A Synthetic Road to Locality Theorems

Tomáš Jakl

Czech Academy of Sciences & Czech Technical University

18 July 2023

Resources and Co-Resources Workshop, Cambridge

The categorical story so far

Games vs comonads

Basic intuition:

(well-behaved) model comparison games \longleftrightarrow comonads

More concretely:

Characterisations of existential fragments and positive fragments exist too.

Combinatorial properties

Basic intuition:

(well-behaved) decompositions \iff comonad coalgebras

 $\begin{array}{c} ({\sf well-behaved}) \ {\sf unstructured} \\ {\sf combinatorial \ properties} \end{array} \longleftrightarrow \ {\sf weakly \ initial \ comonads} \end{array}$

[AJP'22]: Any property Δ of graphs/structures such that $A + B \in \Delta$ iff $A, B \in \Delta$ is classified by a weakly initial comonad.

Lovász-type Counting theorems

Basic intuition:

 $\begin{array}{ccc} \text{isomorphism from} \\ \text{homomorphism counting} \end{array} & \longleftrightarrow & \text{combinatorial categories} \\ \\ \text{log. equivalence} \equiv_{\#\mathbb{C}} \text{ from} \\ \text{homomorphism counting} & \longleftrightarrow & \text{combinatoriality} \\ \text{for (finite) coalgebras of } \mathbb{C} \end{array}$

 $\label{eq:linear} \begin{array}{l} [D\underline{J}R'21]: \mbox{ combinatoriality for coalgebras} \leftarrow (co) \mbox{monadicity for comonads} \\ \mbox{ that preserve finiteness} \end{array}$

 $[{\sf Reggio'22}]: \ {\sf combinatoriality} \ {\sf for} \ {\sf coalgebras} \leftarrow {\sf (co)monadicity} + {\sf lfp} \ {\sf categories} \\ {\sf for} \ {\sf comonads} \ {\sf of} \ {\sf finite} \ {\sf rank} \\ \end{cases}$

[AJP'22]: makes use of [Reggio'22] for weakly initial comonads

Transformations, i

transformations

Kleisli lifts H^{KI} $\mathsf{KI}(\mathbb{C}) \xrightarrow{H^{\mathsf{KI}}} \mathsf{KI}(\mathbb{D})$ F F Н Kleisli laws $\mathbb{D}H \Rightarrow H\mathbb{C}$

Transformations, ii

(S1) \hat{H} preserves embeddings

(S2) path embeddings $P \rightarrow \widehat{H}X$ have a minimal decomposition via $\widehat{H}(e)$ of some $e \colon P' \rightarrow X$

¹Usually enough to check that \mathbb{D} preserves embeddings.

Our minimal synthetic setup

Elementary path categories

(Inspired by the arboreal approach of Luca and Samson [AR'21].)

An elementary path category 2 is a triple $(\mathscr{X},\mathscr{M},\mathscr{P})$ where

- \mathscr{M} is a collection of **embeddings** \rightarrowtail , i.e. morphisms in \mathscr{X} s.t.
 - 1. $\mathcal{M} \subseteq \{\mathsf{monos}\}$
 - 2. $f, g \in \mathcal{M}$ implies $fg \in \mathcal{M}$ (if defined)

3.
$$fg \in \mathcal{M}$$
 implies $g \in \mathcal{M}$

•
$$\mathscr{P}$$
 is a set of **paths**, i.e. objects in \mathscr{X}
For simplicity: for paths $P \cong Q \implies P = Q$

We add further axioms as needed (usually inspired by arboreal theorems).

²I can't decide on the name: elementary path, ramus, prearboreal, ...?

Elementary path adjunctions

Typical situation

from
$$\mathbb{C} = \mathbb{E}_k, \mathbb{P}_k, \mathbb{M}_k, \dots$$

 $\mathsf{EM}(\mathbb{C})$ $\upsilon\left(\dashv\right)\mathsf{F}$ $\mathcal{R}(\sigma)$

Usually \mathscr{A} equipped with embeddings, both U, F preserve these.

Detour: a newono-go theorem

Composition methods for products, i

For any comonad C on \mathscr{A} with products, we have a Kleisli law

 $\mathbb{C}(A \times B) \to \mathbb{C}A \times \mathbb{C}B$

Corollary

•
$$A \Rightarrow_{\exists^+ \mathbb{C}} B$$
 and $A' \Rightarrow_{\exists^+ \mathbb{C}} B'$ implies $A \times A' \Rightarrow_{\exists^+ \mathbb{C}} B \times B'$

• $A \equiv_{\#\mathbb{C}} B$ and $A' \equiv_{\#\mathbb{C}} B'$ implies $A \times A' \equiv_{\#\mathbb{C}} B \times B'$

ref: [JMS'23]

Composition methods for products, ii

Theorem

For a comonad \mathbb{C} on a category with coproducts and a well-powered proper factorisation system such that

- C preserves embeddings
- paths in EM(ℂ) are closed under quotients

We obtain

•
$$A \equiv_{\mathbb{C}} B$$
 and $A' \equiv_{\mathbb{C}} B'$ implies $A \times A' \equiv_{\mathbb{C}} B \times B'$

Holds for any $\mathbb C$ such that $\mathsf{EM}(\mathbb C)$ is an arboreal category or even elementary path category!

ref: [JMS'23]

No-go theorem for fixpoints (THIS SLIDE WAS WRONG)

Alexander Rabinovich: On Compositionality and Its Limitations

shows that the UNTIL and EG modalities are incompatible with **product** product-like composition theorems.

 \Rightarrow expressing logics by bisimulation in EM(\mathbb{C}) for some comonad \mathbb{C} such that EM(\mathbb{C}) is arboreal or elementary path is impossible!

Alternatively, $EM(\mathbb{C})$ could have has paths not closed under quotients.

 \Rightarrow our usual approach fails for LTL, CTL, μ -calculus, ... but these logics admit game theoretic characterisations!

Locality theorems

!! WARNING !! Work in progress ahead

Hanf locality with thresholds

For $a \in A$, define

$$\mathcal{N}_r(a) = \{x \in A \mid \delta(a, x) \leq d\}.$$

For an isomorphism *r*-type τ , define

$$\#\tau\langle A\rangle = \{a \in A \mid (\mathcal{N}_r(a), a) \cong \tau\}.$$

Theorem (Fagin–Stockmeyer–Vardi, 1995) $\forall k, f \exists r, t \text{ such that, for graphs } A \text{ and } B \text{ with neighbourhoods of size } \leq f$,

 $A \equiv_k B$ if \forall isomorphism r-type τ , either

• #
$$au\langle A
angle \cong$$
 # $au\langle B
angle$ or

Gaifman locality

Theorem (Gaifman, 1982)

Every first-order sentence is equivalent to a Boolean combination of **basic local sequences**, that is, sentences of the form

$$\exists \overline{x} (\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \theta(x_i))$$

where θ is r-local, i.e. $A \models \theta(a)$ iff $\mathcal{N}_r(a) \models \theta(a)$.

Theorem (Gaifman locality with thresholds) For structures A, B,

$$A \cong_{q(k)}^{r(k)} B$$
 implies $A \equiv_k B$

where \cong_q^r expresses equivalence w.r.t. basic local sentences of radius r and quantifier rank q.

Proof structure of Hanf and Gaifman

Fix suitable radii r_1, \ldots, r_k and quantifier ranks q_1, \ldots, q_k .

Invariant for position $\overline{a}, \overline{b}$ at round m

$$\bigcup_{i=1}^{m} \mathcal{N}_{r_m}(a_i) \equiv_{q_m} \bigcup_{i=1}^{m} \mathcal{N}_{r_m}(b_i) \quad (\text{inv}_m)$$

Given $a \in A$, two cases:

- 1. $\frac{\mathcal{N}_{r_{m+1}}(a) \subseteq \bigcup_{i=1}^{m} \mathcal{N}_{r_{m}}(a_{i})}{\text{use (inv}_{m}) \text{ to find } b \in B} \text{ such that } \overline{a}a, \overline{b}b \text{ satisfy (inv}_{m+1})$ 2. $\mathcal{N}_{r_{m+1}}(a) \not\subseteq \bigcup_{i=1}^{m} \mathcal{N}_{r_{m}}(a_{i})$
 - use (inv_m) for a bijection between "suitable subsets"
 - by thm. assumption, find $b \in B$ with (1) $\operatorname{tp}(a) = \operatorname{tp}(b)$, and (2) $\forall i \ \mathcal{N}_{r_{m+1}}(b_i) \cap \mathcal{N}_{r_{m+1}}(b) = \emptyset \quad \Rightarrow (\operatorname{inv}_{m+1})$

Why locality theorems?

- Important tool in Finite Model Theory:
 - Algorithmic usage for FPT decidability results.
 - Inexpressibility results.
 - ... but the variants reproved over and over again.
- No account of locality in categorical logic yet.
- It helped to identify uniformly quasiwide/nowhere dense classes i.e. to go much beyond bounded tree-width!

Equivalently viewed as "sparse neighbourhood covers" – looks a bit like indexed Grothendieck topology with bits of comonadic structure!

Locality comonad?

Tom Paine's in his thesis

- established that there is no comonad on $\mathbb{E}_k(\mathcal{N}_r(-))$
- defined a "reachability comonad" ℝ_m for an invariant similar to (inv_m), and hints at E_k ⇒ ℝ_k

We need a comonad \mathbb{C}_m to express the assumptions, i.e. the relation \cong_q^r or equivalence wrt $\#\tau\langle \cdot \rangle$

... but case 2 is very "non-uniform", there is a counting argument

... we do not expect $\mathbb{E}_k \Rightarrow \mathbb{C}_{m(k)}$ or $\mathbb{R}_k \Rightarrow \mathbb{C}_{m(k)}$ satisfying (S2)

Instead, we specify \cong_q^r as an extra structure!

The synthetic method

1. Take a classic theorem in computability theory.

2. Rephrase it as a fact about the effective topos.

for elementary path categories

- 3. Find a statement whose interpretation is the fact.
- 4. Abstract the statement to expose its essence.
- 5. Give a synthetic proof.

Do not skip any steps! This can hinder progress significantly!

Steps ahead

- 1. What are formulas?
- 2. What are local formulas?
- 3. What are basic local formulas?
- 4. State the theorem.
- 5. Give a copy-cat proof.
- 6. (Future work:) synthesise the statement and its proof.

Formulas with free variables

Classically, $\Delta \subseteq \mathcal{R}_n(\sigma)$ is a **formula** of quantifier rank $\leq k$ iff

 $(A,\overline{a})\in\Delta$ and $(A,\overline{a})\equiv_k(B,\overline{b})$ implies $(B,\overline{b})\in\Delta$

Constants
$$\overline{a} = (a_1, \dots, a_n) \in A^n$$

 \cong assignments/function $\{1, \dots, n\} \to A$
 \cong homomorphism from a discrete $\{1, \dots, n\}$ to A
 \cong coalgebra homomorphisms $\mathbf{p}_n \to F^{\mathbb{E}_{k+n}}(A)$

where \mathbf{p}_n is the discrete chain $(1 < \cdots < n)$ in $EM(\mathbb{E}_{k+n})$

$$\Rightarrow U^{\mathbb{E}_{k+n}}(\mathbf{p}_n) = \{1,\ldots,n\}$$

Types

<u>Question:</u> Given (A, \overline{a}) and (B, \overline{b}) as

$$F^{\mathbb{E}_{k+n}}(A) \xleftarrow{\overline{a}} \mathbf{p}_n \xrightarrow{\overline{b}} F^{\mathbb{E}_{k+n}}(A) ,$$

how do we express $(A, \overline{a}) \equiv_k (B, \overline{b})$ in $EM(\mathbb{E}_{k+n})$?

Define a (weak) type tp(x) of $x \colon P \to X$ in $EM(\mathbb{E}_{k+n})$, where P is a path, as the upset of the image of x in X.

 $\texttt{tp}(x) = \texttt{colim}\{e \colon Q \rightarrowtail X \mid x \texttt{ factors via } e\}$

Then x factors as

$$P \xrightarrow{x^{\uparrow}} \operatorname{tp}(x) \rightarrowtail X$$

Theorem

$$(A,\overline{a})\equiv_k (B,\overline{b}) \quad \textit{iff} \quad \texttt{tp}(\overline{a})\sim\texttt{tp}(\overline{b})$$

Strong functors, i

What functors preserve equivalence of types?

Our usual situation, a comonad morphism $\lambda\colon \mathbb{D}\Rightarrow\mathbb{C}$ yields

- λ^{EM} distributes over U's
- $\widehat{\lambda}$ distributes over *F*'s
- $\widehat{\lambda}$ preserves embeddings
- $\lambda \mbox{ mono} \Rightarrow \lambda^{\rm EM}$ fully faithful
- conjugation

$$\frac{f:X\to\widehat{\lambda}(Y)}{f^\flat\colon\lambda^{\text{EM}}(X)\to Y}$$

often preserves path embeddings!

Strong functors, ii

Lemma (!! & ?!)

If λ^{EM} preserves paths and λ consists of embeddings then the conjugation preserves path embeddings. $(\Rightarrow \hat{\lambda} \text{ satisfies (S1), (S2)})$

Lemma

For $L \dashv R$ between *arboreal* categories. If conjugating preserves path embeddings and L is full then R preserves paths.

A functor $H: \mathscr{X} \longrightarrow \mathscr{Y}$ between elementary path categories is a strong (path) functor if

- *H* preserves embeddings
- H preserves paths
- has a left adjoint H_{*}
- the conjugation $f\mapsto f^{\flat}$ of $H_*\dashv H$ preserves path embeddings

(Weak functor would not preserve paths.)

Strong functors, iii

Theorem

If $H: \mathscr{X} \longrightarrow \mathscr{Y}$ is a strong path functor then, for $x: P \to H(X)$ and $y: P \to H(Y)$ in \mathscr{Y} , we have that $\operatorname{tp}(x^{\flat}) \sim \operatorname{tp}(y^{\flat})$ implies $\operatorname{tp}(x) \sim \operatorname{tp}(y)$.

Proof idea.

$$\begin{array}{ccc} \operatorname{tp}(x) & \operatorname{tp}(y) \\ \downarrow & \downarrow \\ H(\operatorname{tp}(x^{\flat})) & & & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \operatorname{tp}(x) \\ \stackrel{\mathrm{b\&f}}{\longrightarrow} & H(\operatorname{tp}(y^{\flat})) \end{array}$$

Neighbourhood operators

Given any
$$(A, \overline{a})$$
 by

$$P \xrightarrow{x} F^{\mathbb{C}}(A)$$

we assume factorisation

$$U^{\mathbb{C}}(P) \longrightarrow N(x) \rightarrowtail A$$

giving us

$$P \xrightarrow{x^N} F^{\mathbb{C}}(N(x)) \longmapsto F^{\mathbb{C}}(A)$$

Remarks:

- usually $N(x) = \bigcup_{i=1}^n \mathcal{N}_r(x_i)$ for $x = (x_1, \dots, x_n) \in A^n$
- usually a natural transformation $N \Rightarrow \mathsf{Id}$ on $U^{\mathbb{C}} \downarrow \mathscr{A}$

Local types and local formulas

Given any

$$P \xrightarrow{x} F^{\mathbb{C}}(A)$$

and a neighbourhood operator N for P, N-local type $ltp_N(x)$ is the type of x^N in $F^{\mathbb{C}}(N(x))$, that is,

$$P \xrightarrow{(x^N)^{\uparrow}} \mathtt{ltp}_N(x) = \mathtt{tp}(x^N) \longmapsto F^{\mathbb{C}}(N(x))$$

For a collection $\Delta \subseteq \{x \colon P \to F^{\mathbb{C}}(A)\}_{A \in \mathscr{A}}$ (i.e. $\Delta \subseteq P \downarrow F^{\mathbb{C}}$) Δ is a **formula** if $x \in \Delta$ and $\operatorname{tp}(x) \sim \operatorname{tp}(y)$ implies $y \in \Delta$ Δ is a **local formula** if $x \in \Delta$ and $\operatorname{ltp}(x) \sim \operatorname{ltp}(y)$ implies $y \in \Delta$

Detecting neighbourhoods

Theorem

If H detects N, $tp(x^{\flat}) \sim tp(y^{\flat})$ implies $ltp_N(x) \sim ltp_N(y)$.

A strong path functor $H: \mathscr{X} \longrightarrow \mathscr{Y}$ which **detects** N allows to restrict bisimulation to N-local types:

Intuitively: \mathscr{X} can express " $z \in N(x)$ "

Basic local formulas

We want to mimic formulas $\exists \overline{x} (\bigwedge_{i \neq j} \delta(x_i, x_j) > 2r \land \bigwedge_i \theta(x_i))$

For an *N*-local formula Δ , a **basic local formula** is

$$\{A \mid \exists \text{ scattered } x_1, \dots, x_n \colon P \to F^{\mathbb{C}}(A) \text{ in } \Delta\}$$

where **scattered** means $N(x_i) \rightarrow A \leftarrow N(x_j)$ are disjoint $\forall i \neq j$.

Equivalently, the induced $F^{\mathbb{C}}(N(x_1)) \oplus \cdots \oplus F^{\mathbb{C}}(N(x_n)) \rightarrow F^{\mathbb{C}}(A)$ is a pathwise embedding.

These are formulas, relative to a strong $H: \mathscr{Z} \to \mathscr{Y}$ detecting N, assuming

- a monoidal structure $\oplus,$ preserved by H_*
- decomposition of discrete paths $\mathbf{p}_n = \mathbf{t}_1 \oplus \cdots \oplus \mathbf{t}_n$

e.g.
$$\mathscr{Y} = \mathsf{EM}(\mathbb{E}^{\odot}_k)$$
 where timed $\mathbb{E}^{\odot}_k(A)$
consists of $[(m_1, a_1), \ldots, (m_n, a_n)]$ with $1 \le m_1 < \cdots < m_n \le k$

The statement structure \rightarrow step 3 \checkmark

Original claim:
$$A \cong_{q(k)}^{r(k)} B$$
 implies $A \equiv_k B$

Instead of r_1, \ldots, r_k and q_1, \ldots, q_k we fix:

We want $F^{\mathscr{X}}(A) \sim F^{\mathscr{X}}(B)$. From

- "discrete" paths $\mathbf{p}_1 \in \mathscr{Y}_1, \ldots, \mathbf{p}_k \in \mathscr{Y}_k$ where \mathbf{p}_{i+1} extends $R_i(\mathbf{p}_i)$
- neighbourhood operators N_1, \ldots, N_k for $\mathbf{p}_1, \ldots, \mathbf{p}_k$

The proof (inductive step)

Invariant (inv_m) $\bigcup_{i=1}^{m} \mathcal{N}_{r_m}(a_i) \equiv_{q_m} \bigcup_{i=1}^{m} \mathcal{N}_{r_m}(b_i)$ replaced by $ltp_{N_m}(x) \sim ltp_{N_m}(y) \text{ in } \mathscr{Y}_m$ for assignments $x : \mathbf{p} \rightarrow E^{\mathscr{Y}_m}(A) \qquad x : \mathbf{p} \rightarrow E^{\mathscr{Y}_m}(A)$

$$x: \mathbf{p}_m \to F^{\mathscr{Y}_m}(A) \qquad y: \mathbf{p}_m \to F^{\mathscr{Y}_m}(B)$$

Next step – extension: $R_m(\mathbf{p}_m) \xrightarrow{R_m(x)} F^{\mathscr{Y}_{m+1}}(A)$ \downarrow \mathbf{p}_{m+1}

Thank you!

Added axioms

For an elementary path category \mathscr{X} , we needed to further assume:

- all P o X have a minimal decomposition $P o P' \rightarrowtail X$
- morphisms P → colim D, where D is a diagram of paths and embeddings, factor through one of the inclusions d → colim D
- for a full downset subcategory D of Paths(X), the colimit of
 D exists and the induced colim D → X is an embedding

Finally, for our adjunction $U \dashv F$ between $\mathscr{A} \leftrightarrows \mathscr{X}$,

• *A* also has embeddings and *F* (and sometimes also *U*) is required to preserve them