COMPLEXITY OF
PROOF SEARCH

Albert Atserias

Universitat Politecnica de Catalunya
Barcelona

PROOF COMPLEXITY

Proof Search/Proof Size Estimation

for a language

/ with a semantics

given a tautology,
1) find a proof.
2) estimate the complexity of its simplest proof

- /

for a proof system

for a complexity measure _
that is sound and complete

for proofs

The Complexity of Theorem-Proving Procedureg

Stephen A. Cook

University of Toronto

Summarz

It is shown that any recognition
problem solved by a polynomial time-
bounded nondeterministic Turing
machine can be "reduced" to the pro-
blem of determining whether a given
propositional formula is a tautology.
Here '"'reduced' means, roughly speak-
ing, that the first problem can be
solved deterministically in polyno-
mial time provided an oracle is
available for solving the second.
From this notion of reducible,
polynomial degrees of difficulty are
defined, and it is shown that the
problem of determining tautologyhood
has the same polynomial degree as the
problem of determining whether the
first of two given graphs is iso-
morphic to a subgraph of the second.
Other examples are discussed. A
method of measuring the complexity of
proof procedures for the predicate
calculus is introduced and discussed.

certain recursive set of strings on
this alphabet, and we are interested
in the problem of finding a good
lower bound on its possible recog-
nition times. We provide no such
lower bound here, but theorem 1 will
give evidence that { tautologies} is

a difficult set to recognize, since
many apparently difficult problems
can be reduced to determining tau-
tologyhood. By reduced we mean,
roughly speaking, that if tauto-
logyhood could be decided instantly
(by an "oracle'") then these problems
could be decided in polynomial time.
In order to make this notion precise,
we introduce query machines, which
are like Turing machines with oracles
in [1].

A query machine is a multitape
Turing machine with a distinguished
tape called the query tape, and
three distinguis%ed states called
the query state, yes state, and no
state, respectively. If M is a

[Cook, 1971]: ACM STOC’71

The field of mechanical theorem
proving badly needs a basis for com-
paring and evaluating the dozens of pro-
cedures which appear in the literature.
Performance of a procedure on examples
by computer is a good criterion, but not
sufficient (unless the procedure proves
useful in some practical way). A theo-
retical complexity criterion 1s needed
which will bring out fundamental limita-

[Cook, 1971]: ACM STOC’71

Comparison by p-simulation
[Reckhow 1975], [Cook-Reckhow 1974]

T~ It’s the kick off
Q and P proof systems for TAUT/UNSAT of proof complexity

Def:

Q p-simulates P

iff

there is a poly-time computable f such that

if v is a P-proof of x, then f(y) is a Q-proof of x.

Resolution Inference Rule

given Cvx and D v-x infer Cv D

/ / \

left premise right premise resolvent

Tree/Dag Proofs, Size, and Width

empty clause

F
A)
CironCovn G (Dl, iy Dj, eees Dyy e, Dy oo, D = ?
‘ NLeft ‘Right ‘

[Hypothesis

the proof-graph

min { length(P) : P is a Resolution refutation of F }
min { length(P) : P is a Tree-like Resolution refutation of F }
min {max { |D,| }: P is a (Tree-like) Resolution refutation of F }

SDag(F)
STree(F) .=
W(F)

AUTOMATABILITY

Definition of automatability

Def: P is AUTOMATABLE in time t(s)
if
an algorithm finds P-proofs in time t(s)
the size s of smallest P-proof

[Bonet, Pitassi, Raz 97]

Proof size estimation problem

Fact:

If P is automatable in time t(s),

then optimal proof-size for P is t(s)-approximable
(in time t(s)).

opt < estimate < t(opt)

CHARACTERIZATIONS
OF PROOF MEASURES

Understanding Provability

Which F have (low complexity) refutations?

Which F do not have (low complexity) refutations?

N

Answer: Those that are “locally” satisfiable

Locally Consistent Assignments

Credit:

Ascending and Descending
by M. C. Escher, 1960

Locally Consistent Assignments

Locally Consistent Assignments

Locally Consistent Assignments

Locally Consistent Assignments

Locally Consistent Assignments

Locally Consistent Assignments

The width-k Prover-Adversary game

Let F be a k-CNF with variables [n], let w = k+1 an integer.
Let M, (n) = { partial truth assignments f with |f| < w }

Goal of Prover:

reach an f that

- the positions are the fin M, (n), / falsifies a clause
of F.

Prover and Adversary play a game:

- query moves:
Prover queries a variable,
Adversary assigns a value,

- shrinking moves:
Prover suggests to discard some earlier assignments,

Adversary happily accepts.

The width-k Prover-Adversary game
H is the

/ winning region
Def: [Kolaitis-Vardi 2000], [A.-Dalmau 2004] for Adversary

A winning strategy for Adversary in the width-w game on F
isasetH < M,(n) of partial truth assignments s.t.:

1) H is non-empty,

2) fin H= fis consistent with F,

3)finHandg &S f=ginH,

4)finH, |Domf|l <w,xinF=3bin{0,1}st.fU{x:=b}inH.

Characterizes Resolution Width

Theorem: [A.—Dalmau 2004]
Let F be a k-CNF. Let w = k+1.
The following statements are equivalent:

1) there is no width-w Resolution refutation of F,
2) there is a winning strategy for Adversary in the width-w game on F.

S

Not a difficult theorem:
just extremely useful...

IS THERE A GOOD
CHARACTERIZATION OF
RESOLUTION SIZE?

The Size-Width Relationships

Theorem: [Ben-Sasson-Wigderson 2001]
Let F be a 3-CNF with n variables. Then:

W (F) nW(F)

W)

IA
IA

STree(}:)
ZCW(F)Z/n < SDag(F)

IA

Solving for W(F) ...

Corollary: Tree-like Resolution size is 12198 $)_approximable.

Corollary: General Resolution size is n0G/nlogs) -approximable.

Tree-like Resolution

Theorem [Beame, Pitassi 98]

Tree-like Resolution is automatable in time n?108 5)

number of

, size of smallest
variables

tree-like refutation

General Resolution

Theorem [Ben-Sasson, Wigderson 99|

Resolution is automatable in time nO(\/" log s)

e

fors = poly(n),k =3
this is exp(n'/? log(n)3/?).
Compare with ETH.

Beame-Pitassi Algorithm

X;
0 1
<s/2
>
flipover <s/2
G
\ / -

\

/ decision tree for

tree-like Resolution the falsified clause
refutation of size s search problem

Algorithm

Given F and s.
Guess i and b and recurse on F[x.=b] and s/2.
Then recurse on F[x.=1-b] and s-1.

\

Subtle: Don’t know

1-b

if the guess that worked
is the root of the optimal tree!

Analysis

number of
variables target

X;
// size 1_b b
R(n, s) =2n R(n-1, 5/2) + R(n-1, s-1) + n°M)
\ <s/2
number of
choices in guess Cj
Ci

Solution; nOflogs)

FEASIBLE
INTERPOLATION

Craig Interpolants

F(X, y) A G(X, Z) : suppose this is

unsatisfiable.

—||NT(X) — —IF(X, y) e
/ INT(x) = —=G(X, z) tautologies.

INT(x) tells which one
is unsatisfiable,
for each given x.

Interpolants in graph theory

CLIQUE,,(x, y) := “y codes a k+1-clique of x”
COL.(x, z) := “z codes a proper k-coloring of x”

b

x codes a graph

CLIQUE,,,(x, y) ACOL,(x, z)

T unsatisfiable

(by the PHP)

What are its interpolants?

“vis k+1-clique of x” A “zis k-coloring of x”

-INT, (X) = “w(x) £ k”

/ INT(x) = “¥(x)>k”

E.g. Lovasz’s Theta “U(x) > k”

Interpolants in Cryptography
ONEi(x, y) := “fly)=xandy =1"
ZERO\(x, z) := “f(z)=xand z =0"
a permutation that is

easy to compute

hard to invert unsatisfiable
/ since f is 1-to-1
ON Ei(X, Y) AZEROi(X, Z)

What are its interpolants?

144

“fly)=xandy, =1" A “f(z) =xand z =0

=INT.(x) — “f1(x), =0"
INT,(x) — “f1(x)=1"

N\

any interpolant inverts
the function (its i-th bit)

Feasible Interpolation

Def: P has feasible interpolation:

all unsatisfiable F(x,y) A G(x,z) have
interpolants of circuit-size polynomial in
the size of their smallest P-refutations.

[Krajicek 1997]

Resolution has feasible interpolation

Theorem: [Krajicek 1997
Resolution has feasible interpolation.

Interpolation algorithm: restrict & split

F(x,y) A G(x,z) F'(v) A G'(z)
\\\V///' . \\\v///
restrict
0) 1)

YVvIvz, Y'vZ'v-z Y’ vz, 7I'Vv-z

N2 AN

VvY vZvyZ split Vv Y’ 7\ 7"

cut (z case) weakening cut

INTERPOLATION
AND
AUTOMATABILITY

Automatability implies Interpolation

Lemma: [Bonet, Pitassi, Raz 97]
If a proof system is automatable,
then it has feasible interpolation.

The BPR argument

suppose this
has P-refutation
of size s

F(x, v) A G(X, 2)

INT(Xo) := REFp06)(<G(Xo, 2)>, A(<G(Xq, 2)>))

—

verlflfer O: , If A is an automating algorithm for P
Proot system then this is an interpolant

Strong systems lack feasible interpolation

Theorem |[Krajicek, Pudlak 98]
Extended Frege does not have feasible interpolation
unless RSA is broken by poly-size circuits

The Krajicek-Pudlak Argument

The statements

“RSA(y,k)=xand y,=1" A “RSA(z,k)=x and z, = 0"

have poly-size Extended Frege refutations.

Q.E.D.

First Non-Automatability Result: EFrege

Corollary
Extended Frege is not automatable
unless RSA is invertible in poly-time

N

Well beyond resolution Cryptographic assumption:

l.e., hardness of NP N co-NP ...

SOUNDNESS PROOFS
AND
AUTOMATABILITY

Interpolants of soundness statements

SAT(x, v) := “y codes a satisfying assignment of x”
REFp(X, z) := “z codes a P-refutation of x”

/ codes a CNF .

) a contradiction
proo - since P is sound
system the size

s=|z]

SAT(x, yv) A REFp(x, 2)

Interpolants of soundness statements

SAT(x, v) A REFp4(x, 2)

-INT(x) — -SAT(x, V)

/ INT(x) = —=REF4(x, 2)
AN

interpolant

exists by Sort of dual to

tf;e soundness what a SAT-solver does!
of P

If P is automatable
then there is a poly-time interpolant

/

INT(x) := =REFp (X, A(x))

SAT(x, v) A REFp4(x, 2)

automating

polynomial runtime _
algorithm of P

of automating algorithm

If Q p-simulates P
SAT(X, v) A REFP,s(Xz Z) and Q is automatable

then there is a poly-time interpolant

~

INT(X) .= _'REFQ,p(q(S))(XI A(X))

/

polynomial loss

in automating algorithm automating

polynomial loss algorithm of Q

in p-simulation
[Pudlak 2001]

Weak Automatability

Theorem [Pudlak 2001]:
The following are equivalent:

(1) SAT & REF formulas for P have polytime interpolants
(2) there exists an automatable Q that p-simulates P

l.e., P is weakly automatable in Q
[A., Bonet 2003]

Resolution proofs of own soundness?

Theorem |[A., Bonet 2003]
Resolution proofs of its own soundness
must be of superpolynomial in size
but poly-size Res(2)-proofs do exist!

.

Lower bound by reduction from Resolution with 2-DNFs
CLIQUE & COL formulas instead of clauses

AUTOMATING
RESOLUTION
IS HARD

The Alekhnovich-Razborov Theorem

Theorem |[Alekhnovich-Razborov 2001]
Resolution is not automatable

unless W[P] is tractable
[

- still relied on a strong assumption.

- best lower bound: time nl98108(W°** " nder ETH [Mertz-Pitassi-Wei 19]
- applies to tree-like Resolution!

Automating Resolution is NP-hard

Theorem [A., Miller 2019]
Resolution is not automatable
in polynomial-time unless P = NP
nor in subexponential-time unless ETH fails

N

- optimal assumption
- new method
- based on soundness proofs!

A glimpse at the proof

Find a map that takes CNFs into CNFs

olytime
r poly G

SMALL

v

Fissat = min-size(G) < |G|17¢

1
Fis unsat = min-size(G) £ exp(|G|z °)

/

minimum Resolution \
. . BIG
refutation size

The easy/hard formula

G := RREF(<F>, 7)

/ for poly length z

a minor variant of REF

Upper bound : Uses the small soundness proof of Resolution in Res(2)!
Lower bound : Adversary argument to mimic the exponentially big refutation.

Below/Beyond Resolution?

Thm: [de Rezende’21]
Tree-like Resolution is not automatable
in less than quasipolynomial time
unless ETH fails

Fissat = min-tree-size(G) < 2eVN
Fis unsat = min-tree-size(G) £ 2%V

THE BIG REMAING PROBLEM

Is Resolution Weakly Automatable?

Difficulty:
Equivalent to distinguishing:
/ satisfiable formulas (SAT)

ot from
sre _——— shortly refutable formulas (REF 1)
problems

in NP

THE END

