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The categorical story so far



Games vs comonads

Basic intuition:

(well-behaved) model comparison games ←→ comonads

More concretely:

one-way games for ⇛∃+C ←→ morphisms in Kl(C)

bijective games for ≡#C ←→ isomorphism in Kl(C)

back-and-forth games for ≡C ←→ bisimulation in EM(C)

Characterisations of existential fragments and positive fragments exist too.
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Combinatorial properties

Basic intuition:

(well-behaved) decompositions ←→ comonad coalgebras

(well-behaved) unstructured

combinatorial properties
←→ weakly initial comonads

[AJP’22]: Any property ∆ of graphs/structures such that A+ B ∈ ∆ iff

A,B ∈ ∆ is classified by a weakly initial comonad.
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Lovász-type Counting theorems

Basic intuition:

isomorphism from

homomorphism counting
←→ combinatorial categories

log. equivalence ≡#C from

homomorphism counting
←→ combinatoriality

for (finite) coalgebras of C

[DJR’21]: combinatoriality for coalgebras ← (co)monadicity for comonads

that preserve finiteness

[Reggio’22]: combinatoriality for coalgebras ← (co)monadicity + lfp categories

for comonads of finite rank

[AJP’22]: makes use of [Reggio’22] for weakly initial comonads
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Transformations, i

decomposition

transformations
←→ Eilenberg–Moore lifts HEM

EM(C) EM(D)

A B

U

HEM

U

H

←→ Eilenberg–Moore laws

HC⇒ DH

⇛∃+C and ≡#C

transformations
←→ Kleisli lifts HKl

Kl(C) Kl(D)

A B

HKl

H

F F

←→ Kleisli laws DH ⇒ HC
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Transformations, ii

If EM(D) has suitable equalisers1:
given by DH ⇒ HC

≡C transformations ←→ “full” Kleisli lifts

EM(C) EM(D)

A B

Ĥ

H

F F

+ axioms (S1), (S2) for Ĥ

(S1) Ĥ preserves embeddings

(S2) path embeddings P ↣ ĤX have a minimal decomposition via Ĥ(e) of

some e : P ′ ↣ X

1Usually enough to check that D preserves embeddings. 5



Our minimal synthetic setup



Elementary path categories

(Inspired by the arboreal approach of Luca and Samson [AR’21].)

An elementary path category2 is a triple (X ,M ,P) where

� M is a collection of embeddings↣, i.e. morphisms in X
s.t.
1. M ⊆ {monos}

2. f , g ∈M implies fg ∈M (if defined)

3. fg ∈M implies g ∈M

� P is a set of paths, i.e. objects in X

For simplicity: for paths P ∼= Q =⇒ P = Q

We add further axioms as needed (usually inspired by arboreal theorems).

2I can’t decide on the name: elementary path, ramus, prearboreal, ...?
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Elementary path adjunctions

Typical situation

X

A

U F⊣

from C = Ek ,Pk ,Mk , . . .

EM(C)

R(σ)

U F⊣

Usually A equipped with embeddings, both U,F preserve these.
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Detour: a xxxxxxxxxnew no-go theorem



Composition methods for products, i

For any comonad C on A with products, we have a Kleisli law

C(A× B)→ CA× CB

Corollary

� A⇛∃+C B and A′ ⇛∃+C B ′ implies A× A′ ⇛∃+C B × B ′

� A ≡#C B and A′ ≡#C B ′ implies A× A′ ≡#C B × B ′

ref: [JMS’23]
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Composition methods for products, ii

Theorem

For a comonad C on a category with coproducts and a

well-powered proper factorisation system such that

� C preserves embeddings

� paths in EM(C) are closed under quotients

We obtain

� A ≡C B and A′ ≡C B ′ implies A× A′ ≡C B × B ′

Holds for any C such that EM(C) is an arboreal category or even elementary

path category!

ref: [JMS’23]
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No-go theorem for fixpoints (THIS SLIDE WAS WRONG)

Alexander Rabinovich:

On Compositionality and Its Limitations

shows that the UNTIL and EG modalities are incompatible with

product product-like composition theorems.

⇒ expressing logics by bisimulation in EM(C) for some comonad C

such that EM(C) is arboreal or elementary path is impossible!

Alternatively, EM(C) could have has paths

not closed under quotients.

⇒ our usual approach fails for LTL, CTL, µ-calculus, ... but these

logics admit game theoretic characterisations!

10



Locality theorems



!! WARNING !!

Work in progress ahead



Hanf locality with thresholds

For a ∈ A, define

Nr (a) = {x ∈ A | δ(a, x) ≤ d}.

For an isomorphism r -type τ , define

#τ⟨A⟩ = {a ∈ A | (Nr (a), a) ∼= τ}.

Theorem (Hanf, 1965)

For, graphs A and B with finite neighbourhoods,

A ≡ B if ∀r ∈ N and ∀isomorphism r -type τ , either

� #τ⟨A⟩ ∼= #τ⟨B⟩ or

� both #τ⟨A⟩ and #τ⟨B⟩ are at least countable.

Theorem (Fagin–Stockmeyer–Vardi, 1995)

∀k , f ∃ r , t such that, for graphs A and B with neighbourhoods

of size ≤f ,

A ≡k B if ∀isomorphism r -type τ , either

� #τ⟨A⟩ ∼= #τ⟨B⟩ or

� both #τ⟨A⟩ and #τ⟨B⟩ are at least t.
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Gaifman locality

Theorem (Gaifman, 1982)

Every first-order sentence is equivalent to a Boolean combination

of basic local sequences, that is, sentences of the form

∃x (
∧
i ̸=j

δ(xi , xj) > 2r ∧
∧
i

θ(xi ))

where θ is r-local, i.e. A |= θ(a) iff Nr (a) |= θ(a).

Theorem (Gaifman locality with thresholds)

For structures A,B,

A ∼=r(k)
q(k) B implies A ≡k B

where ∼=r
q expresses equivalence w.r.t. basic local sentences of

radius r and quantifier rank q.
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Proof structure of Hanf and Gaifman

Fix suitable radii r1, . . . , rk and quantifier ranks q1, . . . , qk .

Invariant for position a, b at round m
m⋃
i=1

Nrm(ai ) ≡qm

m⋃
i=1

Nrm(bi ) (invm)

resp. ∼= for Hanf

Given a ∈ A, two cases:

1. Nrm+1(a) ⊆
⋃m

i=1Nrm(ai )

use (invm) to find b ∈ B such that aa, bb satisfy (invm+1)

2. Nrm+1(a) ̸⊆
⋃m

i=1Nrm(ai )

• use (invm) for a bijection between “suitable subsets”

• by thm. assumption, find b ∈ B with (1) tp(a) = tp(b),

and (2) ∀i Nrm+1(bi ) ∩Nrm+1(b) = ∅ ⇒ (invm+1) 13



Why locality theorems?

� Important tool in Finite Model Theory:

� Algorithmic usage for FPT decidability results.

� Inexpressibility results.

� ... but the variants reproved over and over again.

� No account of locality in categorical logic yet.

� It helped to identify uniformly quasiwide/nowhere dense

classes i.e. to go much beyond bounded tree-width!

Equivalently viewed as “sparse neighbourhood covers” – looks a bit like

indexed Grothendieck topology with bits of comonadic structure!
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Locality comonad?

Tom Paine’s in his thesis

� established that there is no comonad on Ek(Nr (−))
� defined a “reachability comonad” Rm for an invariant similar

to (invm), and hints at Ek ⇒ Rk

We need a comonad Cm to express the assumptions, i.e. the

relation ∼=r
q or equivalence wrt #τ⟨ · ⟩

... but case 2 is very “non-uniform”, there is a counting argument

... we do not expect Ek ⇒ Cm(k) or Rk ⇒ Cm(k) satisfying (S2)

Instead, we specify ∼=r
q as an extra structure!
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The synthetic method (taken from Andrej Bauer)

1. Take a classic theorem in
Finite Model Theory

computability theory.

2. Rephrase it as a fact about
concrete game comonads

the effective topos .

3. Find a

for elementary path categories︷ ︸︸ ︷
statement whose interpretation is the fact.

4. Abstract the statement to expose its essence.

5. Give a synthetic proof.

Do not skip any steps! This can hinder progress significantly!
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Steps ahead

1. What are formulas?

2. What are local formulas?

3. What are basic local formulas?

4. State the theorem.

5. Give a copy-cat proof.

6. (Future work:) synthesise the statement and its proof.
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Formulas with free variables

Classically, ∆ ⊆ Rn(σ) is a formula of quantifier rank ≤ k iff

(A, a) ∈ ∆ and (A, a) ≡k (B, b) implies (B, b) ∈ ∆

Constants a = (a1, . . . , an) ∈ An

∼= assignments/function {1, . . . , n} → A
∼= homomorphism from a discrete {1, . . . , n} to A
∼= coalgebra homomorphisms pn → F Ek+n(A)

where pn is the discrete chain (1 < · · · < n) in EM(Ek+n)

⇒ UEk+n(pn) = {1, . . . , n}
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Types

Question: Given (A, a) and (B, b) as

F Ek+n(A) pn F Ek+n(A)a b ,

how do we express (A, a) ≡k (B, b) in EM(Ek+n)?

Define a (weak) type tp(x) of x : P → X in EM(Ek+n), where

P is a path, as the upset of the image of x in X .

tp(x) = colim{e : Q ↣ X | x factors via e}

Then x factors as

P tp(x) Xx↑

Theorem

(A, a) ≡k (B, b) iff tp(a) ∼ tp(b)
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Strong functors, i

What functors preserve equivalence of types?

Our usual situation, a comonad morphism λ : D⇒ C yields

� λEM distributes over U’s

� λ̂ distributes over F ’s

� λ̂ preserves embeddings

� λ mono ⇒ λEM fully faithful

♣ conjugation

f : X → λ̂(Y )

f ♭ : λEM(X )→ Y

often preserves path embeddings!

EM(D) EM(C)

A

λEM

UD

λ̂

⊤

UC

FC

FD
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Strong functors, ii

Lemma (!! & ?!)

If λEM preserves paths and λ consists of embeddings then the
conjugation preserves path embeddings. (⇒ λ̂ satisfies (S1), (S2))

Lemma

For L ⊣ R between arboreal categories. If conjugating preserves

path embeddings and L is full then R preserves paths.

A functor H : X Y between elementary path categories is

a strong (path) functor if

� H preserves embeddings

� H preserves paths

� has a left adjoint H∗

� the conjugation f 7→ f ♭ of H∗ ⊣ H preserves path embeddings

(Weak functor would not preserve paths.) 21



Strong functors, iii

Theorem

If H : X Y is a strong path functor then, for

x : P → H(X ) and y : P → H(Y ) in Y ,

we have that

tp(x ♭) ∼ tp(y ♭) implies tp(x) ∼ tp(y).

Proof idea.

tp(x) tp(y)

H(tp(x ♭)) H(tp(y ♭))
b&f
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Neighbourhood operators

Given any (A, a) by

P FC(A)x

we assume factorisation

UC(P) N(x) A

giving us

P FC(N(x)) FC(A)xN

Remarks:

� usually N(x) =
⋃n

i=1Nr (xi ) for x = (x1, . . . , xn) ∈ An

� usually a natural transformation N ⇒ Id on UC ↓ A
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Local types and local formulas

Given any

P FC(A)x

and a neighbourhood operator N for P, N-local type ltpN(x) is

the type of xN in FC(N(x)), that is,

P ltpN(x) = tp(xN) FC(N(x))
(xN)

↑

For a collection ∆ ⊆ {x : P → FC(A)}A∈A (i.e. ∆ ⊆ P ↓ F C)

∆ is a formula if x ∈ ∆ and tp(x) ∼ tp(y) implies y ∈ ∆

∆ is a local formula if x ∈ ∆ and ltp(x) ∼ ltp(y) implies y ∈ ∆
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Detecting neighbourhoods

Theorem

If H detects N, tp(x ♭) ∼ tp(y ♭) implies ltpN(x) ∼ ltpN(y).

A strong path functor H : X Y which detects N allows to

restrict bisimulation to N-local types:

ltpN(x) ltpN(y)

tp(x) tp(y)

H(tp(x ♭)) H(tp(y ♭))
b&f

Intuitively: X can express “z ∈ N(x)” 25



Basic local formulas

We want to mimic formulas ∃x (
∧

i ̸=j δ(xi , xj) > 2r ∧
∧

i θ(xi ))

For an N-local formula ∆, a basic local formula is

{A | ∃ scattered x1, . . . , xn : P → FC(A) in ∆}

where scattered means N(xi )↣ A↢ N(xj) are disjoint ∀i ̸= j .

Equivalently, the induced FC(N(x1))⊕ · · · ⊕ FC(N(xn))↣ FC(A)

is a pathwise embedding.

These are formulas, relative to a strong H : Z → Y detecting N, assuming

� a monoidal structure ⊕, preserved by H∗

� decomposition of discrete paths pn = t1 ⊕ · · · ⊕ tn

e.g. Y = EM(E�
k ) where timed E�

k (A)

consists of [(m1, a1), . . . , (mn, an)] with

1 ≤ m1 < · · · < mn ≤ k 26



The statement structure ⇝ step 3✓

Original claim: A ∼=r(k)
q(k) B implies A ≡k B

Instead of r1, . . . , rk and q1, . . . , qk we fix:

Y1 Y2 . . . Yk

X A

R1 R1 Rk−1

We want FX (A) ∼ FX (B). From

� “discrete” paths p1 ∈ Y1, . . . , pk ∈ Yk

where pi+1 extends Ri (pi )

� neighbourhood operators N1, . . . ,Nk for p1, . . . ,pk
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The proof (inductive step)

X Ym+1

A Ym

Hm+1

Hm
Rm

Invariant (invm)⋃m
i=1Nrm(ai ) ≡qm

⋃m
i=1Nrm(bi )

replaced by

ltpNm
(x) ∼ ltpNm

(y) in Ym

for assignments

x : pm → FYm(A) y : pm → FYm(B)

Next step – extension:

Rm(pm) FYm+1(A)

pm+1

Rm(x)

x ′

Gaifman’s two cases:

ltpNm
(x) FYm(A)

ltpNm+1
(x ′) FYm(Nm+1(x

′))

??

28



Thank you!



Added axioms

For an elementary path category X , we needed to further assume:

� all P → X have a minimal decomposition P → P ′↣ X

� morphisms P → colimD , where D is a diagram of paths and

embeddings, factor through one of the inclusions d → colimD

� for a full downset subcategory D of Paths(X ), the colimit of

D exists and the induced colimD → X is an embedding

Finally, for our adjunction U ⊣ F between A ⇆X ,

� A also has embeddings and F (and sometimes also U) is

required to preserve them
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