Finitely accessible arboreal adjunctions and Hintikka formulae

Luca REGGIO & Colin RIBA

Department of Computer Science, UCL, UK LIP, ENS de Lyon, France

Workshop on Resources and Co-Resources

REGGIO & RIBA (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae

(formulation inspired from Abramsky & Shah (2018, 2021))

Setting

 $\langle \overline{\mathbf{X}} \mid \varphi \rangle$

where

- $\blacktriangleright \ \overline{x} = x_1, \ldots, x_n$
- $\blacktriangleright \varphi$ linearly orders the x_i 's

(finite conjunction of $(x_i < x_j)$'s)

(formulation inspired from Abramsky & Shah (2018, 2021))

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

- $\blacktriangleright \ \overline{x} = x_1, \ldots, x_n$
- φ linearly orders the x_i 's

(finite conjunction of $(x_i < x_j)$'s)

m order embedding:

 $m(x_i) <_M m(x_j) \quad \iff \quad (x_i < x_j) \text{ in } \varphi$

(formulation inspired from Abramsky & Shah (2018, 2021))

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

- $\blacktriangleright \overline{x} = x_1, \ldots, x_n$
- φ linearly orders the x_i 's
- m order embedding:

$$m(x_i) <_M m(x_j) \iff (x_i < x_j) \text{ in } \varphi$$

Fact

Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points.

(e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

(finite conjunction of $(x_i < x_i)$'s)

(formulation inspired from Abramsky & Shah (2018, 2021))

(finite conjunction of $(x_i < x_j)$'s)

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

- $\blacktriangleright \overline{x} = x_1, \ldots, x_n$
- $\blacktriangleright \varphi$ linearly orders the x_i 's
- m order embedding:

$$m(x_i) <_M m(x_j) \quad \iff \quad (x_i < x_j) \text{ in } \varphi$$

Fact Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <))$ \bigwedge $\langle \overline{x} \mid \varphi \rangle$ M N

(formulation inspired from Abramsky & Shah (2018, 2021))

(finite conjunction of $(x_i < x_i)$'s)

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

$$\blacktriangleright \ \overline{x} = x_1, \ldots, x_n$$

- φ linearly orders the x_i 's
- *m* order embedding:

$$m(x_i) <_M m(x_j) \quad \iff \quad (x_i < x_j) \text{ in } \varphi$$

Fact Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$) Image: Comparison of the matrix of the m

(formulation inspired from Abramsky & Shah (2018, 2021))

(finite conjunction of $(x_i < x_i)$'s)

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

$$\blacktriangleright \ \overline{x} = x_1, \ldots, x_n$$

- φ linearly orders the x_i 's
- *m* order embedding:

$$m(x_i) <_M m(x_j) \quad \iff \quad (x_i < x_j) \text{ in } \varphi$$

Fact Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <))$ \bigwedge \bigvee \bigvee \bigwedge \bigvee \bigvee M \bigvee \bigvee

(formulation inspired from Abramsky & Shah (2018, 2021))

(finite conjunction of $(x_i < x_i)$'s)

Setting

$$\langle \overline{x} \mid \varphi \rangle \xrightarrow{m} (M, <_M)$$

where

$$\blacktriangleright \ \overline{x} = x_1, \ldots, x_n$$

- φ linearly orders the x_i 's
- m order embedding:

$$m(x_i) <_M m(x_j) \quad \iff \quad (x_i < x_j) \text{ in } \varphi$$

Fact Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <))$ ($\overline{X} \mid \varphi$) ($\overline{X} \mid \varphi$) ($M \leftarrow \cdots \leftarrow \langle \overline{X}, X' \mid \varphi \land \varphi' \rangle$ ($\overline{X} \mid \varphi \land \varphi'$)

Corollary

$$(M, <_M)$$
 and $(N, <_N)$ are equivalent in $\mathcal{L}_{\infty,\omega}(<)$.

Category of structures: $Struct(\sigma)$

- Objects are σ -structures M, N, \ldots
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$

(σ finite relational signature)

(homomorphisms)

Category of structures: $Struct(\sigma)$

- Objects are σ -structures M, N, \ldots
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$

(σ finite relational signature)

(homomorphisms)

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

Positions are spans

Category of structures: $Struct(\sigma)$

- Objects are σ -structures M, N, \ldots
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$

Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

- Carrier $\overline{x} = x_1, \ldots, x_n$.
- $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_j$)

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

Positions are spans

Category of structures: $Struct(\sigma)$

- ▶ Objects are *σ*-structures *M*, *N*, . . .
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_i$)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\boldsymbol{\sigma})\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

Positions are spans

Category of structures: $Struct(\sigma)$

- ▶ Objects are *σ*-structures *M*, *N*, . . .
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_j$)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\boldsymbol{\sigma})\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

Positions are spans of embeddings

Category of structures: $Struct(\sigma)$

- ▶ Objects are *σ*-structures *M*, *N*, . . .
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_i$)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\boldsymbol{\sigma})\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

- Positions are spans of embeddings
- Moves:

(played by Spoiler and Duplicator)

Category of structures: $Struct(\sigma)$

- ▶ Objects are *σ*-structures *M*, *N*, . . .
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_i$)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\boldsymbol{\sigma})\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

- Positions are spans of embeddings
- Moves:

(played by Spoiler and Duplicator)

Category of structures: $Struct(\sigma)$

- Objects are σ -structures M, N, \ldots
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_i$)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\boldsymbol{\sigma})\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

- Positions are spans of embeddings
- Moves:

(played by Spoiler and Duplicator)

or symmetrically w.r.t. M and N.

Category of structures: $Struct(\sigma)$

- ▶ Objects are *σ*-structures *M*, *N*, . . .
- Morphisms $h: M \rightarrow N$ preserve relations $R \in \sigma$
- Finitely presented structure: $\langle \overline{x} \mid \varphi \rangle$

• Carrier
$$\overline{x} = x_1, \ldots, x_n$$
.

• $\varphi = \varphi(\overline{x})$ is a finite conjunction of relations on \overline{x} .

(σ finite relational signature)

(homomorphisms)

(x_i 's pairwise distinct) (including identities $x_i = x_j$)

(played by Spoiler and Duplicator)

Lemma (Homomorphisms of finitely presented domain)

 $\mathsf{Struct}(\sigma)\left[\langle \overline{x} \mid \varphi \rangle, M\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_M \quad = \quad \{\overline{a} \in M \mid M \models \varphi(\overline{a})\}$

Ehrenfeucht-Fraïssé game

(presentation inspired from Abramsky & Shah (2018, 2021))

or symmetrically w.r.t. M and N.

- Positions are spans of embeddings
- Moves:

Duplicator wins if they can always respond.

Theorem (Karp)

 $\begin{array}{l} \text{Duplicator has a winning strategy iff } M \text{ and } N \text{ are equivalent in } \mathcal{L}_{\infty,\omega}(\sigma). \\ (\text{Ehrenfeucht-Fraïssé Theorem: } k \text{-rounds games catpure } \mathcal{L}_{\omega,\omega}(\sigma) \text{ with quantifier-depth } k) \end{array}$

Arboreal categories and model comparison games

Game comonads (a particular angle) Main idea:

Turn plays into structures

Turn plays into structures

Ehrenfeucht-Fraïssé games

Play

(Abramsky & Shah (2018, 2021))

 $\langle x_1 \mid \varphi_1 \rangle \xrightarrow{\longrightarrow} \langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \xrightarrow{\longrightarrow} \cdots \xrightarrow{\longrightarrow} \langle x_1, x_2, \dots, x_n \mid \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \rangle \xrightarrow{\longrightarrow} M$

Turn plays into structures

Ehrenfeucht-Fraïssé games

(Abramsky & Shah (2018, 2021))

Play projected on M

$$\langle x_1 \mid \varphi_1 \rangle \xrightarrow{\longrightarrow} \langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \xrightarrow{\longrightarrow} \cdots \xrightarrow{\longrightarrow} \langle x_1, x_2, \dots, x_n \mid \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \rangle \xrightarrow{\longrightarrow} M$$

is an element of a σ -structure $R_{\mathbb{EF}}(M)$ with carrier M^+ . $(M^+ = n.e. finite words on M)$

Turn plays into structures

Ehrenfeucht-Fraïssé games

(Abramsky & Shah (2018, 2021))

Play projected on M

$$\langle x_1 \mid \varphi_1 \rangle \xrightarrow{\rightarrowtail} \langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \xrightarrow{\rightarrowtail} \cdots \xrightarrow{\rightarrowtail} \langle x_1, x_2, \dots, x_n \mid \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \rangle \xrightarrow{\longleftarrow} M$$

is an element of a σ -structure $R_{\mathbb{EF}}(M)$ with carrier M^+ . $(M^+ = n.e. \text{ finite words on } M)$

Pebble games(Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021))Plays equipped with pebbles correspond to elements of a σ -structure $R_{\mathbb{P}}(M)$.

 $(\langle \overline{x} \mid \varphi \rangle, \text{Pebbles})$ taken to Pebbles $(\langle \overline{x} \mid \varphi \rangle) \longrightarrow M$

Other examples

Modal fragment, Hybrid fragment, Guarded fragments,

(Abramsky & Shah (2018, 2021), Abrasmky & Marsden 2022, Abrasmky & Marsden 2021, ...)

Turn plays into structures

Ehrenfeucht-Fraïssé games

(Abramsky & Shah (2018, 2021))

Play projected on M

$$x_1 \mid \varphi_1 \rangle \xrightarrow{} \langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \xrightarrow{} \cdots \xrightarrow{} \langle x_1, x_2, \dots, x_n \mid \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \rangle \xrightarrow{} M$$

is an element of a σ -structure $R_{\mathbb{EF}}(M)$ with carrier M^+ . $(M^+ = n.e. \text{ finite words on } M)$

Pebble games(Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021))Plays equipped with pebbles correspond to elements of a σ -structure $R_{\mathbb{P}}(M)$.

 $(\langle \overline{x} \mid \varphi \rangle, \text{Pebbles})$ taken to Pebbles $(\langle \overline{x} \mid \varphi \rangle) \longrightarrow M$

Other examples

Modal fragment, Hybrid fragment, Guarded fragments, ...

(Abramsky & Shah (2018, 2021), Abrasmky & Marsden 2022, Abrasmky & Marsden 2021, ...)

Adjunctions

• The R(M) are Σ -structures with a forest order.

 $Struct(\Sigma)$ (Σ finite signature)

Turn plays into structures

Ehrenfeucht-Fraïssé games

(Abramsky & Shah (2018, 2021))

Play projected on M

$$x_1 \mid \varphi_1 \rangle \xrightarrow{} \langle x_1, x_2 \mid \varphi_1 \land \varphi_2 \rangle \xrightarrow{} \cdots \xrightarrow{} \langle x_1, x_2, \dots, x_n \mid \varphi_1 \land \varphi_2 \land \cdots \land \varphi_n \rangle \xrightarrow{} M$$

is an element of a σ -structure $R_{\mathbb{E}\mathbb{F}}(M)$ with carrier M^+ . $(M^+ = n.e. finite words on M)$

Pebble games(Abramsky, Dawar & Wang (2017), Abramsky & Shah (2018, 2021))Plays equipped with pebbles correspond to elements of a σ -structure $R_{\mathbb{P}}(M)$.

 $(\langle \overline{x} \mid \varphi \rangle, \text{Pebbles})$ taken to Pebbles $(\langle \overline{x} \mid \varphi \rangle) \longrightarrow M$

Other examples

Modal fragment, Hybrid fragment, Guarded fragments,

(Abramsky & Shah (2018, 2021), Abrasmky & Marsden 2022, Abrasmky & Marsden 2021, ...)

Adjunctions

- The R(M) are Σ -structures with a forest order.
- In each case, R is a right adjoint.
- Comonads on Struct(Σ).

Arboreal categories and model comparison games

Arboreal categories (a particular angle)

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games. Struct(**Σ**)

Arboreal categories (a particular angle) Motivations.

А

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

А

 \perp Struct(Σ)

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

• Typically, "embeddings" $m \in \mathcal{M}$ are embeddings of Σ -structures which are forest morphisms.

 \perp Struct(Σ)

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

- Typically, "embeddings" $m \in \mathcal{M}$ are embeddings of Σ -structures which are forest morphisms.
- ▶ $P \in A$ is a path when its M-subobjects form a finite chain

$$S_1 \mapsto S_2 \mapsto \cdots \mapsto S_n$$

 \perp Struct(Σ)

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\}, \text{ "arboreal embeddings" } \mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

• _____•

Typically, "embeddings" m ∈ M are embeddings of Σ-structures which are forest morphisms.
 P ∈ A is a path when its M-subobjects form a finite chain

Back-and-forth game $\mathcal{G}(X, Y)$.

 $(X,\,Y\in\mathcal{A})$

 \perp Struct(Σ)

Arboreal categories (a particular angle) Motivations.

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

•

Typically, "embeddings" m ∈ M are embeddings of Σ-structures which are forest morphisms.
 P ∈ A is a path when its M-subobjects form a finite chain

Back-and-forth game $\mathcal{G}(X, Y)$.

Positions are spans of "arboreal embeddings"

 $(X, Y \in \mathcal{A})$

(P path)

 \perp Struct(Σ)

Arboreal categories (a particular angle) Motivations.

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

•

Typically, "embeddings" m ∈ M are embeddings of Σ-structures which are forest morphisms.
 P ∈ A is a path when its M-subobjects form a finite chain

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "arboreal embeddings"
- Moves:

 $(X, Y \in \mathcal{A})$ (*P* path)

(played by Spoiler and Duplicator)

 \perp Struct(Σ)

Arboreal categories (a particular angle) Motivations.

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism *f* factors as $(e \in \Omega, m \in \mathcal{M})$

► Typically, "embeddings" $m \in \mathcal{M}$ are embeddings of Σ -structures which are forest morphisms.

► $P \in A$ is a path when its M-subobjects form a finite chain $S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_n$

- Positions are spans of "arboreal embeddings"
- Moves:

 $(X, Y \in \mathcal{A})$ (*P* path) (played by Spoiler and Duplicator)

Struct(**Σ**)

Arboreal categories (a particular angle) Motivations.

(Abramsky & Reggio (2021, 2023))

(played by Spoiler and Duplicator)

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism f factors as $(e \in \Omega, m \in \mathcal{M})$

► Typically, "embeddings" $m \in \mathcal{M}$ are embeddings of Σ -structures which are forest morphisms. ► $P \subset A$ is a path when its \mathcal{M} -subplicate form a finite chain

► $P \in A$ is a path when its \mathcal{M} -subobjects form a finite chain $S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_n$

Back-and-forth game $\mathcal{G}(X, Y)$.

- Positions are spans of "arboreal embeddings"
- Moves:

or symmetrically w.r.t. X and Y.

 $(X, Y \in \mathcal{A})$

(P path)

 \perp Struct(Σ)

(Abramsky & Reggio (2021, 2023))

 Conditions on A which yield well-behaved games.

Main ideas.("arboreal quotients" $\Omega \subseteq \{\text{epis}\},$ "arboreal embeddings" $\mathcal{M} \subseteq \{\text{monos}\}$)Factorization system (Ω, \mathcal{M}) on \mathcal{A} : each morphism *f* factors as $(e \in \Omega, m \in \mathcal{M})$

► Typically, "embeddings" $m \in \mathcal{M}$ are embeddings of Σ -structures which are forest morphisms.

▶ $P \in A$ is a path when its \mathcal{M} -subobjects form a finite chain

Back-and-forth game $\mathcal{G}(X, Y)$.

Positions are spans of "arboreal embeddings"

Moves:

Duplicator wins if they can always respond.

REGGIO & RIBA (LIP, ENS de Lyon)

Finitely accessible arboreal adjunctions and Hintikka formulae

or symmetrically w.r.t. X and Y.

 $(X, Y \in \mathcal{A})$

(P path)

Our goal

(e.g. $\mathcal{E} \cong \text{Struct}(\Sigma)$)

Recall the back-and-forth game $\mathcal{G}(X, Y)$:

 $(X, Y \in \mathcal{A})$

or symmetrically w.r.t. X and Y.

Duplicator wins if they can always respond.

Setting: Arboreal finitely accessible adjunctions $\mbox{\sc Assume}\ {\cal A}$ arboreal in

Setting: Arboreal finitely accessible adjunctions

Assume A arboreal in

In many examples,

the right adjoint R is finitary,

(preserves filtered colimits)

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- each path P of A is finitely presentable,

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- ▶ each path *P* of *A* is finitely presentable,
- A, E are locally finitely presentable (lfp).

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- ▶ each path *P* of *A* is finitely presentable,
- ► A, E are locally finitely presentable (Ifp).

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

Locally finitely presentable categories.

Different characterizations.

Cartesian theory T:

Set of implications $\psi \to \varphi$ where ψ, φ built only from atomic formulae, \top, \land (finite), \exists !.

Theorem (Coste (1976))

 \mathcal{E} is locally finitely presentable if, and only if, $\mathcal{E} \cong Mod(T)$ for some cartesian theory T.

(Gabriel-Ulmer 1971) (see e.g. Adámek-Rosický (1994))

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- each path P of A is finitely presentable,
- ► A, E are locally finitely presentable (Ifp).

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

(see e.g. Adámek-Rosický (1994))

(Gabriel-Ulmer 1971)

Locally finitely presentable categories.

Different characterizations.

Cartesian theory T:

Set of implications $\psi \to \varphi$ where ψ, φ built only from atomic formulae, \top, \land (finite), \exists !.

Theorem (Coste (1976))

 \mathcal{E} is locally finitely presentable if, and only if, $\mathcal{E} \cong Mod(T)$ for some cartesian theory T.

Remarks.

• The finitely presentable objects of **Mod**(**T**) are (up to iso) those of the form $\langle \overline{x} | \varphi \rangle$.

REGGIO & <u>RIBA</u> (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- each path P of A is finitely presentable,
- ► A, E are locally finitely presentable (Ifp).

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

Locally finitely presentable categories.

Different characterizations.

Cartesian theory T:

Set of implications $\psi \to \varphi$ where ψ, φ built only from atomic formulae, \top, \land (finite), \exists !.

Theorem (Coste (1976))

 \mathcal{E} is locally finitely presentable if, and only if, $\mathcal{E} \cong Mod(T)$ for some cartesian theory T.

Remarks.

- The finitely presentable objects of **Mod**(**T**) are (up to iso) those of the form $\langle \overline{x} | \varphi \rangle$.
- ▶ If Σ is finitary, then Struct(Σ) is Ifp. (take T the cartesian theory with no axioms)

REGGIO & RIBA (LIP, ENS de Lyon)

(Gabriel-Ulmer 1971) (see e.g. Adámek-Rosický (1994))

Setting: Arboreal finitely accessible adjunctions

Assume \mathcal{A} arboreal in

In many examples,

- ▶ the right adjoint *R* is finitary,
- ▶ each path *P* of *A* is finitely presentable,
- ► A, E are locally finitely presentable (Ifp).

Definition

R: $\mathcal{E} \to \mathcal{A}$ is an arboreal finitely accessible adjunction when the above conditions hold.

Locally finitely presentable categories.

Different characterizations.

Cartesian theory T:

Set of implications $\psi \to \varphi$ where ψ, φ built only from atomic formulae, \top, \land (finite), \exists !.

Theorem (Coste (1976))

 \mathcal{E} is locally finitely presentable if, and only if, $\mathcal{E} \cong Mod(T)$ for some cartesian theory T.

Remarks.

- The finitely presentable objects of **Mod**(**T**) are (up to iso) those of the form $\langle \overline{x} | \varphi \rangle$.
- If Σ is finitary, then Struct(Σ) is lfp. (take T the cartesian theory with no axioms)

(preserves filtered colimits) (the functor $\mathcal{A}[P, -]$ is finitary)

(Gabriel-Ulmer 1971)

(see e.g. Adámek-Rosický (1994))

Results: Arboreal locally finitely presentable categories

Results: Arboreal locally finitely presentable categories

Consider an arboreal category \mathcal{A} such that

- \mathcal{A} is lfp, say $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ ,
- each path P of A is finitely presentable.

REGGIO & RIBA (LIP, ENS de Lyon) Finitely accessible arboreal adjunctions and Hintikka formulae

 $(P \cong \langle \overline{X} \mid \varphi \rangle)$

Results: Arboreal locally finitely presentable categories

Consider an arboreal category \mathcal{A} such that

- ► A is lfp, say $A \cong Mod(U)$ with U cartesian theory of signature Γ ,
- each path P of A is finitely presentable.

Lemma (Homomorphisms of finitely presentable domain)

 $\mathsf{Mod}(\mathsf{U})\left[\langle \overline{x} \mid \varphi \rangle, X\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_X \quad = \quad \{\overline{a} \in X \mid X \models \varphi(\overline{a})\}$

Assumption (Definable path embeddings)

For each path $P \cong \langle \overline{x} \mid \varphi \rangle$, there is a formula $\operatorname{Emb}_P(\overline{x}) \in \mathcal{L}_{\infty,\omega}(\Gamma)$ such that for every $X \in \mathcal{A}$,

 $X \models \operatorname{Emb}_{P}(\overline{a}) \quad \iff \quad \overline{a} \in X \text{ induces an "arboreal embedding" } P \mapsto X$

 $(P\cong \langle \overline{x}\mid \varphi\rangle)$

Results: Arboreal locally finitely presentable categories

Consider an arboreal category \mathcal{A} such that

- ► A is lfp, say $A \cong Mod(U)$ with U cartesian theory of signature Γ ,
- each path P of A is finitely presentable.

Lemma (Homomorphisms of finitely presentable domain)

 $\mathsf{Mod}(\mathsf{U})\left[\langle \overline{x} \mid \varphi \rangle, X\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_X \quad = \quad \{\overline{a} \in X \mid X \models \varphi(\overline{a})\}$

Assumption (Definable path embeddings)

For each path $P \cong \langle \overline{x} \mid \varphi \rangle$, there is a formula $\operatorname{Emb}_P(\overline{x}) \in \mathcal{L}_{\infty,\omega}(\Gamma)$ such that for every $X \in \mathcal{A}$,

 $X \models \operatorname{Emb}_{P}(\overline{a}) \qquad \Longleftrightarrow \qquad \overline{a} \in X \text{ induces an "arboreal embedding" } P \rightarrowtail X$

Theorem (Reggio & R)

If $X, Y \in A$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Gamma)$, then X, Y are back-and-forth equivalent.

 $(P \cong \langle \overline{X} \mid \varphi \rangle)$

Results: Arboreal locally finitely presentable categories

Consider an arboreal category $\ensuremath{\mathcal{A}}$ such that

- ► A is lfp, say $A \cong Mod(U)$ with U cartesian theory of signature Γ ,
- each path P of A is finitely presentable.

Lemma (Homomorphisms of finitely presentable domain)

 $\mathsf{Mod}(\mathsf{U})\left[\langle \overline{x} \mid \varphi \rangle, X\right] \quad \cong \quad [\![\overline{x} \mid \varphi]\!]_X \quad = \quad \{\overline{a} \in X \mid X \models \varphi(\overline{a})\}$

Assumption (Definable path embeddings)

For each path $P \cong \langle \overline{x} \mid \varphi \rangle$, there is a formula $\operatorname{Emb}_{P}(\overline{x}) \in \mathcal{L}_{\infty,\omega}(\Gamma)$ such that for every $X \in \mathcal{A}$,

 $X \models \operatorname{Emb}_{\mathcal{P}}(\overline{a}) \qquad \Longleftrightarrow \qquad \overline{a} \in X \text{ induces an "arboreal embedding" } \mathcal{P} \rightarrowtail X$

Theorem (Reggio & <u>R</u>)

If $X, Y \in A$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Gamma)$, then X, Y are back-and-forth equivalent.

Proof.

▶ Hintikka formulae for back-and-forth games: For each $X \in A$ and each ordinal α , there is sentence $\Theta_X^{\alpha} \in \mathcal{L}_{\infty,\omega}(\Gamma)$ such that

 $Y \models \Theta_X^{\alpha} \iff$ the initial position of $\mathcal{G}(X, Y)$ has rank α

Functorial semantics and Yoneda Lemma.

(Syntactic categories for cartesian theories)

 $(P \cong \langle \overline{X} \mid \varphi \rangle)$

Results: Arboreal finitely accessible adjunctions

Consider an arboreal finitely accessible adjunction

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- $\mathcal{E} \cong Mod(T)$ with T cartesian theory of signature Σ .

(e.g. $\mathcal{E} = Struct(\Sigma)$)

Results: Arboreal finitely accessible adjunctions

Consider an arboreal finitely accessible adjunction

Let

- $\mathcal{A} \cong \mathbf{Mod}(\mathbf{U})$ with **U** cartesian theory of signature **Γ**.
- $\mathcal{E} \cong Mod(T)$ with T cartesian theory of signature Σ .

(e.g. $\mathcal{E} = \text{Struct}(\Sigma)$)

Assumption (Definable path embeddings)

For each path $P \cong \langle \overline{x} \mid \varphi \rangle$, there is a formula $\operatorname{Emb}_{P}(\overline{x}) \in \mathcal{L}_{\infty\omega}(\Gamma)$ such that for every $X \in \mathcal{A}$,

 $X \models \operatorname{Emb}_{P}(\overline{a}) \quad \iff \quad \overline{a} \in X \text{ induces an "arboreal embedding" } P \mapsto X$

Corollary (Reggio & R)

If $M, N \in \mathcal{E}$ are equivalent in $\mathcal{L}_{\infty,\omega}(\mathbf{\Sigma})$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

Results: Arboreal finitely accessible adjunctions

Consider an arboreal finitely accessible adjunction

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- $\mathcal{E} \cong Mod(T)$ with T cartesian theory of signature Σ .

(e.g. $\mathcal{E} = \text{Struct}(\Sigma)$)

Assumption (Definable path embeddings)

For each path $P \cong \langle \overline{x} \mid \varphi \rangle$, there is a formula $\operatorname{Emb}_{P}(\overline{x}) \in \mathcal{L}_{\infty\omega}(\Gamma)$ such that for every $X \in \mathcal{A}$,

 $X \models \operatorname{Emb}_{P}(\overline{a}) \quad \iff \quad \overline{a} \in X \text{ induces an "arboreal embedding" } P \mapsto X$

Corollary (Reggio & R)

If $M, N \in \mathcal{E}$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Sigma)$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

Proof.

• The finitary right adjoint $R: Mod(T) \rightarrow Mod(U)$ induces an interpretation

 $\mathcal{L}_{\kappa,\omega}(\mathbf{\Gamma}) \longrightarrow \mathcal{L}_{\kappa,\omega}(\mathbf{\Sigma})$ (κ regular cardinal)

REGGIO & RIBA (LIP, ENS de Lyon)

Finitely accessible arboreal adjunctions and Hintikka formulae

Main result

Consider an arboreal finitely accessible adjunction

$$\mathcal{A} \xrightarrow{L} \mathcal{E}$$

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- $\mathcal{E} \cong Mod(T)$ with T cartesian theory of signature Σ .

(e.g. $\mathcal{E} = Struct(\Sigma)$)

Consider an arboreal finitely accessible adjunction

$$\mathcal{A} \xrightarrow{L} \mathcal{E}$$

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- ▶ $ε \cong Mod(T)$ with T cartesian theory of signature Σ.

(e.g. $\mathcal{E} = \text{Struct}(\Sigma)$)

Definition (Detection of path embeddings)		
$L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings when		
$f\colon \mathcal{P} o X$ "arboreal embedding" in \mathcal{A}	\Leftrightarrow	$L(f)$ embedding of structures in \mathcal{E}

Consider an arboreal finitely accessible adjunction

$$\mathcal{A} \xrightarrow{L} \mathcal{E}$$

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- ▶ $ε \cong Mod(T)$ with T cartesian theory of signature Σ.

(e.g. $\mathcal{E} = \text{Struct}(\Sigma)$)

Definition (Detection of path embeddings) $L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings when $f: P \to X$ "arboreal embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}

Theorem (Reggio & R)

Assume $L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings. If $M, N \in \mathcal{E}$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Sigma)$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

Consider an arboreal finitely accessible adjunction

$$\mathcal{A} \xrightarrow{L} \mathcal{E}$$

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- ▶ $ε \cong Mod(T)$ with T cartesian theory of signature Σ.

(e.g. $\mathcal{E} = \text{Struct}(\Sigma)$)

Definition (Detection of path embeddings) $L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings when $f: P \to X$ "arboreal embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}

Theorem (Reggio & R)

Assume $L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings. If $M, N \in \mathcal{E}$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Sigma)$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

Proof.

(1) In Mod(T), embeddings of finitely presentable domain are $\mathcal{L}_{\infty,\omega}(\Sigma)$ -definable.

Consider an arboreal finitely accessible adjunction

$$\mathcal{A} \xrightarrow{L} \mathcal{E}$$

Let

- $\mathcal{A} \cong Mod(U)$ with U cartesian theory of signature Γ .
- ▶ $ε \cong Mod(T)$ with T cartesian theory of signature Σ.

(e.g.
$$\mathcal{E} = \text{Struct}(\Sigma)$$
)

Definition (Detection of path embeddings) $L \dashv R: \mathcal{E} \rightarrow \mathcal{A}$ detects path embeddings when $f: P \rightarrow X$ "arboreal embedding" in $\mathcal{A} \iff L(f)$ embedding of structures in \mathcal{E}

Theorem (Reggio & R)

Assume $L \dashv R: \mathcal{E} \to \mathcal{A}$ detects path embeddings. If $M, N \in \mathcal{E}$ are equivalent in $\mathcal{L}_{\infty,\omega}(\Sigma)$, then R(M), R(N) are back-and-forth equivalent in \mathcal{A} .

Proof.

- (1) In **Mod**(**T**), embeddings of finitely presentable domain are $\mathcal{L}_{\infty,\omega}(\Sigma)$ -definable.
- (2) The (finitary) left adjoint $L: Mod(U) \rightarrow Mod(T)$ induces a formula translation

 $\mathcal{L}_{\infty,\omega}(\mathbf{\Sigma}) \longrightarrow \mathcal{L}_{\infty,\omega}(\mathbf{\Gamma})$ (Hodges' word-constructions (1974, 1975))

REGGIO & RIBA (LIP, ENS de Lyon)

Finitely accessible arboreal adjunctions and Hintikka formulae

Consider an arboreal finitely accessible adjunction which detects path embeddings

(σ finite relational signature)

Theorem (Reggio & R)

If $M, N \in \text{Struct}(\sigma)$ are equivalent in $\mathcal{L}_{\infty,\omega}(\sigma)$, then R(M), R(N) are back-and-forth equivalent.

Consider an arboreal finitely accessible adjunction which detects path embeddings

(σ finite relational signature)

Theorem (Reggio & <u>R</u>)

If $M, N \in \text{Struct}(\sigma)$ are equivalent in $\mathcal{L}_{\infty,\omega}(\sigma)$, then R(M), R(N) are back-and-forth equivalent.

Example

▶ Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)

Consider an arboreal finitely accessible adjunction which detects path embeddings

(σ finite relational signature)

Theorem (Reggio & <u>R</u>)

If $M, N \in \text{Struct}(\sigma)$ are equivalent in $\mathcal{L}_{\infty,\omega}(\sigma)$, then R(M), R(N) are back-and-forth equivalent.

Example

- Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)
- $(M, <_M)$ and $(N, <_N)$ are $\mathcal{L}_{\infty,\omega}(<)$ -equivalent.
- ▶ R(M), R(N) are back-and-forth equivalent in A.

Consider an arboreal finitely accessible adjunction which detects path embeddings

(σ finite relational signature)

Theorem (Reggio & <u>R</u>)

If $M, N \in \text{Struct}(\sigma)$ are equivalent in $\mathcal{L}_{\infty,\omega}(\sigma)$, then R(M), R(N) are back-and-forth equivalent.

Example

- Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)
- $(M, <_M)$ and $(N, <_N)$ are $\mathcal{L}_{\infty,\omega}(<)$ -equivalent.
- ▶ R(M), R(N) are back-and-forth equivalent in A.

Remark

• Many non-isomorphic $\mathcal{L}_{\infty,\omega}$ -equivalent structures.

(e.g. Baumgartner's orders and Ehrenfeucht-Mostowski models)

Consider an arboreal finitely accessible adjunction which detects path embeddings

(σ finite relational signature)

Theorem (Reggio & \underline{R})

If $M, N \in \text{Struct}(\sigma)$ are equivalent in $\mathcal{L}_{\infty,\omega}(\sigma)$, then R(M), R(N) are back-and-forth equivalent.

Example

- ▶ Let $(M, <_M)$ and $(N, <_N)$ be dense linear orders without end points. (e.g. $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$)
- $(M, <_M)$ and $(N, <_N)$ are $\mathcal{L}_{\infty,\omega}(<)$ -equivalent.
- ▶ R(M), R(N) are back-and-forth equivalent in A.

Remark

• Many non-isomorphic $\mathcal{L}_{\infty,\omega}$ -equivalent structures.

(e.g. Baumgartner's orders and Ehrenfeucht-Mostowski models)

Game comonad for MSO

(Jackl, Marsden & Shah, 2022)

• $(\mathbb{Q}, <)$ and $(\mathbb{R}, <)$ are not **MSO**(<)-equivalent.

Conclusion

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

• General conditions on $R: \mathcal{E} \to \mathcal{A}$ for

 $M, N \in \mathcal{E}$ are $\mathcal{L}_{\infty,\omega}$ -equivalent $\implies R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers different examples

(Under suitable conditions)

(Ehrenfeucht-Fraïssé and pebble games, modal and hybrid logics) (presheaves and forest covers)

Conclusion

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

• General conditions on $R: \mathcal{E} \to \mathcal{A}$ for

 $M, N \in \mathcal{E}$ are $\mathcal{L}_{\infty,\omega}$ -equivalent $\implies R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers different examples

(Under suitable conditions)

(Ehrenfeucht-Fraïssé and pebble games, modal and hybrid logics) (presheaves and forest covers)

Future work.

- Guarded fragments
- Higher presentability ranks

(Abramsky & Marsden, 2021)

(Lindström quantifiers (via the games of (Caicedo 1980))) (Coalgebras of (suitable) functors) (Comonadic modal logic) (MSO)

Convey stronger invariants?

(E.g. finite variable constraint for pebble games)

Conclusion

Conclusion and future work

Toward a structure theory of game comonads via arboreal categories.

• General conditions on $R: \mathcal{E} \to \mathcal{A}$ for

 $M, N \in \mathcal{E}$ are $\mathcal{L}_{\infty,\omega}$ -equivalent $\implies R(M), R(N) \in \mathcal{A}$ are back-and-forth equivalent

- Restricts to finite games and finitary logic.
- Covers different examples

(Under suitable conditions)

(Ehrenfeucht-Fraïssé and pebble games, modal and hybrid logics) (presheaves and forest covers)

Future work.

- Guarded fragments
- Higher presentability ranks

(Abramsky & Marsden, 2021)

(Lindström quantifiers (via the games of (Caicedo 1980))) (Coalgebras of (suitable) functors) (Comonadic modal logic) (MSO)

Convey stronger invariants?

(E.g. finite variable constraint for pebble games)

Thanks for your attention!

REGGIO & RIBA (LIP, ENS de Lyon)