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What is this about?

@ Structure, | am afraid. ..

@ We are following Moggi's monad-based approach to effects in
mathematical semantics of functional programming.

o Effects are a program'’s (a computation’s) requests to the outside
world for certain services.

@ To be able to run, a program has to meet a state machine (an
environment) able to serve these requests.

@ The two have to understand each other.

@ Monad-comonad interaction laws mathematize the communication
protocols between computations and environments.

@ How to find the universal notion of environment for the given notion
of computation and vice versa?



Outline

@ Monad-comonad interaction laws (Katsumata, R., U.)

@ An abstract (Sweedler theory) view:
measuring maps in duoidal Sweedler theory

@ A (co)algebraic characterization (U., Voorneveld)

o Combining the Sweedler theory and (co)algebraic perspectives



Monad-comonad interaction laws

o Let C be a symm. mon. category.

e A monad-comonad interaction law is a monad (T, 7, 1), a comonad
(D, ¢,6) and monad (R,n®, uf) and a nat. transf. typed

Uxy: TX@DY = R(X®Y)

such that
P TX,DY RYx y
;d®5/y_,x®y X®Y %TXQaDDY»R(TX@DY)»RR(XQ@Y)
X ® DY Beov| TTX ® DY wRay
n@ UX,y MX@T\d X,y
TX® DY = R(X® Y) TX ® DY R(X®Y)
@ Legend:

T — notion of computation, X — values
D — notion of environment, Y — states
R — notion of residual computation

@ The most important case is R = Id.



Example: State (1)

o Let C be a CCC, e.g., Set.

e TX =5 = (S x X) (the state monad)
@ DY =S x (§ = Y) (the costate comonad)

for some S

o RZ=7

0Y:(S=(SxX))x(Sx(S5=Y))=>XxY
U (f,(s,g)) =let (s,x)=fsin (x,g5)

@ Legend:
X — values
Y — (control) states, S — stores (data states)



Example: State (2)

e TX =V = (V x X) (the state monad)

@ DY =S x (§ = Y) (the costate comonad)

forsome S, V,get:S—Vandput:SxV — S
forming a (very well-behaved) lens

e RZ=27

S=Y)—=>XxY

o Yp: (V= (VxX))x(Sx(
v/, x) = f (gets) in (x, g (put(s,v")))

¥ (f,(s,8)) = let (v,

o Legend:
X —values, V — "views" of stores (data states),
Y — (control) states, S — stores (data states)



Example: State (3)

o TX =puX' . X+ (S=X')+(5xX)
(the intensional state monad)

e DY=5x(S5=Y)

o RZ=7

° ¢ (inlx,(s,8)) = (x,&5)
1//(mf('n|f) (s,8)) = ¢ (fs, (s, ))
¢ (inr (inr (s',¢)), (- 8)) = ¢ (C,( &)

e TX =S = X (the reader monad)
e DY=5x(S5=Y)
o RZ=7

° ¢(f,(s.g))=(fsg5)



Example: (Intensional) nondeterminism

o TX =uX . X+X xX
e DY =vY' Y x(Y+Y)ZvY. Y x(2xY)2Str(Y x2)
e RZ=Z7

° 'L/)(in|X, (}/»*)) = (X’Y)
¥ (inr(c,-), (s, inle) = ¢ (c,e)
P (inr (., ¢), (o, inre) =1 (c,e)

o TX = uX' . X+ (1+ X x X'
o DY =Y. Y x (Y +Y)
o RZ=Z+1

¥ (inlx, (y,-)) =inl(x,y)
(mr(ml*)) ) =inr%
Elnr(lnr( ), (5 inle) =¥ (c,e)

¢
(0
¥ (inr (inr (2, €)), (-, inre) =¥ (c, €)



Example: Nontermination
o TX =vX'.X+ X’ (the delay monad)
e DY =pY'. Y x (1+ Y’) 2 NEList Y (the timeout comonad)
e RZ=TZ

(inlx, (y,-)) =inl(x,y)

(U
P (inrc, (y,inl*) =inr (¢ (c, (y,inl%)))
b(inre, Cinre) = v (ce)



Alternative formulations

o If Cis closed,
the definition of mnd.-cmnd. int. laws admits further variants:

TX® DY — R(X ® Y) nat. in X, Y subj. to egs.
C(X®Y,Z) = C(TX @ DY, RZ) nat. in X, Y, Z subj. to egs.
T(Y —0 Z) = DY — RZ nat. in Y, Z subj. to egs.

D(X — Z) — TX — RZ nat. in X, Z subj. to egs.

@ Legend:
X — values
Y — states

Z — observables (values for residual computations)
X ® Y — Z — observation functions



Monad-comonad interaction laws as monoids

@ A functor-functor interaction law is given
by three functors F, G, H : C — C and a nat. transf. typed maps

dxy FX®GY > HX®Y)
@ A functor-functor interaction law map between (F, G, H, ¢),

(F',G',H',¢') is given by nat. transfs. f : F - F/, g : G’ — G,
h: H — H’ such that

XY
id@}?FX®GY*>H(X®Y)
FX®G'Y ihx@zy
’
fx ®id i

X,Y
FX®RGY—>H((X®Y)

@ Functor-functor int. laws form a category with a composition-based
monoidal structure.

@ Monad-comonad int. laws are monoids in this category.



R-residual monad-comonad interaction laws as monoids

@ One can fix H to be the underlying functor R of some particular
monad (R, R, uf).

@ The category of R-residual functor-functor int. laws has a
composition-based monoidal structure using (7, uf).

@ R-residual monad-comonad int. laws are monoids in this category.



Degeneracies for R = Id

@ Assume C is extensive.

o If F comes with a nullary operation or a commutative binary
operation and interacts with G, then GY = 0.

o If T comes with an associative binary operation and interacts with
D, then D cannot be very interesting.

@ It is therefore often useful to use, e.g., — + 1, MP‘ or M; as the
monad R.



A challenge

@ We would like to be able, given a monad R,

e to construct the final monad T interacting R-residually with a given
comonad D,

e or to construct the final comonad D interacting R-residually with a
given monad T,

@ or also, given a monad T and a comonad D,

o to construct the initial monad R wrt. which they can interact
residually;

@ in short, given any two,
o to construct the universal third.



Abstracting to monoid-comonoid interaction laws

@ Assume the symm. mon. cat C is locally presentable. Cut [C,C]
down to accessible functors.

e [C,C], has a Day convolution symm. mon. structure.

JZ=C(,Z) el
(FxG)Z = ["YC(X®Y,Z)e (FX® GY)

@ Func.-func. int. laws for F, G, H are in bijection with maps
FxG— H.

FX® GY — H(X ® Y) nat. in X, Y
C(X®Y,Z)— C(FX ® GY,HZ) nat. in X,Y,Z
[YC(X®Y,Z)e (FX® GY) — HZ nat. in Z

(FxG)Z

@ The category of R-residual func.-func. interaction laws is isomorphic
to that of Chu spaces with vertex R.



Abstracting to monoid-comonoid interaction laws ctd.

e Composition and Day convolution together equip [C, C], with a
duoidal structure (Id, -, J, *).

@ In particular, x is oplax monoidal wrt. (Id, ), so there are structural

laws
IdxId — Id

(F-FY*(G-G)— (FxG)-(F/xG")
subject to the right equations.

@ Mnd.-cmnd. int. laws for T, D, R are in bijection with maps
T x D — R such that

by
. ldxld—>1d (T-T)x(D-D)—=>(T*D)-(TxD)—>R-R
I*s/ y

Id« D (T T)«D uR
ﬁ » )
R m\T*D v A

@ We can abstract from [C, C], and talk about object-object and
monoid-comonoid int. laws in a general symm. duoidal category.



Abstracting to monoid-comonoid interaction laws ctd.

o If Cis closed, i.e., — ® Y has a right adjoint Y — —,
then — x G has a right adjoint G —x — given by

(G+H)X=[,GY =H(X®Y)
e For a comonad (D, ¢,d) and a monad (R, 7R, u), the functor
D — R is a monad via

E‘kR
n=Id—>Id +ld —>D =«R

ji= (D —*R)-(D «+R)—> (D-D) = (R-R) =" D « R

@ Mnd.-cmnd. int. laws for T,D,R are in bijection with monad maps
T—D —=R.



Sweedler theory for duoidal categories

@ We follow Lépez Franco and Vasilakopoulou's generalization of
Sweedler theory from SMCs to duoidal categories.

@ Assume a duoidal category (D, /, ¢, J,x) symm. closed wrt. (J,*),
i.e., with a functor —x: D°P x D — D such that —« G 4 G — —.

@ The oplax resp. lax monoidal wrt. (/,¢) functors

*:DxD—D
-+ DP xD—D

lift to

* : Comon(ID) x Comon(D) — Comon(D) tensor of comonoids
—: (Comon(D))°P x Mon(D) — Mon(D)  power

e A measuring map for a monoid T, comonoid D, monoid R (= a
mon.-comon. int. law) is a map UT x UD — UR whose transpose
T — D — R is a monoid map.



Sweedler theory for duoidal categories ctd.
o If the appropriate adjoints exist, one moreover has functors

C : (Comon(ID))°P x Comon(D) — Comon(DD) int. hom of comonoids
> : Comon(D) x Mon(ID) — Mon(D) Sweedler copower
M : (Mon(ID))°P x Mon(D) — Comon(D)  Sweedler hom
T — D — R in Mon(D)
UT % UD — UR measuring in D
Do x Dy — D in Comon(D) DT — R in Mon(D)
Dy — C(D4, D) in Comon(D) D — M(T,R) in Comon(D)

@ D° =D — [ is called the dual of D,
D®* = M(T,I) is called the Sweedler dual of T.

@ The category (Comon(ID), J, x,C) is symmetric monoidal closed.

@ The category (Mon(D), M, >, —) is enriched, copowered and
powered over (Comon(D), J, %, C).



Sweedler theory for duoidal categories ctd.
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Final interacting (co)monoids, initial residual monoid

@ By construction,

D — R is the final monoid T that D interacts R-residually with,
M(T, R) is the final comonoid D that T interacts R-residually with,
D> T is the initial monoid R wrt. which T and D interact residually.

e D — R is immediate to compute since U(D —« R) = UD — UR.

e Specifically for D = [C, C], we have
(D R)X = [,DY — R(X® Y)

(suppressing the U's).



Mon-comon. int. laws of free monoids

o Exploiting the Sweedler theory perspective, some things about
monoid-comonoid interaction become very easy to calculate.

e E.g., for T = F* (the free monoid on an object F), mon.-comon.
int. laws for T, D, R are in bijection with obj.-obj. int. laws for F,

UD, UR:
FxUD — URinD

F— UD —« UR inD
F—UD +*R)inD
F*— D — R in Mon(D)
U(F*) x UD — UR measuring in D




Sweedler hom from a free monoid

o The Sweedler hom M(F* R) is (F -« UR)! (a cofree comonoid):

D — (F -« UR)" in Comon(DD)
UD— F % URinD
F—UD—+URinD
F—=UD—=*R)inD

F*— D — R in Mon(D)

D — M(F*,R) in Comon(D)

@ For FX =1+ X2 we have F*X = uX'. X + 1+ X2
We can calculate (F -« UR)Y 2 RO+ R(2 x Y).
So M(F*,R)Y ZvY'.Y x ROx R(2x Y’).
For RZ = Z, this means M(F*, R)Y 0.
For RZ=Z7Z+1, we get M(F*,R)Y 2vY' . Y x(2x Y +1).



Sweedler copower of a free monoid

o Similarly, the Sweedler copower D > F* is (F x UD)* (a free
monoid):

(F x UD)* — R in Mon(D)
F+xUD— URinD
F—UD-—+URinD
F—-UD—=*R)inD

F*— D — R in Mon(D)

D> F* — R in Mon(D)

e For FX =1+ X2 we have F*X = uX'. X + 1+ X2
We can calculate (F x UD)X = D1 + D(Z?).
So (D> F*)Z = uZ'.Z + D1 + D(Z"?).



The general case?

@ But how to construct M(T,R) and D> T nicely and usefully
for a general non-free monoid T7?

@ One possibility is a construction for coequalizers in Mon(D).

@ We look at a construction for monoids in D = [C, C], using a
(co)algebraic approach.



A (co)algebraic view

@ Mnd.-cmnd. int. laws are in a bijection with coalgebra-algebra
internal-homming functors:

T(Y —0 Z) — DY — RZ nat. in Y, Z subj. to egs.

(coEM(D))°P x EM(R) — EM(T)

lUOpxU lU

CPxC—">—-C

(coKI(D))°P x KI(R) —= EM(T)

lK“pr \LU

CPxC—>—=C



A (co)algebraic view ctd.

o Explicitly, given a mnd.-cmnd. int. law 2,

the corresponding (co)alg. exp. functor E sends
a coalgebra (Y, x) of D and an algebra (Z,() of R
to the algebra (Y — Z,&) of T where

<

E= T(Y -2) -2 oDy oRZXLy o7

o Conversely, given a (co)alg. exp. functor E,

the corresponding mnd.-cmnd. int. law is

T(ey—on})

by z= T(Y = 2) —"2 T(DY — RZ) — 22~ DY — RZ

where (DY —o RZ, ey 7) = E((DY,dy), (RZ., uB)).



Intermediate views
@ In fact, the picture is finer, there are also two intermediate bijections:

MCILp (T)

[(coEM(D))°P, (SRung(T))lep.  [EM(R), CRunp(T)]cp.

/B
\

[(coEM(D)°P x EM(R), EM(T)]cn.

where

MCILp,r(T) - interaction laws of T, D, R

SRung(T) - R-residual stateful runners of T
CRunp(T) - D-fuelled continuation-based runners of T
Cp. - preserving carriers

ch. - internal-homming carriers



Stateful runners
@ For any Y, we have

R-residual stateful runners of T w/ carrier Y, ie.
TX x Y = R(X x Y) nat. in X subj. to egs.

monad morphisms from T to Stﬁ, ie.
TX > Y —o R(X x Y) nat. in X subj. to egs.

R) ——EM(T
“ l
(C4>(C

where St§ is the R-transformed state monad
for state object Y, given by

StRX =Y < R(X x Y)



Stateful runners ctd.

@ More informatively (also characterizing stateful runner maps),
SRung(T) is the following pullback in CAT:

SRung(T) [EM(R), EM(T)]°®
Ul/ N beren i/[EM(R),U]”P
c YT e oper v.cl [EM(R), CJ°P

e If U is comonadic, then by the univ. property of M(T, R) this
pullback is also the coEM category of M(T, R).

o If Cis locally presentable and T, R are accessible, which we assume,
then U is comonadic.

e Eg., for TX =S = X (the reader monad), RZ = Z,
we have SRung(T) = C/S = coEM(D)
where DY = S x Y (the coreader comonad).

The same holds for RZ = Z + 1.



Continuation-based runners ctd.
@ For any Z, we have

D-fuelled continuation-based runners of T w/ carrier Z, ie.
D(X — Z) — TX —o Z nat. in X subj. to eqgs.

monad morphisms from T to Cntg, ie.
TX — D(X —o Z) —o Z nat. in X subj. to egs.

(coEM(D))*P —= EM(T)

Uopl iu

cor— % ¢

where Cnt? is the D-transformed continuation monad
for answer object Z, given by

Cnt2X =D(X - 2) - Z



Continuation-based runners ctd.

@ Moreover, CRunp(T) is this pullback:
[(coEM(D))°?, EM(T)]

CRunp(T)
ui i[(ccEM(D))”P,w
L op
C i (e, c] — YD [(coEM(D)), C]

@ If U is monadic, then by the univ. property of D > T the same
pullback is also the EM category of D> T.

o If C is locally presentable and T, D are accessible, which we assume,
then U is monadic.



Not today

@ Strong (enriched) monad-comonad int. laws
@ For V a monoidal category acting on C, T a V-strong monad on V,

D a V-strong comonad on C, R a V-strong monad on C,
an int. law. is a V-strong nat. transf. TX ¢ DY — R(X e Y).

@ Int. laws for (co)monads given by (co)models of theories

@ The Sweedler dual of T induced by models of a theory
is induced by comodels of the same theory.



Takeaway

@ Functor-functor and monad-comonad interaction laws generalize to
object-object and monoid-comonoid interaction laws in duoidal
categories.

e Final interacting (co)monoids, initial residual monoids have been
studied in algebra, in Sweedler theory.

@ The Sweedler theory perspective allows working with interaction
laws at a very abstract level.

@ For certain calculations specifically for monad-comonad interaction
laws, combinationwith the (co)algebraic perspective is helpful.
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