Fluid: A Programming Language for Open,
Explorable Research Outputs

Conducting science in the open and making source code and data freely available is an
essential part of modern scientific practice, but does not address the challenge of how to
explore and understand the complex relationships between data and computational
outcomes. Fluid [1, 2] is a new kind of programming language that makes it easy to create
data-driven software artefacts with built-in transparency features. For example (Figure 1)
a data visualisation might automatically highlight relevant parts of an underlying dataset as
visual elements are selected, and (optionally) produce computational “explanations” of how
those data elements were aggregated or otherwise operated on during the computation of
the selected visual elements. This is achieved using dependency-tracking techniques based
on Galois connections, a mathematical abstraction able to represent fine-grained
relationships between inputs and outputs.

|

GuawiM " Pu?..\l'ih‘\-l:ﬂh\ ol.'&h.h.‘i-\l

.IE”F Il) JIGHUHT I leg:.lo - f‘m r"frabw

woo | 7o [BEB Y.V d20z0 = plote /lEEE
= | W s Youil = d2o2s /Jd00
5| ¢ — /‘ '
s Lo v-.:fr':l.na[A ploal
Gy ° U“-.j-il.julnj o P’L F‘ ly
_..é:" dara o aeliaicin
£
=1 ¢

i | l '_::

LB T \
- 10%e L +10%%

Fluid is being developed at the Institute of Computing for Climate Science, Cambridge,
with collaborators at University of Bristol. Over the next year or so we plan to evolve Fluid
into a mature platform for communicating science in a way that allows an interested reader
to interact with outputs such as charts to better understand what they represent: how
specific visual elements relate to the data they were computed from.

The following two extensions to Fluid would make for a suitable Part Il project. Your project
could involve formal/theoretical elements, interpreter implementation, Ul work, data
visualisation/analysis, and case studies, in any combination to suit your interests and

background.

Project 1: Macros and quasiquotation for authoring interactive papers

Macros are special user-defined functions that produce code rather than data, and are are
useful for creating embedded domain-specific languages which allow solutions to be

(efficiently) expressed in a language close to a chosen problem domain. In Fluid, we will use
macros to provide convenient surface notations for use by data scientists and data
journalists, which can then be translated into the core language for efficient execution. Your
project will involve formally defining a macro mechanism, extending Fluid’s
dependency-tracking infrastructure to the macro expansion phase (when any macros in the
user’s program are expanded), and developing interesting case studies that show the
feature in action. You could extend this to a Scheme-style quasiquotation [3] mechanism
that would allow literals (such as Markdown documents) to contain embedded Fluid code
which, when evaluated, would splice charts and tables into the containing document.

Project 2: Notebook-style reversible debugger with dependency tracking

For dependency-tracking, Fluid must retain all the information about program execution that
is normally thrown away. This presents an interesting opportunity: a debugger which allows
the user to work backwards as well as forwards, and interact with intermediate values to see
how individual data elements relate to other values downsteam and upstream in the
computation. Taking inspiration from data science notebooks like Jupyter, you could design
and implement a “data pipeline explorer” which expands a complex computational pipeline
into a notebook-like interface on demand, presenting the user with nested “code cells” which
show the expressions used to compute intermediate values. The Nile viewer [4] is a
hand-crafted mockup which nicely illustrates what this might look like. Your project would be
to leverage Fluid’s persistent execution and dependency-tracking runtime to design and
implement such a system for real.

References

[1] https://f.luid.org/

[2] Roly Perera, Minh Nguyen, Tomas Petricek, Meng Wang. Linked Visualisations Via
Galois Dependencies. PACMPL (POPL) 2022.

[3] https://en.wikipedia.org/wiki/Quasi-quotation

[4] https://tinlizzie.org/dbjr/high_contrast.html

https://f.luid.org/
https://dl.acm.org/doi/10.1145/3498668
https://dl.acm.org/doi/10.1145/3498668
https://en.wikipedia.org/wiki/Quasi-quotation
https://tinlizzie.org/dbjr/high_contrast.html

