Capturing Quantum Isomorphism in the Kleisli Category of the Quantum Monad

Amin Karamlou

Monads

A monad is a triple (T, η, μ) where:

- 1. $T: C \rightarrow C$ is an endofunctor.
- 2. The unit $\eta: id_T \to T$ is a natural transformation.
- 3. The multiplication $\mu: T^2 \to T$ is a natural transformation.

And the following equations hold:

$$\mu \circ T\eta = \mu \circ \eta T = id_T; \quad \mu \circ T\mu = \mu \circ \mu T$$

Monads

Monads model effectful computation e.g. nondeterminism, probabilities.

An effectful computation from A to B is represented as a morphism $A \to MB$ and can be composed in the Kleisli category Kl(M) of a monad M:

- Obj(Kl(M)) = Obj(C)
- $Hom_{Kl(M)}(A, B) = Hom(A, MB)$
- $id_x = \eta_x$
- $g \circ f = X \xrightarrow{f} MY \xrightarrow{g^*} MZ$ where: - $f: X \to MY$ and $g: Y \to MZ$ - $g^* = \mu_z \circ Mg$

Example: Distribution Monad

The distribution monad (\mathcal{D}, η, μ) on the category of sets and functions is given by:

1. $\mathscr{D}X$ is the set of all functions of the form $\psi: X \to [0,1]$ where $\sum_{x \in X} \psi(x) = 1$.

2.
$$\eta_X(x) = 1.x$$

3. $\mu_X(\psi)(x) = \sum_{\phi \in \mathscr{D}X} \psi(\phi) \cdot \phi(x)$

Example: Distribution Monad

• Morphisms $X \xrightarrow{A} \mathscr{D} Y$ in the kleisli category of \mathscr{D} are row stochastic maps.

Example: Quantum Tensor Monad

- An (orthogonal) projection matrix is a square matrix **P** satisfying $\mathbf{P} = \mathbf{P}^2 = \mathbf{P}^*$
- We write proj(d) for the set of $d \times d$ projection matrices.

The (graded) quantum tensor monad $(\mathcal{Q}_d, \eta, \mu^{d,d'})$ on the category of sets and functions is given by:

1. $\mathcal{Q}_d X$ is the set of all functions of the form $\psi : X \to proj(d)$ where $\sum_{x \in X} \psi(g) = I_d$.

2.
$$\eta_X(x) = \delta_x \in \mathcal{Q}_1 X$$
 where for $x \neq x' : \begin{cases} \delta_a(a) = I_1 \\ \delta_a(a') = \mathbf{0}_1 \end{cases}$

3.
$$\mu_X^{d,d'}(\psi)(x) = \sum_{\phi \in \mathcal{Q}_{d'}X} \psi(\phi) \otimes \phi(x)$$

Example: Quantum Tensor Monad

• We shall call Morphisms $X \xrightarrow{\mathbf{A}} \mathcal{Q}_d Y$ in the kleisli category of \mathcal{Q}_d row projective permutation matrices.

 Think of this as a variant of the distribution monad where probabilities are replaced with projectors. Each row thus represents a PVM.

Non-local game

- 1. Referee sends a question to each player
- 2. Players answer without communicating
- 3. Win if answers satisfy some predefined conditions.

Note that players Can agree on a strategy beforehand.

We focus only on perfect strategies.

Classical Strategies

• Deterministic functions f_a and f_b .

 $p(f_a(x), f_b(y) | x, y) = 1$

Quantum Tensor Strategies

Bob

- Hilbert spaces \mathcal{H}_A and \mathcal{H}_B
- Shared entangled state $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$
- For any inputs x, y, POVMs $\{A_{x,a}\}_a$, $\{B_{x,b}\}_b$ acting on \mathscr{H}_A and \mathscr{H}_B

$$p(a, b | x, y) = \psi^{\dagger} A_{x,a} \otimes B_{y,b} \psi$$

Quantum Commuting Strategies

- Hilbert space ${\mathscr H}$
- Shared entangled state $\psi \in \mathcal{H}$
- For any inputs x, y, POVMs $\{A_{x,a}\}_a, \{B_{x,b}\}_b$, acting on $\mathcal H$
- $A_{x,a}$ and $B_{y,b}$ commute for all x, a, y, b.

 $p(a, b | x, y) = \psi^{\dagger} A_{x,a} B_{y,b} \psi$

Non-Signalling Strategies

• Any strategy where:

$$\sum_{y_b} p(y_a, y_b | x_a, x_b) = \sum_{y_b} p(y_a, y_b | x_a, x_b') \forall x_a, y_a, x_b, x_b'$$

• Most general class of strategies with no communication.

(G, H)-Homomorphism Game

Intuition: Alice and Bob want to convince referee that $G \rightarrow H$

- 1. Referee sends them both vertices of G
- 2. They respond with vertices of H
- 3. Win if adjacency and equality preserved

We write $G \xrightarrow{t} H$ whenever the game has a winning t-strategy for $t \in \{c, *, co, ns\}$

(G, H)-Isomorphism Game

We write $G \stackrel{t}{\cong} H$ whenever the game has a winning tstrategy for $t \in \{c, *, co, ns\}$

Classical Strategies

[1]: The (G,H)-Homomorphism game admits a perfect classical strategy iff $G \rightarrow H$.

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." *Journal of Combinatorial Theory, Series B* 118 (2016): 228-267.

Classical Strategies

[1]: The (G,H)-isomorphism game admits a perfect classical strategy iff $G \cong H$.

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." *Journal of Combinatorial Theory, Series B* 136 (2019): 289-328.

Quantum Tensor Strategies

[1]:
$$G \xrightarrow{*} H$$
 iff there exists projectors \mathbf{A}_{gh} satisfying
1. $\sum_{h \in V(H)} \mathbf{A}_{gh} = I \forall g \in V(G)$
2. $(g \sim g' \& h \nsim h') \implies \mathbf{A}_{gh} \mathbf{A}_{g'h'} = 0$

Condition 1 is equivalent to the existence of a row projective permutation map.

$$\begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1s} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{A}_{q1} & \mathbf{A}_{q2} & \cdots & \mathbf{A}_{qs} \end{bmatrix}$$

Condition 2 places constraints on elements of the block matrix

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." *Journal of Combinatorial Theory, Series B* 118 (2016): 228-267.

Quantum Tensor Strategies

 Condition 2 enforces that the columns of the matrix also add up to the identity. This structure is sometimes referred to as a projective permutation matrix.

[1] Mančinska, Laura, and David E. Roberson. "Quantum homomorphisms." *Journal of Combinatorial Theory, Series B* 118 (2016): 228-267.

Quantum Monad on Graphs

- The Quantum monad \mathbb{Q}_d on the category of graphs and graph homomorphisms is defined as follows:
- 1. It acts exactly the same way as Q_d on the set of vertices of the graph.
- 2. $\psi \sim \psi'$ if whenever $g \nsim g'$ in *G* then $\psi(g) \cdot \psi(g') = 0$.

[1]: $G \xrightarrow{x} H$ iff there exists a kleisli morphism $G \xrightarrow{x} \mathbb{Q}_d H$

• So do Kleisli isomorphisms correspond to quantum tensor isomorphism? Nope!

 $G \cong H$ iff there exists a kleisli isomorphism $G \cong_{kl(\mathbb{Q}_d)} H$

[1] Abramsky, Samson, et al. "The quantum monad on relational structures." arXiv preprint arXiv:1705.07310 (2017).

Quantum Monad on Graphs

- To capture quantum isomorphism we need an intermediate notion of equivalence.
- We write $G \rightleftharpoons_{kl(\mathbb{Q}_d)} H$ iff there exists morphisms $G \xrightarrow{\mathbf{A}} \mathbb{Q}_d H$ and $H \xrightarrow{\mathbf{B}} \mathbb{Q}_d G$ such that $\mathbf{A} = \mathbf{B}^{\dagger}$

[Theorem, MR16] $G \to H$ iff $G \rightleftharpoons_{kl(\mathbb{Q}_d)} H$

• This is somewhat reminiscent of a result in [1]:

We now define the relation $A \rightleftharpoons_k^- B$ if there are co-Kleisli arrows $f : \mathbb{T}_k A \longrightarrow B$ and $g : \mathbb{T}_k B \longrightarrow A$ such that $S_f^- = S_g$. **Theorem 20.** For all finite structures A and B:

$$A \rightleftharpoons_k^- B \iff A \equiv^k B.$$

^[1] Abramsky, Samson, Anuj Dawar, and Pengming Wang. "The pebbling comonad in finite model theory." 2017 32nd Annual ACM/ IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017.

Quantum Commuting Strategies

[1]: $G \xrightarrow{co} H$ iff there exists a unital C*-algebra \mathscr{A} and projections $u_{gh} \in \mathscr{A}$ satisfying 1. $\sum_{h \in V(H)} u_{gh} = I \forall g \in V(G)$ 2. $(g \sim g' \& h \nsim h') \implies u_{gh} u_{g'h'} = 0$

 Again we can arrange these projectors into a matrix. We will call a matrix satisfying condition 1 above a row quantum permutation matrix.

$$u = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1M} \\ u_{21} & u_{22} & \cdots & u_{2M} \\ \vdots & & \\ u_{N1} & u_{2N} & \cdots & u_{NM} \end{pmatrix}$$

[1] Ortiz, Carlos M., and Vern I. Paulsen. "Quantum graph homomorphisms via operator systems." *Linear Algebra and its Applications* 497 (2016): 23-43.

Quantum Commuting Strategies

[1]: $G \stackrel{co}{\cong} H$ iff there exists a unital C*-algebra \mathscr{A} and projections $u_{gh} \in \mathscr{A}$ satisfying 1. $\sum_{h \in V(H)} u_{gh} = I \forall g \in V(G)$ 2. $\sum_{g \in V(G)} u_{gh} = I \forall h \in V(H)$ 3. $(g \sim g' \& h \nsim h') \lor (g \nsim g' \& h \sim h') \implies u_{gh}u_{g'h'} = 0$

Here we have what is known as a quantum permutation matrix or magic unitary.

$$u = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1M} \\ u_{21} & u_{22} & \cdots & u_{2M} \\ \vdots & & \\ u_{N1} & u_{2N} & \cdots & u_{NM} \end{pmatrix}$$

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." *Journal of Combinatorial Theory, Series B* 136 (2019): 289-328.

Quantum Commuting Endofunctor

- Fix an arbitrary unital C*-algebra \mathscr{A} and write $proj(\mathscr{A})$ for its projections.
- Then we can define an endofunctor $\mathbb{Q}_{\mathscr{A}}$ as follows:
- 1. $V(\mathbb{Q}_{\mathscr{A}}G)$ is the set of all functions of the form $\psi : V(G) \to proj(\mathscr{A})$ where $\Sigma_{g \in V(G)} \psi(g) = I$.
- 2. $\psi \sim \psi'$ in $\mathbb{Q}_{\mathscr{A}}G$ if whenever $g \not\sim g'$ in G then $\psi(g) \cdot \psi(g') = 0$.

Putting a graded monad structure on $\mathbb{Q}_{\mathscr{A}}$?

- Can we use $\mathbb{Q}_{\mathscr{A}}$ to construct a graded quantum commuting monad?Coming up with a unit seems straightforward. $\eta_X(x) = I_1$
- Putting a multiplication structure on $\mathbb{Q}_{\mathscr{A}}$ is more difficult. it is not immediately clear what the grading should be.
- Consider the monoid (M, \otimes, \mathbb{C}) whose elements are unital C*-algebras. We can use this monoid to define a graded quantum commuting monad.
- Row quantum permutation matrices will then be composed in the kleisli category using the "Woronowicz tensor product":

$$u \oplus v := \sum_{i,j=1}^{N} E_{ij} \otimes \left(\sum_{k=1}^{N} u_{ik} \otimes v_{kj} \right).$$

Example: Quantum Commuting Monad

The (graded) quantum commuting monad $(\mathbb{Q}_{\mathcal{A}}, \eta, \mu^{\mathcal{A}, \mathcal{B}})$ is given by:

1. $\mathbb{Q}_{\mathscr{A}}G$ is defined as before.

2.
$$\eta_X(x) = \delta_x \in \mathcal{Q}_{\mathbb{C}} X$$
 where for $x \neq x'$:
$$\begin{cases} \delta_a(a) = I_1 \\ \delta_a(a') = \mathbf{0}_1 \end{cases}$$

3.
$$\mu_X^{\mathscr{A},\mathscr{B}}(\psi)(x) = \sum_{\phi \in \mathcal{Q}_{\mathscr{B}}X} \psi(\phi) \otimes \phi(x)$$

Note that if we limit ourselves to those C*-algebras whose elements are n by n matrices we recover the quantum tensor monad.

1.
$$G \xrightarrow{co} H$$
 iff there exists a kleisli morphism $G \to \mathbb{Q}_{\mathscr{A}} H$
2. $G \cong H$ iff there exists a kleisli isomorphism $G \cong_{kl(\mathbb{Q}_{\mathscr{A}})} H$
3. $G \stackrel{co}{\cong} H$ iff $G \rightleftharpoons_{kl(\mathbb{Q}_{\mathscr{A}})} H$

Non-Signalling strategies

- We define a variant of the distribution monad $\mathbb D$ on the category of graphs.
- 1. It acts exactly the same way as \mathscr{D} on the set of vertices of the graph.
- 2. $\psi \sim \psi'$ if whenever $g \nsim g'$ in *G* then $\psi(g) \cdot \psi(g') = 0$.

1. $G \xrightarrow{ns} H$ iff there exists a kleisli morphism $G \to \mathbb{D}H$ 2. $G \cong H$ iff there exists a kleisli isomorphism $G \cong_{kl(\mathbb{D})} H$ 3. $G \xrightarrow{ns} H$ iff $G \rightleftharpoons_{kl(\mathbb{D})} H$

- It is worth noting that non-signalling homomorphism is a trivial relationship. The players can perfectly win this game on almost any pair of graphs.
- Non-signalling isomorphism however, corresponds to fractional isomorphism, a wellstudied linear algebraic relaxation of graph isomorphism

Conclusions

- We have provided a monadic account of perfect strategies for the graph homomorphism and isomorphism games.
- For each type of strategy t ∈ {c, *, co, ns} the existence of a perfect strategy in the homomorphism game corresponds to the existence of a morphism in the kleisli category of a suitable (graded) monad.
- perfect strategies for the isomorphism game correspond to the existence of a suitable pair of back-and-forth morphisms in the same kleisli category. It remains to be seen if this description can be further refined.
- These ideas should be applicable to the well-studied class of synchronous non-local games, and to a generalisation of this class known as imitation games.