Software Prefetching for Indirect Memory Accesses

Sam Ainsworth, Timothy M. Jones
University of Cambridge

Many modern data processing and HPC workloads are heavily memory-

latency bound. A tempting proposition to solve this is software prefetching,

where special non-blocking loads are used to bring data into the cache hi-
erarchy just before being required. However, these are difficult to insert to
effectively improve performance, and techniques for automatic insertion are
currently limited.

We have developed a novel compiler pass to automatically generate soft-
ware prefetches for indirect memory accesses, a special class of irregular
memory accesses often seen in high-performance workloads. Across a set of

memory-bound benchmarks, our automated pass achieves average speedups
of 1.3x and 1.1x for an Intel Haswell processor and an ARM Cortex-A57,
both out-of-order cores, and performance improvements of 2.1x and 2.7 X

for the in-order ARM Cortex-Ab3 and Intel Xeon Phi.

Software Prefetching

for (i=0; i<a_size; i++) {
SWPEF (b[f(al1 + offset])]);
SWPF (a[i + offset*x2]);
blf(al1])]++;

1 =l

i + offset —P»
Look ahead Iin a Prefetch from b

i 4+ 2*offset =P
Prefetch from a

Good Prefetches are Challenging

Speedup

Naive Offset too small Offset too big Optimal

e Need to stagger prefetches to each data structure, even those covered by
the stride pretetcher!

e Need to set a good look-ahead offset, that brings in the data neither too
late, nor too early.

e But the behaviour is surprisingly resilient across microarchitectures and
workloads, in terms of both strategy and look-ahead distance!

Acknowledgements

This work was supported by ARM Ltd and the Engineering and Physical Sciences Research
Council (EPSRC) through grant references EP/K026399/1 and EP/M506485/1.

Algorithm

We use a dataflow analysis in LLVM IR to auto-
matically insert prefetches:

e Identification: Trace back through loads, to
find both an induction variable and a set of de-

pendent loads based off it.

e Safety Amnalysis: Look for array bounds infor-
mation, to ensure no real loads, used for prefetch
address generation, cause faults.

e Scheduling: Use the load pattern to statically
set look-ahead offsets for prefetches.

start: alloc a, a size
alloc b, b _size
loop: phi i, [#0, 1.1]
gep tl, a, 1
1+64 1d t2, tl
gep t3, b, tZ
1+32 1d t4, t3

Large Speedups on Real Cores

AS53

G500-CSR HashJdoin RandAcc ConjGrad IntSort

Xeon Phi

] 6

Compiler

G500-CSR HashJoin RandAcc ConjGrad IntSort
Manual

Haswell

ICC ,

1 ' I— ' |
G500-CSR HashJdoin RandAcc ConjGrad IntSort

AS7

JE—

G500-CSR HashJoin RandAcc ConjGrad IntSort




