skip to content

Department of Computer Science and Technology

  • Fellow

Elements publications

Journal articles

2021

  • Keith, JA., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Müller, K-R. and Tkatchenko, A., 2021. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem Rev,
    Doi: http://doi.org/10.1021/acs.chemrev.1c00107
  • 2020

  • Giberti, F., Cheng, B., Tribello, GA. and Ceriotti, M., 2020. Iterative Unbiasing of Quasi-Equilibrium Sampling. J Chem Theory Comput, v. 16
    Doi: http://doi.org/10.1021/acs.jctc.9b00907
  • Cheng, B., Ceriotti, M. and Tribello, GA., 2020. Classical nucleation theory predicts the shape of the nucleus in homogeneous solidification. J Chem Phys, v. 152
    Doi: http://doi.org/10.1063/1.5134461
  • Cheng, B., Griffiths, R-R., Wengert, S., Kunkel, C., Stenczel, T., Zhu, B., Deringer, VL., Bernstein, N., Margraf, JT., Reuter, K. and Csanyi, G., 2020. Mapping Materials and Molecules. Acc Chem Res,
    Doi: http://doi.org/10.1021/acs.accounts.0c00403
  • Cheng, B., Mazzola, G., Pickard, CJ. and Ceriotti, M., 2020. Evidence for supercritical behaviour of high-pressure liquid hydrogen. Nature, v. 585
    Doi: http://doi.org/10.1038/s41586-020-2677-y
  • Cheng, B. and Frenkel, D., 2020. Computing the Heat Conductivity of Fluids from Density Fluctuations. Phys Rev Lett, v. 125
    Doi: http://doi.org/10.1103/PhysRevLett.125.130602
  • Monserrat, B., Brandenburg, JG., Engel, EA. and Cheng, B., 2020. Liquid water contains the building blocks of diverse ice phases. Nat Commun, v. 11
    Doi: http://doi.org/10.1038/s41467-020-19606-y
  • 2019

  • Cheng, B., Engel, EA., Behler, J., Dellago, C. and Ceriotti, M., 2019. Ab initio thermodynamics of liquid and solid water. Proc Natl Acad Sci U S A, v. 116
    Doi: http://doi.org/10.1073/pnas.1815117116
  • Kapil, V., Rossi, M., Marsalek, O., Petraglia, R., Litman, Y., Spura, T., Cheng, B., Cuzzocrea, A., Meißner, RH., Wilkins, DM., Helfrecht, BA., Juda, P., Bienvenue, SP., Fang, W., Kessler, J., Poltavsky, I., Vandenbrande, S., Wieme, J., Corminboeuf, C., Kühne, TD., Manolopoulos, DE., Markland, TE., Richardson, JO., Tkatchenko, A., Tribello, GA., Van Speybroeck, V. and Ceriotti, M., 2019. i-PI 2.0: A universal force engine for advanced molecular simulations Computer Physics Communications, v. 236
    Doi: 10.1016/j.cpc.2018.09.020
  • 2018

  • Cheng, B., Dellago, C. and Ceriotti, M., 2018. Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics. Phys Chem Chem Phys, v. 20
    Doi: http://doi.org/10.1039/c8cp04561e
  • Cheng, B., Paxton, AT. and Ceriotti, M., 2018. Hydrogen Diffusion and Trapping in α-Iron: The Role of Quantum and Anharmonic Fluctuations. Phys Rev Lett, v. 120
    Doi: http://doi.org/10.1103/PhysRevLett.120.225901
  • Cheng, B. and Ceriotti, M., 2018. Communication: Computing the Tolman length for solid-liquid interfaces. J Chem Phys, v. 148
    Doi: http://doi.org/10.1063/1.5038396
  • Cheng, B. and Ceriotti, M., 2018. Computing the absolute Gibbs free energy in atomistic simulations: Applications to defects in solids Physical Review B, v. 97
    Doi: 10.1103/PhysRevB.97.054102
  • 2017

  • Cheng, B., Tribello, GA. and Ceriotti, M., 2017. The Gibbs free energy of homogeneous nucleation: From atomistic nuclei to the planar limit. J Chem Phys, v. 147
    Doi: http://doi.org/10.1063/1.4997180
  • Cheng, B. and Ceriotti, M., 2017. Bridging the gap between atomistic and macroscopic models of homogeneous nucleation. J Chem Phys, v. 146
    Doi: http://doi.org/10.1063/1.4973883
  • 2016

  • Cheng, B., Behler, J. and Ceriotti, M., 2016. Nuclear Quantum Effects in Water at the Triple Point: Using Theory as a Link Between Experiments. J Phys Chem Lett, v. 7
    Doi: http://doi.org/10.1021/acs.jpclett.6b00729
  • 2015

  • Cheng, B., Tribello, GA. and Ceriotti, M., 2015. Solid-liquid interfacial free energy out of equilibrium Physical Review B - Condensed Matter and Materials Physics, v. 92
    Doi: 10.1103/PhysRevB.92.180102
  • Cheng, B., Leung, HS. and Ngan, AHW., 2015. Strength of metals under vibrations - Dislocation-density-function dynamics simulations Philosophical Magazine, v. 95
    Doi: 10.1080/14786435.2014.897008
  • Leung, HS., Leung, PSS., Cheng, B. and Ngan, AHW., 2015. A new dislocation-density-function dynamics scheme for computational crystal plasticity by explicit consideration of dislocation elastic interactions International Journal of Plasticity, v. 67
    Doi: 10.1016/j.ijplas.2014.09.009
  • Leung, PSS., Leung, HS., Cheng, B. and Ngan, AHW., 2015. Size dependence of yield strength simulated by a dislocation-density function dynamics approach Modelling and Simulation in Materials Science and Engineering, v. 23
    Doi: 10.1088/0965-0393/23/3/035001
  • 2014

  • Cheng, B. and Ceriotti, M., 2014. Direct path integral estimators for isotope fractionation ratios. J Chem Phys, v. 141
    Doi: http://doi.org/10.1063/1.4904293
  • 2013

  • Cheng, B. and Ngan, AHW., 2013. The sintering and densification behaviour of many copper nanoparticles: A molecular dynamics study Computational Materials Science, v. 74
    Doi: http://doi.org/10.1016/j.commatsci.2013.03.014
  • Cheng, B. and Ngan, AHW., 2013. Thermally induced solid-solid structural transition of copper nanoparticles through direct geometrical conversion. J Chem Phys, v. 138
    Doi: http://doi.org/10.1063/1.4802025
  • Cheng, B. and Ngan, AHW., 2013. Crystal plasticity of Cu nanocrystals during collision Materials Science and Engineering A, v. 585
    Doi: http://doi.org/10.1016/j.msea.2013.07.065
  • Cheng, B. and Ngan, AHW., 2013. The crystal structures of sintered copper nanoparticles: A molecular dynamics study International Journal of Plasticity, v. 47
    Doi: http://doi.org/10.1016/j.ijplas.2013.01.006
  • Reinhardt, A., Pickard, CJ. and Cheng, B., Predicting the phase diagram of titanium dioxide with random search and pattern recognition Physical Chemistry Chemical Physics,
    Doi: http://doi.org/10.1039/d0cp02513e
  • Reinhardt, A. and Cheng, B., Quantum-mechanical exploration of the phase diagram of water Nature Communications,
    Doi: http://doi.org/10.1038/s41467-020-20821-w
  • Contact Details

    Room: 
    FC01
    Email: 

    bc509@cam.ac.uk