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PROOF COMPLEXITY



given a tautology, 
1) find a proof.
2) estimate the complexity of its simplest proof

for a language 
with a semantics

for a proof system
that is sound and complete

Proof Search/Proof Size Estimation

for a complexity measure
for proofs



[Cook, 1971]: ACM STOC’71



[Cook, 1971]: ACM STOC’71



Comparison by p-simulation 

Q and P proof systems for TAUT/UNSAT

Def: 
Q p-simulates P
iff
there is a poly-time computable f such that
if y is a P-proof of x, then f(y) is a Q-proof of x.

[Reckhow 1975], [Cook-Reckhow 1974]

It’s the kick off 
of proof complexity



given    C ∨ x    and    D ∨ ¬x    infer C ∨ D

left premise right premise resolvent

Resolution Inference Rule



𝐶!, … , 𝐶" , … , 𝐶#: 𝐷!, … , 𝐷$ , … , 𝐷%, … , 𝐷& , … , 𝐷' = ∅
Left RightHypothesis

SDag(F)    :=   min { length(P) : P is a Resolution refutation of F }
STree(F) :=   min { length(P) : P is a Tree-like Resolution refutation of F }
W(F) :=   min { max { |Dj| } : P is a (Tree-like) Resolution refutation of F }

empty clause

the proof-graph

Tree/Dag Proofs, Size, and Width

F P



AUTOMATABILITY



Def: P is AUTOMATABLE in time t(s)
if

an algorithm finds P-proofs in time t(s)
the size s of smallest P-proof

[Bonet, Pitassi, Raz 97]

Definition of automatability



Fact: 
If P is automatable in time t(s),
then optimal proof-size for P is t(s)-approximable
(in time t(s)).

Proof size estimation problem

opt ≤ estimate ≤ t(opt)



CHARACTERIZATIONS
OF PROOF MEASURES



Understanding Provability

Which F have (low complexity) refutations?

Which F do not have (low complexity) refutations?

Answer: Those that are “locally” satisfiable



Locally Consistent Assignments

Credit:
Ascending and Descending
by M. C. Escher, 1960



Locally Consistent Assignments
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Locally Consistent Assignments



Let F be a k-CNF with variables [n], let w ≥ k+1 an integer.
Let Mw(n) = { partial truth assignments f with |f| ≤ w }

Prover and Adversary play a game: 
- the positions are the f in Mw(n),
- query moves: 
  Prover queries a variable, 
  Adversary assigns a value, 
- shrinking moves: 

  Prover suggests to discard some earlier assignments,
  Adversary happily accepts.

The width-k Prover-Adversary game 

Goal of Prover:
reach an f that
falsifies a clause
of F.



The width-k Prover-Adversary game 

Def: [Kolaitis-Vardi 2000], [A.-Dalmau 2004]
A winning strategy for Adversary in the width-w game on F
is a set H ⊆	Mw(n) of partial truth assignments s.t.:

1) H is non-empty,
2) f in H ⟹ f is consistent with F,
3) f in H and g ⊆ f ⟹ g in H,
4) f in H, |Dom f| < w, x in F ⟹ ∃ b in {0,1} s.t. f ∪ { x := b } in H.

H is the
winning region
for Adversary



Theorem: [A.–Dalmau 2004]
Let F be a k-CNF. Let w ≥ k+1.
The following statements are equivalent:

1) there is no width-w Resolution refutation of F,
2) there is a winning strategy for Adversary in the width-w game on F.

Characterizes Resolution Width 

Not a difficult theorem:
just extremely useful...



IS THERE A GOOD
CHARACTERIZATION OF

RESOLUTION SIZE?



Theorem: [Ben-Sasson-Wigderson 2001]
Let F be a 3-CNF with n variables. Then:

  2( )  ≤ STree(F) ≤ 𝑛(()) 
  2,(())!/. ≤ SDag(F) ≤ 𝑛(())

The Size-Width Relationships



Solving for W(F) ...

Corollary: Tree-like Resolution size is 𝑛/(012 ')-approximable.

Corollary: General Resolution size is 𝑛/( . 012 ') -approximable.



Theorem [Beame, Pitassi 98]
Tree-like Resolution is automatable in time 𝑛!(#$% &)

size of smallest
tree-like refutation

number of
variables

Tree-like Resolution



Theorem [Ben-Sasson, Wigderson 99]
Resolution is automatable in time 𝑛!( ( #$% &)

for 𝑠 = poly 𝑛 , 𝑘 = 3
this is exp(𝑛!/# log 𝑛 $/#).
Compare with ETH.

General Resolution



xi
0 1

xi ¬xi

∅

Ci

Cj

Ci

Cj

decision tree for
the falsified clause 

search problem
tree-like Resolution
refutation of size s

flipover

< s/2

< s/2

Beame-Pitassi Algorithm



xi
1-b b

Ci

Cj

< s/2

Algorithm

Given F and s.
Guess i and b and recurse on F[xi=b] and s/2.
Then recurse on F[xi=1-b] and s-1.

Subtle: Don’t know 
if the guess that worked 
is the root of the optimal tree!



xi
1-b b

Ci

Cj

< s/2

Analysis

R(n, s) = 2n R(n-1, s/2) + R(n-1, s-1) + nO(1)

number of
variables target

size

Solution:   nO(log s)

number of
choices in guess



FEASIBLE
INTERPOLATION



￢INT(x)➝ ￢F(x, y)

INT(x) ➝ ￢G(x, z)

Craig Interpolants

F(x, y) ∧ G(x, z) suppose this is
unsatisfiable.

INT(x) tells which one
is unsatisfiable,
for each given x.

Then these are
tautologies.



Interpolants in graph theory

CLIQUEk+1(x, y)  :=   “y codes a k+1-clique of x”
COLk(x, z)  :=   “z codes a proper k-coloring of x”

x codes a graph

CLIQUEk+1(x, y) ∧COLk(x, z) 
unsatisfiable
(by the PHP)



¬INTk(x)  ➝ “𝜔(x) ≤ k”

INTk(x)  ➝ “𝜒(x) > k”

What are its interpolants?

“y is k+1-clique of x”  ∧ “z is k-coloring of x”

E.g. Lovász’s Theta “𝜗(x) > k”



ONEi(x, y)  :=   “f(y) = x and yi = 1”

ZEROi(x, z)  :=   “f(z) = x and zi = 0”

Interpolants in Cryptography

ONEi(x, y) ∧ZEROi(x, z)

a permutation that is
easy to compute 
hard to invert unsatisfiable

since f is 1-to-1



¬INTi(x)  ➝ “f -1 (x)i = 0”

INTi(x)  ➝ “f -1 (x)i = 1”

What are its interpolants?

“f(y) = x and yi = 1”  ∧ “f(z) = x and zi = 0”

any interpolant inverts 
the function (its i-th bit)



Feasible Interpolation

Def: P has feasible interpolation: 

all unsatisfiable F(x,y) ∧ G(x,z) have 
interpolants of circuit-size polynomial in 
the size of their smallest P-refutations.

[Krajicek 1997]



Resolution has feasible interpolation

Theorem: [Krajicek 1997]
Resolution has feasible interpolation.



Interpolation algorithm: restrict & split

Y v Z v zi Y’ v Z’ v ¬zi

Y v Y’ v Z v Z’

Y Y’

Y v Y’

Z v zi Z’ v ¬zi

Z v Z’

F(x,y) ∧ G(x,z)

weakening cut

∅

cut (z case)

F’(y) ∧ G’(z)

∅
restrict

split



INTERPOLATION
AND

AUTOMATABILITY



Automatability implies Interpolation

Lemma: [Bonet, Pitassi, Raz 97]
If a proof system is automatable, 
then it has feasible interpolation.



The BPR argument

F(x, y) ∧ G(x, z)

INT(x0) := REFP,p(s)(<G(x0, z)>, A(<G(x0, z)>))

suppose this
has P-refutation
of size s

If A is an automating algorithm for P
then this is an interpolant

verifier of 
proof system P



Theorem [Krajicek, Pudlak 98]
Extended Frege does not have feasible interpolation

unless RSA is broken by poly-size circuits

Strong systems lack feasible interpolation



The Krajicek-Pudlak Argument

The statements

“RSAi(y,k)=x and yi = 1”  ∧ “RSAi(z,k)=x and zi = 0” 

have poly-size Extended Frege refutations.

Q.E.D.



Corollary
Extended Frege is not automatable
unless RSA is invertible in poly-time

First Non-Automatability Result: EFrege

Well beyond resolution Cryptographic assumption:
I.e., hardness of NP ∩co-NP ...



SOUNDNESS PROOFS
AND

AUTOMATABILITY



Interpolants of soundness statements

SAT(x, y) := “y codes a satisfying assignment of x”
REFP,s(x, z) := “z codes a P-refutation of x”

proof
system the size

s = |z|

SAT(x, y) ∧ REFP,s(x, z)

a contradiction
since P is sound

codes a CNF



¬INT(x) ➝ ¬SAT(x, y)
INT(x) ➝ ¬REFP,s(x, z)

Interpolants of soundness statements

interpolant
exists by 
the soundness
of P

Sort of dual to
what a SAT-solver does!

SAT(x, y) ∧ REFP,s(x, z)



INT(x) := ￢REFP,p(s)(x, A(x))

automating 
algorithm of P

polynomial runtime
of automating algorithm

If P is automatable
then there is a poly-time interpolantSAT(x, y) ∧ REFP,s(x, z)



If Q p-simulates P 
and Q is automatable
then there is a poly-time interpolant

INT(x) := ￢REFQ,p(q(s))(x, A(x))

automating 
algorithm of Qpolynomial loss 

in p-simulation

polynomial loss
in automating algorithm

[Pudlák 2001]

SAT(x, y) ∧ REFP,s(x, z)



Theorem [Pudlák 2001]: 
The following are equivalent:

(1) SAT & REF formulas for P have polytime interpolants
(2) there exists an automatable Q that p-simulates P

Weak Automatability

I.e., P is weakly automatable in Q
[A., Bonet 2003]



Resolution proofs of own soundness?

Theorem [A., Bonet 2003]
Resolution proofs of its own soundness 

must be of superpolynomial in size
but poly-size Res(2)-proofs do exist!

Lower bound by reduction from
CLIQUE & COL formulas

Resolution with 2-DNFs 
instead of clauses



AUTOMATING 
RESOLUTION

IS HARD



Theorem [Alekhnovich-Razborov 2001]
Resolution is not automatable

unless W[P] is tractable

- best lower bound: time 𝑛loglog(&)!.#$, under ETH [Mertz-Pitassi-Wei 19] 
- applies to tree-like Resolution!

The Alekhnovich-Razborov Theorem

- still relied on a strong assumption. 



Theorem [A., Müller 2019]
Resolution is not automatable

in polynomial-time unless P = NP
nor in subexponential-time unless ETH fails

Automating Resolution is NP-hard

- optimal assumption
- new method
- based on soundness proofs!



𝐹
polytime

𝐺

F is sat min-size(𝐺) ≤ |𝐺|!"#

F is unsat min-size(𝐺) ≰ exp( 𝐺
(
)$#)

Find a map that takes CNFs into CNFs

SMALL

BIG

A glimpse at the proof

minimum Resolution 
refutation size



for poly length z

The easy/hard formula

Upper bound : Uses the small soundness proof of Resolution in Res(2)!
Lower bound : Adversary argument to mimic the exponentially big refutation.

a minor variant of REF

G := RREF(<F>, z)



Below/Beyond Resolution?

Thm: [de Rezende’21]
Tree-like Resolution is not automatable 

in less than quasipolynomial time
unless ETH fails

F is sat min-tree-size(𝐺) ≤ 2% &

F is unsat min-tree-size(𝐺) ≰ 2'&



THE BIG REMAING PROBLEM



Is Resolution Weakly Automatable?

Difficulty: 
Equivalent to distinguishing: 
 satisfiable formulas (SAT)
 from 
 shortly refutable formulas (REFpoly)

both 
are 

problems 
in NP



THE END


