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Two starting points

* Aurelio Carboni and RFC Walters (1987) Cartesian Bicategories

« an algebra of relations with the expressive power of regular logic

e Charles Peirce’s Calculus of Relations (1883)

» featuring linear distributivity and linear adjoints



Towards cartesian bicategories |

* Lawvere in the 1960s realised the power of cartesian categories

» free cartesian categories on a signature are the same as categories of
terms and substitutions (classical syntax)

 cartesian category induced by a (presentation of an) algebraic theory is a

presentation-independent notion of algebraic theory in the universal
algebraic sense

* functorial semantics: models are cartesian functors to Set,
homomorphisms are natural transformations



Aside - Fox’s theorem

« A category is cartesian iff it is symmetric monoidal st every object is equipped
with a cocommutative comonoid structure
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Towards cartesian bicategories ii

But what if one wants to move to more expressive theories?

* e.g. what if one wants models in Rel?

* Rel = category with objects sets and arrows X—Y relations R € XxY
e composition x (R ; S) z iff 3y. xRy A ySz

* identies are x | y iff x=y

Cartesian product is still important (n-ary relations can be seen as a relation of type Xn — 1)

But cartesian product is not the categorical product in Rel...

Note though: it does make Rel a symmetric monoidal category and every homset is a poset



Cartesian bicategories

every homset is a poset

every object X is equipped with a cocommutative comonoid structure
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* the comonoid structure has right adjoints

* and together they satisfy the Frobenius equation
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Functorial semantics for relational theories

* A la Lawvere, once you know that the notion of cartesian bicategory replaces
cartesian category

» term syntax is given by string diagrams

* models are functors of cartesian bicategories to Rel

« homomorphisms are the canonical notion of natural transformation
« completeness (CSL 2018)

* This same general functorial semantics recipe is repeated for partial algebraic
theories (PoPL 21) and coherent theories (PoPL 23)



Two starting points

« Aurelio Carboni and RFC Walters (1987) Cartesian Bicategories

« an algebra of relations with the expressive power of regular logic

e Charles Peirce’s Calculus of Relations (1883)

« featuring linear distributivity and linear adjoints



Aside: Rel’s weird cousin

 From now on let us call the usual category of relations Rel°

* Lets meet its strange cousin, Rel®
» objects are still sets and arrows are still relations
e compositionis x (R; S) ziff vy. xRy v ySz
* identitiesare x ly iff x #y

» cartesian product on objects still makes it a symmetric monoidal category, and
homsets are posets

* But it is a cocartesian bicategory (the inequalities go the other way!)



Peirce’s calculus of relations (1883)

* Peirce liked the weird cousin

E == R |id°| E0E|id* | ESE| L | EUE| T | EnNE | E'| E

* The calculus only deals with binary relations. Peirce did not like this and went
on to work on existential graphs (19th century string diagrams)

« Later work on relational calculi (e.g. Tarski) discarded the “black” structure



Diagrams In Rel*

» Use black background/white strings to emphasise the “De Morgan” aspects

spec. Frobenius
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* but how to understand two compositions and two tensors together?



(symmetric monoidal) Linear bicategories
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First order bicategories

* The missing thing is to characterise how the two (co)cartesian structures
interact:

* there are linear adjunctions
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Summarising
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Worked example
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Highlights

« Gbdel completeness by adapting Henkin’s proof to the string diagrammatic
language (more on this on the next slide)

* Functorial semantics for first order theories following the usual recipe
* No variables, no quantifiers

« Easy and natural encodings of other variable free approaches (e.g. Quine
predicate functor logic)



What’s new, different?

Diagrammatic syntax is closely related to Peirce’s existential graphs
« Although negation is not a primitive
* it is a derived operation that operates on syntax

* e.g. -~ is syntactically equal as a diagram to -¢

string diagrams let one to discover places where the traditional syntax has caused problems

« trivial vs contradictory theories is a meaningful distinction

trivial theories are propositional logic

* our axiomatisation becomes Guglielmi’s deep inference Calculus of Structures (SKSQ)

completeness theorem extends Gddel’s to all theories



