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Monads

A monad is a triple  where: 

1.  is an endofunctor.

2. The unit  is a natural transformation.

3. The multiplication  is a natural transformation.


And the following equations hold:


(T, η, μ)
T : C → C

η : idT → T
μ : T2 → T

μ ∘ Tη = μ ∘ ηT = idT; μ ∘ Tμ = μ ∘ μT



Monads

Monads model effectful computation e.g. nondeterminism, probabilities.


An effectful computation from  to  is represented as a morphism  and can 
be composed in the Kleisli category  of a monad :


• 


• 


• 


•   =   where:


-   and 

-

A B A → MB
Kl(M) M

Obj(Kl(M)) = Obj(C)
HomKl(M)(A, B) = Hom(A, MB)

idx = ηx

g ∘ f X f MY g* MZ
f : X → MY g : Y → MZ
g* = μz ∘ Mg



Example: Distribution Monad

The distribution monad  on the category of sets and functions is given by:


1.  is the set of all functions of the form  where .


2. 


3.

(𝒟, η, μ)

𝒟X ψ : X → [0,1] Σx∈Xψ(x) = 1

ηX(x) = 1.x

μX(ψ)(x) = Σϕ∈𝒟Xψ(ϕ) . ϕ(x)



Example: Distribution Monad

• Morphisms  in the kleisli category of   are row stochastic maps.X A→ 𝒟Y 𝒟

All rows add to 1

A



Example: Quantum Tensor Monad

• An (orthogonal) projection matrix is a square matrix  satisfying 


• We write  for the set of  projection matrices.


The (graded) quantum tensor monad  on the category of sets and 
functions is given by:


1.  is the set of all functions of the form  where .


2.  where for 


3.

P P = P2 = P*

proj(d) d × d

(𝒬d, η, μd,d′ )

𝒬dX ψ : X → proj(d) Σx∈Xψ(g) = Id

ηX(x) = δx ∈ 𝒬1X x ≠ x′ : {δa(a) = I1

δa(a′ ) = 01

μd,d′ 
X (ψ)(x) = Σϕ∈𝒬d′ Xψ(ϕ) ⊗ ϕ(x)



• We shall call Morphisms  in the kleisli category of   row projective 
permutation matrices.


• Think of this as a variant of the distribution monad where probabilities are replaced 
with projectors. Each row thus represents a PVM. 

X A→ 𝒬dY 𝒬d

Example: Quantum Tensor Monad

All rows add to Id

A



Non-local game

Referee

Alice Bob

q

a a'

q'

1. Referee sends a question to each player


2. Players answer without communicating 

3. Win if answers satisfy some predefined 
conditions. 


Note that players Can agree on a strategy 
beforehand.


We focus only on perfect strategies.



Classical Strategies

Referee

Alice Bob

x

fa(x) fb(y)

y

• Deterministic functions  and .


 

fa fb

p( fa(x), fb(y) |x, y) = 1



Quantum Tensor Strategies

Referee

Alice Bob

x

a b

y

• Hilbert spaces  and 


• Shared entangled state 


• For any inputs x, y, POVMs  acting on 
 and 


ℋA ℋB

ψ ∈ ℋA ⊗ ℋB

{Ax,a}a, {Bx,b}b
ℋA ℋB

p(a, b |x, y) = ψ†Ax,a ⊗ By,bψ



Quantum Commuting Strategies

Referee

Alice Bob

x

a b

y

• Hilbert space 


• Shared entangled state 


• For any inputs x, y, POVMs , acting on 



•  commute for all x, a, y, b.


ℋ

ψ ∈ ℋ

{Ax,a}a, {Bx,b}b
ℋ

Ax,a and By,b

p(a, b |x, y) = ψ†Ax,aBy,bψ



Non-Signalling Strategies

Referee

Alice Bob

x

a b

y

• Any strategy where:





• Most general class of strategies with no communication.

∑
yb

p(ya, yb |xa, xb) = ∑
yb

p(ya, yb |xa, x′ b)∀xa, ya, xb, x′ b



(G, H)-Homomorphism Game

Intuition: Alice and Bob want to convince referee that 



1. Referee sends them both vertices of G


2. They respond with vertices of H


3. Win if adjacency and equality preserved


We write  whenever the game has a winning 
t-strategy for  

G → H

G t→ H
t ∈ {c, * ,co, ns}

Referee

Alice Bob

g

h h'

g'



(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince referee that 


1. Referee sends vertices from either graph


2. Players respond with vertices from other graph


3. Win if vertex relationships preserved


We write  whenever the game has a winning t-
strategy for  

G ≅ H

G
t
≅ H
t ∈ {c, * ,co, ns}

Referee

Alice Bob

g

h h'

g'



[1]: The (G,H)-Homomorphism game admits a perfect classical strategy iff .G → H

Classical Strategies

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016): 
228-267.



Classical Strategies

[1]: The (G,H)-isomorphism game admits a perfect classical strategy iff .G ≅ H

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." Journal of Combinatorial Theory, Series B 136 (2019): 
289-328.



Quantum Tensor Strategies

[1]:  iff there exists projectors  satisfying


1. 


2.

G *→ H Agh

∑
h∈V(H)

Agh = I ∀g ∈ V(G)

(g ∼ g′ & h ≁ h′ ) ⟹ AghAg′ h′ = 0

• Condition 1 is equivalent to the existence of a row projective permutation map.

• Condition 2 places constraints on elements of the block matrix

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016): 
228-267.



Quantum Tensor Strategies

[1]:  iff there exists projectors  satisfying


1. 


2. 


3.

G
*
≅ H Agh

∑
h∈V(H)

Agh = I ∀g ∈ V(G)

∑
g∈V(G)

Agh = I ∀h ∈ V(H)

(g ∼ g′ & h ≁ h′ ) ∨ (g ≁ g′ & h ∼ h′ ) ⟹ AghAg′ h′ = 0 ⟹ AghAg′ h′ = 0

• Condition 2 enforces that the columns of the matrix also add up to the identity. This 
structure is sometimes referred to as a projective permutation matrix.

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016): 
228-267.



Quantum Monad on Graphs

• The Quantum monad  on the category of graphs and graph homomorphisms is 
defined as follows:


1. It acts exactly the same way as  on the set of vertices of the graph.


2.  if whenever  in  then .

ℚd

𝒬d

ψ ∼ ψ′ g ≁ g′ G ψ(g) . ψ(g′ ) = 0

[1]:  iff there exists a kleisli morphism G *→ H G → ℚdH

• So do Kleisli isomorphisms correspond to quantum tensor isomorphism? Nope!

 iff there exists a kleisli isomorphism G ≅ H G ≅kl(ℚd) H

[1] Abramsky, Samson, et al. "The quantum monad on relational structures." arXiv preprint arXiv:1705.07310 (2017).



Quantum Monad on Graphs

• To capture quantum isomorphism we need an intermediate notion of equivalence.


• We write  iff there exists morphisms  and  such 
that 


• This is somewhat reminiscent of a result in [1]:

G ⇄kl(ℚd) H G A→ ℚdH H B→ ℚdG
A = B†

[Theorem, MR16]  iff G *→ H G ⇄kl(ℚd) H

[1] Abramsky, Samson, Anuj Dawar, and Pengming Wang. "The pebbling comonad in finite model theory." 2017 32nd Annual ACM/
IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017.



Quantum Commuting Strategies
[1]:  iff there exists a unital C*-algebra  and projections   satisfying


1. 


2.

G co→ H 𝒜 ugh ∈ 𝒜

∑
h∈V(H)

ugh = I ∀g ∈ V(G)

(g ∼ g′ & h ≁ h′ ) ⟹ ughug′ h′ = 0

• Again we can arrange these projectors into a matrix. We will call a matrix satisfying 
condition 1 above a row quantum permutation matrix.

M
M

M

[1] Ortiz, Carlos M., and Vern I. Paulsen. "Quantum graph homomorphisms via operator systems." Linear Algebra and its Applications 
497 (2016): 23-43.



Quantum Commuting Strategies

[1]:  iff there exists a unital C*-algebra  and projections   satisfying


1. 


2. 


3.

G
co
≅ H 𝒜 ugh ∈ 𝒜

∑
h∈V(H)

ugh = I ∀g ∈ V(G)

∑
g∈V(G)

ugh = I ∀h ∈ V(H)

(g ∼ g′ & h ≁ h′ ) ∨ (g ≁ g′ & h ∼ h′ ) ⟹ ughug′ h′ = 0

• Here we have what is known as a quantum permutation matrix or magic unitary.

M
M

M

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." Journal of Combinatorial Theory, Series B 136 (2019): 
289-328.



Quantum Commuting Endofunctor

• Fix an arbitrary unital C*-algebra  and write  for its projections. 


• Then we can define an endofunctor  as follows:


1. V( ) is the set of all functions of the form  where 
.  


2.  in  if whenever  in  then .

𝒜 proj(𝒜)

ℚ𝒜

ℚ𝒜G ψ : V(G) → proj(𝒜)
Σg∈V(G)ψ(g) = I

ψ ∼ ψ′ ℚ𝒜G g ≁ g′ G ψ(g) . ψ(g′ ) = 0



Putting a graded monad structure on  ?ℚ𝒜

• Can we use  to construct a graded quantum commuting monad?Coming up with 
a unit seems straightforward. 


• Putting a multiplication structure on  is more difficult. it is not immediately clear 
what the grading should be. 


• Consider the monoid  whose elements are unital C*-algebras. We can use 
this monoid to define a graded quantum commuting monad. 


• Row quantum permutation matrices will then be composed in the kleisli category 
using the “Woronowicz tensor product”:

ℚ𝒜
ηX(x) = I1

ℚ𝒜

(M, ⊗ ,ℂ)



Example: Quantum Commuting Monad

The (graded) quantum commuting monad  is given by:


1.  is defined as before.


2.  where for 


3. 


Note that if we limit ourselves to those C*-algebras whose elements are n by n matrices 
we recover the quantum tensor monad.

(ℚ𝒜, η, μ𝒜,ℬ)

ℚ𝒜G

ηX(x) = δx ∈ 𝒬ℂX x ≠ x′ : {δa(a) = I1

δa(a′ ) = 01

μ𝒜,ℬ
X (ψ)(x) = Σϕ∈𝒬ℬXψ(ϕ) ⊗ ϕ(x)

1.  iff there exists a kleisli morphism 

2.  iff there exists a kleisli isomorphism 


3.  iff 

G co→ H G → ℚ𝒜H
G ≅ H G ≅kl(ℚ𝒜) H
G

co
≅ H G ⇄kl(ℚ𝒜) H



Non-Signalling strategies
• We define a variant of the distribution monad  on the category of graphs.


1. It acts exactly the same way as  on the set of vertices of the graph.


2.  if whenever  in  then .


• It is worth noting that non-signalling homomorphism is a trivial relationship. The 
players can perfectly win this game on almost any pair of graphs. 


• Non-signalling isomorphism however, corresponds to fractional isomorphism, a well-
studied linear algebraic relaxation of graph isomorphism

𝔻

𝒟

ψ ∼ ψ′ g ≁ g′ G ψ(g) . ψ(g′ ) = 0

1.  iff there exists a kleisli morphism 

2.  iff there exists a kleisli isomorphism 


3.  iff 

G ns→ H G → 𝔻H
G ≅ H G ≅kl(𝔻) H
G

ns
≅ H G ⇄kl(𝔻) H



Conclusions

• We have provided a monadic account of perfect strategies for the graph 
homomorphism and isomorphism games.


• For each type of strategy  the existence of a perfect strategy in the 
homomorphism game corresponds to the existence of a morphism in the kleisli 
category of a suitable (graded) monad. 


• perfect strategies for the isomorphism game correspond to the existence of a 
suitable pair of back-and-forth morphisms in the same kleisli category.  It remains to 
be seen if this description can be further refined. 


• These ideas should be applicable to the well-studied class of synchronous non-local 
games, and to a generalisation of this class known as imitation games.

t ∈ {c, * ,co, ns}


