ Even then:
- We can only deal with binary operations
- We can only work with a single base category (signature)
- We can only work with a single comonad (logic)

Questions

1) How much of this stuff do we really need?
2) What rote do the various assumptions really play?
3) How far can we generalize?

Looking again at bimorphisms
For a functor $H: C \longrightarrow D$, monads $S: C \rightarrow C$ and $\pi: D \rightarrow D$. $\$$-algebra (A, α) and T-algebra (B, β), and $\lambda: H \$ A \rightarrow T H A$, $h: H(A) \longrightarrow B$ is a bimorphism if:

note
We make no assumptions on λ such as naturality at this point.
note
Despite appearing unary, this really does generalize the previous condition, as we may consider product monads on product categories?

Genoalizing the classical results

1) It \mathcal{D}^{T} has coesualizers of reflexive pairs thor enststs an algebra $\hat{H}(a)$ such that we have bijection:

$$
\frac{\text { Bimorphisms } \alpha \longrightarrow \beta}{\text { Morphisms } \hat{H} \alpha \rightarrow \beta}
$$

2) It prithermore $\lambda: H A A \rightarrow T H A$ is natural in A, then \hat{H} extends to a functor $e^{+} \xrightarrow{ } D^{\pi}$.
3) If also λ satisfies:

$$
\underset{H Z}{H \$ A} \underset{H A}{\underset{0}{0} \pi H A}
$$

Then $\hat{H} F(A) \cong F H(A)$.

Back to logic again
We now have He following for operation H

1) If H is tinctorial and thee is a Kkeisti-law $\lambda: H \mathbb{C}_{k} \Longrightarrow \mathbb{D}_{\boldsymbol{l}} H$ then
i) H preserves $\underset{ }{\rightleftarrows}$ equivalence
ii) H preserves Kleist isomorphism equivaloree
2) It $\mathcal{D}^{\mathbb{D} L}$ has equalizers of reflexive pairs then H preservers spans of the required shape.
note
These results cover n-arg operations involving potentially different base categories and comonads.

The main theorem
up bintroduckor of a suitable tectarisation system. some assumptions about paths, and ore remaining condition (S2') relating all there:

Theorem V.13. Let $\mathbb{C}_{1}, \ldots, \mathbb{C}_{n}$ and \mathbb{D} be comonads on categories $\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}$ and \mathcal{D}, respectively, and $H: \prod_{i} \mathcal{C}_{i} \rightarrow \mathcal{D}$ a functor which preserves embeddings. If there exists a Kleisli law of type

$$
\mathbb{D} \circ H \Rightarrow H \circ \prod_{i} \mathbb{C}_{i}
$$

satisfying ($S 2^{\prime}$), then

$$
A_{1} \equiv_{\mathbb{C}_{1}} B_{1}, \ldots, A_{n} \equiv_{\mathbb{C}_{n}} B_{n}
$$

implies

$$
H\left(A_{1}, \ldots, A_{n}\right) \equiv_{\mathbb{D}} H\left(B_{1}, \ldots, B_{n}\right)
$$

