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Monads

A monad is a triple (7, 1, ;1) where:
1.T: C — Cis an endofunctor.
2. The unit i7: id; — T'is a natural transformation.

3. The multiplication 12: 7> — Tis a natural transformation.

And the following equations hold:
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Monads

Monads model effectful computation e.g. nondeterminism, probabilities.

An effectful computation from A to B is represented as a morphism A — MB and can
be composed in the Kleisli category KI(M) of a monad M:

* Obj(KI(M)) = Obj(C)

o Homyy (A, B) = Hom(A, MB)

o id. =1,

e gof =X MY & MZ where:
-f:X—>MYandg:Y > MZ
- g% = p o Mg



Example: Distribution Monad

The distribution monad (<, », 1) on the category of sets and functions is given by:
1. DX s the set of all functions of the form y : X — [0,1] where 2 iy (x) = 1.
2. nylx) =1x

3. ux(W)(x) = Zyegxw (@) . P(x)



Example: Distribution Monad

A
e Morphisms X — 9Y in the kleisli category of < are row stochastic maps.

All rows add to 1




Example: Quantum Tensor Monad

e An (orthogonal) projection matrix is a square matrix P satisfying P = P? = P*
» We write proj(d) for the set of d X d projection matrices.

The (graded) quantum tensor monad (@ 4, 77, ,ud’d’) on the category of sets and
functions is given by:

1. @, X is the set of all functions of the form y : X — proj(d) where 2, .y (g) = 1.

o,(a) =1,

2. Ny(x) =0, € QX where forx # x": {561(5’/) =0,

3. urt W) = Zyeq x¥ () ® P(x)



Example: Quantum Tensor Monad

A
e We shall call Morphisms X — @Y in the kleisli category of @, row projective
permutation matrices.

Al Ap 10\ /00\ /00

Aryy Ay (O O) (O 1) 00
A= ; B (00) 10) (oo)

A, Ay _ o1 0)\oo/

All rows add to [

 Think of this as a variant of the distribution monad where probabilities are replaced
with projectors. Each row thus represents a PVM.



Non-local game

Alice Bob

1. Referee sends a question to each player

2. Players answer without communicating

a a' 3. Win if answers satisfy some predefined
conditions.
q q'
TN

Note that players Can agree on a strategy
beforehand.

Referee .
We focus only on perfect strategies.




Classical Strategies

Alice Bob

. £  Deterministic functions f, and f,.

g Y p(f,(x), (M |x,y) =1

Referee



Quantum Tensor Strategies

Alice Bob

e Hilbert spaces # 4, and #
e Shared entangled state y € #', Q #

e Foranyinputs x,y, POVMs {A,  },, {B,}, acting on
H yand Z g

p(a, b |X, y) — WTAx,a X By,bl//

Referee



Quantum Commuting Strategies

Alice Bob

Hilbert space #

Shared entangled state y € #

For any inputs x, y, POVMs {A, .}, { B, ; };, acting on
H

« A, and B, commute for all x, a, y, b.

p(aa b | X, y) — WTAx,aBy,bl/j

Referee



Non-Signalling Strategies

Alice Bob

* Any strategy where:

2 P00 V1% %) = D7 POl Vo | s 3) Vs Vo X0
Yb Vb

* Most general class of strategies with no communication.

Referee



(G, H)-Homomorphism Game

Alice Bob

Referee

Intuition: Alice and Bob want to convince referee that
G- H

1. Referee sends them both vertices of G
2. They respond with vertices of H

3. Win if adjacency and equality preserved

t
We write G — H whenever the game has a winning
t-strategy for ¢t € {c, * ,co, ns}




(G, H)-Isomorphism Game

Alice Bob

Intuition: Alice and Bob want to convince referee that G =~ H

1. Referee sends vertices from either graph

h h'
. 2. Players respond with vertices from other graph
g g
3. Win if vertex relationships preserved
4 2

t
We write G = H whenever the game has a winning t-
strategy for t € {c, *,co,ns}

Referee



Classical Strategies

(G,H)-Homomorphism game admits a perfect classical strategy iff G — H. .
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[1] Mancinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016):
228-267.



Classical Strategies

f [1]: The (G,H)-isomorphism game admits a perfect classical strategy iff G =~ H.

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." Journal of Combinatorial Theory, Series B 136 (2019):
289-328.



Quantum Tensor Strategies

e A N I T B A N B A R TP B P O I B AP P SR S Tr BN apeys s . PRIGAAPS:

,ff 1]: G —> H iff there exists projectors Agh satisfying

1. Y A, =1Vg € V(G)
 heV(H)
2. (g~ g &h=l) = AyAgy =0

= e Ve

STk A

SRR

e (Condition 1 is equivalent to the existence of a row projective permutation map.

A Ap A
Ay Ay Ay
_ Aql Aq2 Aqs i

 (Condition 2 places constraints on elements of the block matrix

[1] Mancinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016):
228-267.



Quantum Tensor Strategies

oy Y

!ﬁ >~ H iff there exists projectors A, satisfying

. ) A, =1Vg e V(G) k

. heV(H) i

2. Y A, =IVhe VH) &
geV(G) |

3 (g ~ g, & h 2ad h/) V (g ~ g/ & h ~ h/) —> AghAg’h’ = O —> AghAg’h’ — O i

 (Condition 2 enforces that the columns of the matrix also add up to the identity. This
structure is sometimes referred to as a projective permutation matrix.

[1] MancCinska, Laura, and David E. Roberson. "Quantum homomorphisms." Journal of Combinatorial Theory, Series B 118 (2016):
228-267.



Quantum Monad on Graphs

e The Quantum monad Q, on the category of graphs and graph homomorphisms is
defined as follows:

1. It acts exactly the same way as @ ; on the set of vertices of the graph.

2. y ~ ' if whenever g ~ g’in G then y(g).y(g’) =0

 So do Kleisli isomorphisms correspond to quantum tensor isomorphism? Nope!

NI AR BRI R T R e e e L R o L I s T e e o o PGP (DS s e o S

/ G H |ff there exists a k|eIS|I |somorph|sm G _kl(@ ) H

[1] Abramsky, Samson, et al. "The quantum monad on relational structures." arXiv preprint arXiv:1705.07310 (2017).



Quantum Monad on Graphs

* To capture quantum isomorphism we need an intermediate notion of equivalence.

A B
« Wewrite G 2yq, H iff there exists morphisms G — Q,H and H — Q,G such

that A = B'
| [Theorem, MR16] G = H iff & =yq, H

* This is somewhat reminiscent of a result in [1]:

We now define the relation A &, B if there are co-
Kleisli arrows f : TxA — B and g : TxB —— A such
that 5, = 5.

Theorem 20. For all finite structures A and B:
A2, B «<— A='B.

[1] Abramsky, Samson, Anuj Dawar, and Pengming Wang. "The pebbling comonad in finite model theory." 20717 32nd Annual ACM/
IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017.



Quantum Commuting Strategies

oAy

[1]: G S H iff there exists a unital C*-algebra of and projections U, € A satisfying ’

GOy

1. Z u,, = 1Vg € V(G) k
‘ heV(H)
(g i g, & h ead h,) — l/tghug/h/ — O ¥

 Again we can arrange these projectors into a matrix. We will call a matrix satisfying
condition 1 above a row quantum permutation matrix.

(uir uiz -+ uiy )
U1 U2 c- UM

\uNl UN - uNM/

[1] Ortiz, Carlos M., and Vern |. Paulsen. "Quantum graph homomorphisms via operator systems." Linear Algebra and its Applications
497 (2016): 23-43.



Quantum Commuting Strategies

o o e e

, [1]: G = H iff there exists a unital C*-algebra &/ and projections u,, € 4/ satisfying

1. Y uy=1Yg € V(G)
5 heV(H)

. .

2. Y uy=1Vhe VH)
L geV(6)
3. (g~ g &hmh)V(gw g &h~h) = Uyt =0

* Here we have what is known as a quantum permutation matrix or magic unitary.

(uir uiz -+ uiy )
U1 U2 - UM

[1] Atserias, Albert, et al. "Quantum and non-signalling graph isomorphisms." Journal of Combinatorial Theory, Series B 136 (2019):
289-328.



Quantum Commuting Endofunctor

e Fix an arbitrary unital C*-algebra &/ and write proj(</) for its projections.
e Then we can define an endofunctor (0, as follows:

1. V(QG) is the set of all functions of the form y : V(G) — proj(«) where
ZgeV(G)l//(g) = 1.

2. y~y'in QG if whenever g » g'in Gtheny(g) .w(g") = 0.



Putting a graded monad structure on Q, ?

Can we use (), to construct a graded quantum commuting monad?Coming up with
a unit seems straightforward. 775(x) = [,

Putting a multiplication structure on QQ , is more difficult. it is not immediately clear
what the grading should be.

Consider the monoid (M, ® ,C) whose elements are unital C*-algebras. We can use
this monoid to define a graded quantum commuting monad.

Row quantum permutation matrices will then be composed in the kleisli category
using the “Woronowicz tensor product”:

N N
udbv .= Z Eij® (Zuik®vk]‘).

i,j=1 k=1



Example: Quantum Commuting Monad

The (graded) quantum commuting monad (Q , 7, ,u‘d "@) IS given by:

1. QG is defined as before.

o,(a) =1,

2. Ny(x) =0, € QX where forx # x": {561(“’) 0,

3. ud W) = Zyeg x¥ () ® p(x)

Note that if we limit ourselves to those C*-algebras whose elements are n by n matrices
we recover the quantum tensor monad.

1. G S H iff there exists a Kleisli morphism G — Q _H
2. G = H iff there exists a kleisli isomorphism G =@, H
3. GEHIfG 2yq,H

P i . R i S s e = ACHNENE e arsa BRETRITERS




Non-Signalling strategies

* We define a variant of the distribution monad D on the category of graphs.

1. It acts exactly the same way as & on the set of vertices of the graph.

2. yw ~ y'if whenever g » g"in Gtheny(g).y(g) =0

1. G 5 H |ff there eX|sts a klelsll morphlsm G- [DH
'2 G H iff there exists a kleisli isomorphism G =,y H

ks PR RO R o GRS R TR NIRRT VNSNS i i S Vot - .

* [t is worth noting that non-signalling homomorphism is a trivial relationship. The
players can perfectly win this game on almost any pair of graphs.

* Non-signalling isomorphism however, corresponds to fractional isomorphism, a well-
studied linear algebraic relaxation of graph isomorphism



Conclusions

We have provided a monadic account of perfect strategies for the graph
homomorphism and isomorphism games.

For each type of strategy t € {c, * ,co, ns} the existence of a perfect strategy in the
homomorphism game corresponds to the existence of a morphism in the kleisli
category of a suitable (graded) monad.

perfect strategies for the isomorphism game correspond to the existence of a
suitable pair of back-and-forth morphisms in the same kleisli category. It remains to
be seen if this description can be further refined.

These ideas should be applicable to the well-studied class of synchronous non-local
games, and to a generalisation of this class known as imitation games.



