Sweedler theory of monads

Tarmo Uustalu

joint work with Dylan McDermott, Exequiel Rivas

Structure Meets Power 2024, Tallinn, 7 July 2024

What is this about?

Structure, I am afraid...

- We are following Moggi's monad-based approach to effects in mathematical semantics of functional programming.
- Effects are a program's (a computation's) requests to the outside world for certain services.
- To be able to run, a program has to meet a state machine (an environment) able to serve these requests.
- The two have to understand each other.
- Monad-comonad interaction laws mathematize the communication protocols between computations and environments.

• How to find the universal notion of environment for the given notion of computation and vice versa?

Outline

- Monad-comonad interaction laws (Katsumata, R., U.)
- An abstract (Sweedler theory) view: measuring maps in duoidal Sweedler theory
- A (co)algebraic characterization (U., Voorneveld)
- Combining the Sweedler theory and (co)algebraic perspectives

Monad-comonad interaction laws

- \bullet Let $\mathbb C$ be a symm. mon. category.
- A monad-comonad interaction law is a monad (T, η, μ) , a comonad (D, ε, δ) and monad (R, η^R, μ^R) and a nat. transf. typed

$$\psi_{X,Y}: TX \otimes DY \to R(X \otimes Y)$$

such that

- Legend:
 - T notion of computation, X values
 - D notion of environment, Y states
 - R notion of residual computation
- The most important case is R = Id.

Example: State (1)

- \bullet Let $\mathbb C$ be a CCC, e.g., Set.
- $TX = S \Rightarrow (S \times X)$ (the state monad)
- $DY = S \times (S \Rightarrow Y)$ (the costate comonad) for some S
- RZ = Z
- $\psi: (S \Rightarrow (S \times X)) \times (S \times (S \Rightarrow Y)) \rightarrow X \times Y$ $\psi(f, (s, g)) = \text{let } (s', x) = f \text{ s in } (x, g \text{ s}')$
- Legend:
 - X values
 - Y (control) states, S stores (data states)

Example: State (2)

- $TX = V \Rightarrow (V \times X)$ (the state monad)
- $DY = S \times (S \Rightarrow Y)$ (the costate comonad) for some S, V, $get: S \rightarrow V$ and $put: S \times V \rightarrow S$ forming a (very well-behaved) lens
- RZ = Z

•
$$\psi: (V \Rightarrow (V \times X)) \times (S \times (S \Rightarrow Y)) \rightarrow X \times Y$$

 $\psi(f,(s,g)) = \text{let } (v',x) = f \text{ (get s) in } (x,g \text{ (put } (s,v')))$

Legend:

$$X$$
 – values, V – "views" of stores (data states), Y – (control) states, S – stores (data states)

Example: State (3)

- $TX = \mu X' \cdot X + (S \Rightarrow X') + (S \times X')$ (the intensional state monad)
- $DY = S \times (S \Rightarrow Y)$
- RZ = Z
- ψ (inl x, (s,g)) = (x,gs)• ψ (inr (inl f), (s,g)) = ψ (fs, (s,g)) • ψ (inr (irr (s',c)), (-,g)) = ψ (c, (s',g))

- $TX = S \Rightarrow X$ (the reader monad)
- $DY = S \times (S \Rightarrow Y)$
- RZ = Z
- $\psi(f,(s,g)) = (f s, g s)$

Example: (Intensional) nondeterminism

- $TX = \mu X' \cdot X + X' \times X'$
- $DY = \nu Y'$. $Y \times (Y' + Y') \cong \nu Y'$. $Y \times (2 \times Y') \cong Str(Y \times 2)$
- \bullet RZ = Z
- ψ (inl x, (y, _)) = (x, y) ψ (inr (c, _), (_, inl e) = ψ (c, e) ψ (inr (_, c), (_, inr e) = ψ (c, e)

- $TX = \mu X' \cdot X + (1 + X' \times X')$
- $DY = \nu Y' \cdot Y \times (Y' + Y')$
- RZ = Z + 1
- ψ (inl x, $(y, _)$) = inl (x, y) ψ (inr (inl \star)), $_$) = inr \star ψ (inr (inr $(c, _)$), $(_$, inl e) = ψ (c, e) ψ (inr (inr $(_, c)$), $(_$, inr e) = ψ (c, e)

Example: Nontermination

- $TX = \nu X' \cdot X + X'$ (the delay monad)
- $DY = \mu Y'$. $Y \times (1 + Y') \cong NEList Y$ (the timeout comonad)
- \bullet RZ = TZ
- ψ (inl x, (y, $_{-}$)) = inl (x, y)• ψ (inr c, (y, inl \star) = inr (ψ (c, (y, inl \star))) • ψ (inr c, ($_{-}$, inr e) = ψ (c, e)

Alternative formulations

• If $\mathbb C$ is closed, the definition of mnd.-cmnd. int. laws admits further variants:

$$\frac{TX \otimes DY \to R(X \otimes Y) \text{ nat. in } X, Y \text{ subj. to eqs.}}{\mathbb{C}(X \otimes Y, Z) \to \mathbb{C}(TX \otimes DY, RZ) \text{ nat. in } X, Y, Z \text{ subj. to eqs.}}{\frac{T(Y \multimap Z) \to DY \multimap RZ \text{ nat. in } Y, Z \text{ subj. to eqs.}}{D(X \multimap Z) \to TX \multimap RZ \text{ nat. in } X, Z \text{ subj. to eqs.}}}$$

Legend:

X – values

Y – states

Z – observables (values for residual computations)

 $X \otimes Y \rightarrow Z$ – observation functions

Monad-comonad interaction laws as monoids

• A functor-functor interaction law is given by three functors $F, G, H : \mathbb{C} \to \mathbb{C}$ and a nat. transf. typed maps

$$\phi_{X,Y}: FX \otimes GY \rightarrow H(X \otimes Y)$$

A functor-functor interaction law map between (F, G, H, φ),
 (F', G', H', φ') is given by nat. transfs. f: F → F', g: G' → G,
 h: H → H' such that

$$FX \otimes G'Y \xrightarrow{\operatorname{id} \otimes g_Y} FX \otimes GY \xrightarrow{\phi_{X,Y}} H(X \otimes Y)$$

$$\downarrow^{h_{X \otimes Y}} \downarrow^{h_{X \otimes Y}}$$

$$\downarrow^{h_{X \otimes Y}} \downarrow^{h_{X \otimes Y}} H'(X \otimes Y)$$

- Functor-functor int. laws form a category with a composition-based monoidal structure.
- Monad-comonad int. laws are monoids in this category.

R-residual monad-comonad interaction laws as monoids

- One can fix H to be the underlying functor R of some particular monad (R, η^R, μ^R) .
- The category of R-residual functor-functor int. laws has a composition-based monoidal structure using (η^R, μ^R) .
- R-residual monad-comonad int. laws are monoids in this category.

Degeneracies for R = Id

- Assume C is extensive.
- If F comes with a nullary operation or a commutative binary operation and interacts with G, then $GY \cong 0$.
- If T comes with an associative binary operation and interacts with D, then D cannot be very interesting.
- It is therefore often useful to use, e.g., -+1, $\mathcal{M}_{\mathrm{f}}^+$ or \mathcal{M}_{f} as the monad R.

A challenge

- We would like to be able, given a monad R,
 - to construct the final monad T interacting R-residually with a given comonad D,
 - or to construct the final comonad D interacting R-residually with a given monad T,
- or also, given a monad T and a comonad D,
 - to construct the initial monad R wrt. which they can interact residually;
- in short, given any two,
 - to construct the universal third.

Abstracting to monoid-comonoid interaction laws

- Assume the symm. mon. cat $\mathbb C$ is locally presentable. Cut $[\mathbb C,\mathbb C]$ down to accessible functors.
- \bullet $[\mathbb{C},\mathbb{C}]_a$ has a Day convolution symm. mon. structure.

$$JZ = \mathbb{C}(I, Z) \bullet I$$
$$(F \star G)Z = \int^{X,Y} \mathbb{C}(X \otimes Y, Z) \bullet (FX \otimes GY)$$

• Func.-func. int. laws for F, G, H are in bijection with maps $F \star G \to H$.

$$\underbrace{\frac{\mathit{FX} \otimes \mathit{GY} \to \mathit{H}(X \otimes Y) \ \mathsf{nat. in} \ X, Y}{\mathbb{C}(X \otimes Y, Z) \to \mathbb{C}(\mathit{FX} \otimes \mathit{GY}, \mathit{HZ}) \ \mathsf{nat. in} \ X, Y, Z}}_{(\mathit{Fx} \otimes \mathit{GY})} \underbrace{\xrightarrow{(\mathit{FX} \otimes \mathit{GY})} \to \mathit{HZ} \ \mathsf{nat. in} \ Z}$$

• The category of *R*-residual func.-func. interaction laws is isomorphic to that of Chu spaces with vertex *R*.

Abstracting to monoid-comonoid interaction laws ctd.

- Composition and Day convolution together equip $[\mathbb{C},\mathbb{C}]_a$ with a duoidal structure $(\mathrm{Id},\cdot,J,\star)$.
- In particular, \star is oplax monoidal wrt. (Id, \cdot), so there are structural laws

$$\begin{array}{c} \operatorname{Id} \star \operatorname{Id} \to \operatorname{Id} \\ (F \cdot F') \star (G \cdot G') \to (F \star G) \cdot (F' \star G') \end{array}$$

subject to the right equations.

• Mnd.-cmnd. int. laws for T, D, R are in bijection with maps $T \star D \to R$ such that

• We can abstract from $[\mathbb{C},\mathbb{C}]_a$ and talk about object-object and monoid-comonoid int. laws in a general symm. duoidal category.

Abstracting to monoid-comonoid interaction laws ctd.

• If $\mathbb C$ is closed, i.e., $-\otimes Y$ has a right adjoint $Y \multimap -$, then $-\star G$ has a right adjoint $G \twoheadrightarrow -$ given by

$$(G \rightarrow H)X = \int_Y GY \multimap H(X \otimes Y)$$

• For a comonad (D, ε, δ) and a monad (R, η^R, μ^R) , the functor $D \to R$ is a monad via

$$\eta = \operatorname{Id} \longrightarrow \operatorname{Id} \star \operatorname{Id} \xrightarrow{\varepsilon \to \eta^R} D \to R$$

$$\mu = (D \to R) \cdot (D \to R) \longrightarrow (D \cdot D) \to (R \cdot R) \xrightarrow{\delta \to \mu^R} D \to R$$

• Mnd.-cmnd. int. laws for T,D,R are in bijection with monad maps $T \to D \to R$.

Sweedler theory for duoidal categories

- We follow López Franco and Vasilakopoulou's generalization of Sweedler theory from SMCs to duoidal categories.
- Assume a duoidal category $(\mathbb{D}, I, \diamond, J, \star)$ symm. closed wrt. (J, \star) , i.e., with a functor \to : $\mathbb{D}^{\mathrm{op}} \times \mathbb{D} \to \mathbb{D}$ such that $-\star G \dashv G \to -$.
- The oplax resp. lax monoidal wrt. (I, \diamond) functors

$$\begin{array}{l} \star: \mathbb{D} \times \mathbb{D} \to \mathbb{D} \\ \to : \mathbb{D}^{\mathrm{op}} \times \mathbb{D} \to \mathbb{D} \end{array}$$

lift to

$$\begin{array}{ll} \star: \mathsf{Comon}(\mathbb{D}) \times \mathsf{Comon}(\mathbb{D}) \to \mathsf{Comon}(\mathbb{D}) & \mathsf{tensor} \ \mathsf{of} \ \mathsf{comonoids} \\ \to : (\mathsf{Comon}(\mathbb{D}))^{\mathrm{op}} \times \mathsf{Mon}(\mathbb{D}) \to \mathsf{Mon}(\mathbb{D}) & \mathit{power} \end{array}$$

• A measuring map for a monoid T, comonoid D, monoid R (= a mon.-comon. int. law) is a map $UT \star UD \to UR$ whose transpose $T \to D \to R$ is a monoid map.

Sweedler theory for duoidal categories ctd.

• If the appropriate adjoints exist, one moreover has functors

$$\begin{array}{ll} \mathcal{C}: (\mathsf{Comon}(\mathbb{D}))^\mathrm{op} \times \mathsf{Comon}(\mathbb{D}) \to \mathsf{Comon}(\mathbb{D}) & \mathsf{int. hom of comonoids} \\ \rhd: \mathsf{Comon}(\mathbb{D}) \times \mathsf{Mon}(\mathbb{D}) \to \mathsf{Mon}(\mathbb{D}) & \mathit{Sweedler copower} \\ \mathcal{M}: (\mathsf{Mon}(\mathbb{D}))^\mathrm{op} \times \mathsf{Mon}(\mathbb{D}) \to \mathsf{Comon}(\mathbb{D}) & \mathit{Sweedler hom} \end{array}$$

$$\frac{D_0\star D_1\to D \text{ in }\mathsf{Comon}(\mathbb{D})}{D_0\to\mathcal{C}(D_1,D) \text{ in }\mathsf{Comon}(\mathbb{D})} \frac{ \begin{array}{c} T\to D \to R \text{ in }\mathsf{Mon}(\mathbb{D}) \\ \hline UT\star UD\to UR \text{ measuring in }\mathbb{D} \\ \hline D\rhd T\to R \text{ in }\mathsf{Mon}(\mathbb{D}) \\ \hline D\to \mathcal{M}(T,R) \text{ in }\mathsf{Comon}(\mathbb{D}) \\ \end{array}}$$

- $D^{\circ} = D \rightarrow I$ is called the *dual* of D, $D^{\bullet} = \mathcal{M}(T, I)$ is called the *Sweedler dual* of T.
- The category (Comon(\mathbb{D}), J, \star, \mathcal{C}) is symmetric monoidal closed.
- The category $(\mathsf{Mon}(\mathbb{D}), \mathcal{M}, \triangleright, \rightarrow)$ is enriched, copowered and powered over $(\mathsf{Comon}(\mathbb{D}), J, \star, \mathcal{C})$.

Sweedler theory for duoidal categories ctd.

Final interacting (co)monoids, initial residual monoid

By construction,

 $D \to R$ is the final monoid T that D interacts R-residually with, $\mathcal{M}(T,R)$ is the final comonoid D that T interacts R-residually with, $D \rhd T$ is the initial monoid R wrt. which T and D interact residually.

- $D \rightarrow R$ is immediate to compute since $U(D \rightarrow R) = UD \rightarrow UR$.
- \bullet Specifically for $\mathbb{D} = [\mathbb{C}, \mathbb{C}]_a$ we have

$$(D \to R)X = \int_Y DY \multimap R(X \otimes Y)$$

(suppressing the U's).

Mon-comon, int. laws of free monoids

 Exploiting the Sweedler theory perspective, some things about monoid-comonoid interaction become very easy to calculate.

• E.g., for $T = F^*$ (the free monoid on an object F), mon.-comon. int. laws for T, D, R are in bijection with obj.-obj. int. laws for F, UD, UR:

$$\frac{F \star UD \to UR \text{ in } \mathbb{D}}{F \to UD \to UR \text{ in } \mathbb{D}}$$

$$F \to U(D \to R) \text{ in } \mathbb{D}}$$

$$\overline{F^* \to D \to R \text{ in Mon}(\mathbb{D})}$$

$$\overline{U(F^*) \star UD \to UR \text{ measuring in } \mathbb{D}}$$

Sweedler hom from a free monoid

• The Sweedler hom $\mathcal{M}(F^*,R)$ is $(F \to UR)^{\dagger}$ (a cofree comonoid):

$$\frac{D \to (F \to UR)^{\dagger} \text{ in } \mathsf{Comon}(\mathbb{D})}{\underbrace{\frac{UD \to F \to UR \text{ in } \mathbb{D}}{F \to UD \to UR \text{ in } \mathbb{D}}}_{F \to U(D \to R) \text{ in } \mathbb{D}}}_{F^* \to D \to R \text{ in } \mathsf{Mon}(\mathbb{D})}$$

$$\frac{D \to \mathcal{M}(F^*, R) \text{ in } \mathsf{Comon}(\mathbb{D})}$$

• For $FX=1+X^2$, we have $F^*X\cong \mu X'.X+1+X'^2$. We can calculate $(F \to UR)Y\cong R0+R(2\times Y)$. So $\mathcal{M}(F^*,R)Y\cong \nu Y'.Y\times R0\times R(2\times Y')$. For RZ=Z, this means $\mathcal{M}(F^*,R)Y\cong 0$. For RZ=Z+1, we get $\mathcal{M}(F^*,R)Y\cong \nu Y'.Y\times (2\times Y'+1)$.

Sweedler copower of a free monoid

 Similarly, the Sweedler copower D > F* is (F * UD)* (a free monoid):

$$\frac{(F \star UD)^* \to R \text{ in Mon}(\mathbb{D})}{\frac{F \star UD \to UR \text{ in } \mathbb{D}}{F \to UD \to UR \text{ in } \mathbb{D}}}{F \to U(D \to R) \text{ in } \mathbb{D}}}{\frac{F^* \to D \to R \text{ in Mon}(\mathbb{D})}{D \rhd F^* \to R \text{ in Mon}(\mathbb{D})}}$$

• For $FX=1+X^2$, we have $F^*X\cong \mu X'.X+1+X'^2$. We can calculate $(F\star UD)X\cong D1+D(Z^2)$. So $(D\rhd F^*)Z\cong \mu Z'.Z+D1+D(Z'^2)$.

The general case?

- But how to construct $\mathcal{M}(T,R)$ and $D \rhd T$ nicely and usefully for a general non-free monoid T?
- One possibility is a construction for coequalizers in Mon(D).
- We look at a construction for monoids in $\mathbb{D}=[\mathbb{C},\mathbb{C}]_a$ using a (co)algebraic approach.

A (co)algebraic view

 Mnd.-cmnd. int. laws are in a bijection with coalgebra-algebra internal-homming functors:

$$T(Y \multimap Z) \to DY \multimap RZ$$
 nat. in Y, Z subj. to eqs.

$$(\mathsf{coEM}(D))^{\mathrm{op}} \times \mathsf{EM}(R) \longrightarrow \mathsf{EM}(T)$$

$$\downarrow U^{\mathrm{op}} \times U \qquad \qquad \downarrow U$$

$$\mathbb{C}^{\mathrm{op}} \times \mathbb{C} \longrightarrow \mathbb{C}$$

$$(\mathsf{coKI}(D))^{\mathrm{op}} \times \mathsf{KI}(R) \longrightarrow \mathsf{EM}(T)$$

$$\downarrow \kappa^{\mathrm{op}} \times \kappa \qquad \qquad \downarrow U$$

$$\mathbb{C}^{\mathrm{op}} \times \mathbb{C} \longrightarrow \mathbb{C}$$

A (co)algebraic view ctd.

• Explicitly, given a mnd.-cmnd. int. law ψ , the corresponding (co)alg. exp. functor E sends a coalgebra (Y,χ) of D and an algebra (Z,ζ) of R to the algebra $(Y \multimap Z,\xi)$ of T where

$$\xi = T(Y \multimap Z) \xrightarrow{\psi_{Y,Z}} DY \multimap RZ \xrightarrow{\chi \multimap \zeta} Y \multimap Z$$

Conversely, given a (co)alg. exp. functor E,
 the corresponding mnd.-cmnd. int. law is

$$\psi_{Y,Z} = T(Y \multimap Z) \xrightarrow{T(\varepsilon_Y \multimap \eta_Z^R)} T(DY \multimap RZ) \xrightarrow{e_{Y,Z}} DY \multimap RZ$$
where $(DY \multimap RZ, e_{Y,Z}) = E((DY, \delta_Y), (RZ, \mu_Z^R)).$

Intermediate views

• In fact, the picture is finer, there are also two intermediate bijections:

where

 $\mathsf{MCIL}_{D,R}(T)$ - interaction laws of T, D, R $\mathsf{SRun}_R(T)$ - R-residual stateful runners of T $\mathsf{CRun}_D(T)$ - D-fuelled continuation-based runners of T cp. - preserving carriers ch. - internal-homming carriers

Stateful runners

For any Y, we have

R-residual stateful runners of T w/ carrier Y, ie. $TX \times Y \rightarrow R(X \times Y)$ nat. in X subj. to eqs.

monad morphisms from T to St_Y^R , ie. $TX \to Y \multimap R(X \times Y)$ nat. in X subj. to eqs.

$$EM(R) \longrightarrow EM(T)$$

$$\downarrow U \qquad \qquad \downarrow U$$

$$\mathbb{C} \xrightarrow{Y \multimap -} \mathbb{C}$$

where St_Y^R is the *R*-transformed state monad for state object Y, given by

$$St_Y^R X = Y \multimap R(X \times Y)$$

Stateful runners ctd.

• More informatively (also characterizing stateful runner maps), $SRun_R(T)$ is the following pullback in CAT:

- If U is comonadic, then by the univ. property of $\mathcal{M}(T,R)$ this pullback is also the coEM category of $\mathcal{M}(T,R)$.
- If $\mathbb C$ is locally presentable and $\mathcal T$, $\mathcal R$ are accessible, which we assume, then $\mathcal U$ is comonadic.
- Eg., for $TX = S \Rightarrow X$ (the reader monad), RZ = Z, we have $SRun_R(T) \cong \mathbb{C}/S \cong coEM(D)$ where $DY = S \times Y$ (the coreader comonad).

 The same holds for RZ = Z + 1.

Continuation-based runners ctd.

For any Z, we have

D-fuelled continuation-based runners of
$$T$$
 w/ carrier Z , ie. $D(X \multimap Z) \to TX \multimap Z$ nat. in X subj. to eqs.

monad morphisms from T to Cnt_Z^D , ie. $TX \to D(X \multimap Z) \multimap Z$ nat. in X subj. to eqs.

$$(\operatorname{coEM}(D))^{\operatorname{op}} \longrightarrow \operatorname{EM}(T)$$

$$U^{\operatorname{op}} \downarrow \qquad \qquad \downarrow U$$

$$\mathbb{C}^{\operatorname{op}} \xrightarrow{--\circ Z} \mathbb{C}$$

where Cnt_Z^D is the *D-transformed continuation monad* for answer object Z, given by

$$\operatorname{Cnt}_Z^D X = D(X \multimap Z) \multimap Z$$

Continuation-based runners ctd.

• Moreover, $CRun_D(T)$ is this pullback:

$$\begin{array}{c} \mathsf{CRun}_D(T) & \longrightarrow [(\mathsf{coEM}(D))^\mathrm{op}, \mathsf{EM}(T)] \\ \downarrow \psi \\ \mathbb{C} & \xrightarrow{Z \mapsto - - \circ Z} & [\mathbb{C}^\mathrm{op}, \mathbb{C}] & \xrightarrow{[U^\mathrm{op}, \mathbb{C}]} & [(\mathsf{coEM}(D))^\mathrm{op}, \mathbb{C}] \end{array}$$

- If U is monadic, then by the univ. property of $D \triangleright T$ the same pullback is also the EM category of $D \triangleright T$.
- If $\mathbb C$ is locally presentable and T, D are accessible, which we assume, then U is monadic.

Not today

- Strong (enriched) monad-comonad int. laws
- For $\mathbb V$ a monoidal category acting on $\mathbb C$, T a $\mathbb V$ -strong monad on $\mathbb V$, D a $\mathbb V$ -strong comonad on $\mathbb C$, R a $\mathbb V$ -strong monad on $\mathbb C$, an int. law. is a $\mathbb V$ -strong nat. transf. $TX \bullet DY \to R(X \bullet Y)$.

- Int. laws for (co)monads given by (co)models of theories
- The Sweedler dual of *T* induced by models of a theory is induced by comodels of the same theory.

Takeaway

- Functor-functor and monad-comonad interaction laws generalize to object-object and monoid-comonoid interaction laws in duoidal categories.
- Final interacting (co)monoids, initial residual monoids have been studied in algebra, in Sweedler theory.
- The Sweedler theory perspective allows working with interaction laws at a very abstract level.
- For certain calculations specifically for monad-comonad interaction laws, combinationwith the (co)algebraic perspective is helpful.

References (1)

- J. Power, O. Shkaravska. From comodels to coalgebras: state and arrays. ENTCS 2004 (CMCS '04).
- G. Plotkin, J. Power. Tensors of comodels and models for operational semantics. ENTCS 2008 (MFPS '08).
- R. E. Møgelberg, S. Staton. Linear usage of state. LMCS 2014.
- T. Uustalu. Stateful runners of effectful computations. ENTCS 2015 (MFPS '15).
- S. Katsumata, E. Rivas, T. Uustalu. Interaction laws of monads and comonads. LICS '20.
- T. Uustalu, N. Voorneveld. Algebraic and coalgebraic perspectives on interaction laws. APLAS '20.
- R. Garner. The costructure-cosemantics adjunction for comodels.
 MSCS 2022.
- R. Garner. Stream processors of comodels. LMCS 2023.
- D. McDermott, E. Rivas, T. Uustalu. Sweedler theory of monads. FoSSaCS '22.
- S. Libkind, D. I. Spivak. Patterns run on matter. ACT 2004.

References (2)

- M. E. Sweedler. Hopf algebras. W. A. Benjamin, 1969.
- H. E. Porst, R. Street. Generalizations of Sweedler dual. Appl. Categ. Struct. 2016.
- M. Hyland. I. López Franco, C. Vasilakopoulou. Hopf measuring comonoids and enrichment. Proc. London Math. Soc. 2017.
- I. López Franco, C. Vasilakopoulou. Duoidal categories, measuring comonoids and enrichment. arXiv 2020.
- P. R. North, M. Péroux. Coinductive control of inductive data types. CALCO 2023.
 - L. Mulder, P. R. N, M. P. Measuring data types. arXiv 2024.
- P. Freyd. Algebra-valued functors in general and tensor products in particular. *Coll. Math.* 1966.
- D. O. Tall, G. C. Wraith. Representable functors and operations on rings. Proc. London Math. Soc., 1970.
- G. C. Wraith. Algebraic theories. Aarhus U., 1975.
- G. M. Bergman, A. O. Hausknecht. Cogroups and corings in categories of associative rings. AMS, 1996.

References (3)

- E. Kmett. Monads from comonads. A series of blog posts at comonad.com/reader, 2011.
- D. Piponi. Cofree meets free. Blog post at blog.sigfpe.com, 2014.
- P. Freeman. Comonads as spaces. A series of blog posts at blog.functorial.com, 2016.
- A. Xavier. Comonads for user interfaces. BSc thesis, U Federal de Minas Gerais, 2017/18.