Predicativism, Universality and Low-Complexity Computation

Amir Akbar Tabatabai

Institute of Mathematics, Czech Academy of Sciences

Structure Meets Power 2024, Tallin

A B M A B M

Recalling F-algebras, we use

Recalling F-algebras, we use

• Philosophy: absolute predicativism to weaken the notion of

3

Recalling F-algebras, we use

- Philosophy: absolute predicativism to weaken the notion of
- **Structure:** an initial *F*-algebra to a relative notion called a predicative *F*-scheme and then

A B M A B M

Recalling F-algebras, we use

- Philosophy: absolute predicativism to weaken the notion of
- **Structure:** an initial *F*-algebra to a relative notion called a predicative *F*-scheme and then
- Power: show how it captures the low-complexity computation.

A B M A B M

Recalling F-algebras, we use

- Philosophy: absolute predicativism to weaken the notion of
- **Structure:** an initial *F*-algebra to a relative notion called a predicative *F*-scheme and then
- Power: show how it captures the low-complexity computation.

We provide a synthetic/categorical foundation for low-complexity computation.

.

Let \mathcal{C} be a category and $F : \mathcal{C} \to \mathcal{C}$ be a functor:

Let $\mathcal C$ be a category and $F:\mathcal C\to\mathcal C$ be a functor:

An *F*-algebra in C is a pair 𝔄 = (|𝔄|, a_𝔅) of an object |𝔅| in C and a map a_𝔅 : *F*(|𝔅|) → |𝔅|.

3

イロト イ理ト イヨト イヨト

Let $\mathcal C$ be a category and $F:\mathcal C\to\mathcal C$ be a functor:

- An *F*-algebra in *C* is a pair 𝔅 = (|𝔅|, a_𝔅) of an object |𝔅| in *C* and a map a_𝔅 : *F*(|𝔅|) → |𝔅|.
- An *F*-morphism $f : \mathfrak{A} \to \mathfrak{B}$ is a *C*-map $f : |\mathfrak{A}| \to |\mathfrak{B}|$ such that:

・ 何 ト ・ ヨ ト ・ ヨ ト …

Let \mathcal{C} be a category and $F : \mathcal{C} \to \mathcal{C}$ be a functor:

- An *F*-algebra in *C* is a pair 𝔅 = (|𝔅|, a_𝔅) of an object |𝔅| in *C* and a map a_𝔅 : *F*(|𝔅|) → |𝔅|.
- An *F*-morphism $f : \mathfrak{A} \to \mathfrak{B}$ is a *C*-map $f : |\mathfrak{A}| \to |\mathfrak{B}|$ such that:

Denote the category of *F*-algebras in *C* by $Alg_F(C)$. We are mainly interested in the two functors $F_{\mathbb{N}}(X) = 1 + X$ and $F_{\mathbb{W}}(X) = 1 + X + X$.

3/17

What is the blueprint of all *F*-algebras in C, specifying all the things an *F*-algebra in C must satisfy and nothing more?

< 3 > < 3 >

What is the blueprint of all *F*-algebras in C, specifying all the things an *F*-algebra in C must satisfy and nothing more? Initial *F*-algebra, if exists.

.

What is the blueprint of all *F*-algebras in C, specifying all the things an *F*-algebra in C must satisfy and nothing more? Initial *F*-algebra, if exists.

For C = Set, the initial F_N-algebra is the structure (N, 0, s) of natural numbers.

What is the blueprint of all *F*-algebras in C, specifying all the things an *F*-algebra in C must satisfy and nothing more? Initial *F*-algebra, if exists.

- For C = Set, the initial F_N-algebra is the structure (N, 0, s) of natural numbers.
- For C = Set, the initial F_W-algebra is the structure (W, ε, s⁰, s¹) of binary strings, where ε is the empty string, s⁰(w) = w0 and s¹(w) = w1.

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

・ 同 ト ・ ヨ ト ・ ヨ ト

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

• It is defined impredicatively! Why?

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.

< 3 > < 3 >

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.
- We need to assume the existence of a reasonable inductive set (A, a, f) and define N as the intersection of all inductive subsets of (A, a, f).

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.
- We need to assume the existence of a reasonable inductive set (A, a, f) and define N as the intersection of all inductive subsets of (A, a, f).
- The range of the intersection is powerset-like and hence huge.

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.
- We need to assume the existence of a reasonable inductive set (A, a, f) and define N as the intersection of all inductive subsets of (A, a, f).
- The range of the intersection is powerset-like and hence huge.
- If we don't accept the set of all subsets in the first place, this powerset-like range includes ℕ and hence the definition somehow refers to itself which is a vicious circle.

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.
- We need to assume the existence of a reasonable inductive set (A, a, f) and define N as the intersection of all inductive subsets of (A, a, f).
- The range of the intersection is powerset-like and hence huge.
- If we don't accept the set of all subsets in the first place, this powerset-like range includes ℕ and hence the definition somehow refers to itself which is a vicious circle.

How to solve the issue?

.

The initial F-algebra is a reasonable choice for the blueprint of all F-algebras. However:

- It is defined impredicatively! Why?
- Think of the set of natural numbers. We cannot define it from below.
- We need to assume the existence of a reasonable inductive set (A, a, f) and define N as the intersection of all inductive subsets of (A, a, f).
- The range of the intersection is powerset-like and hence huge.
- If we don't accept the set of all subsets in the first place, this powerset-like range includes ℕ and hence the definition somehow refers to itself which is a vicious circle.

How to solve the issue? Stratification!

A B b

Let \mathcal{D} be a category, \mathcal{C} be its subcategory, $i : \mathcal{C} \to \mathcal{D}$ be the inclusion functor and $F : \mathcal{D} \to \mathcal{D}$ be a functor whose restriction to \mathcal{C} lands in \mathcal{C} .

Let \mathcal{D} be a category, \mathcal{C} be its subcategory, $i : \mathcal{C} \to \mathcal{D}$ be the inclusion functor and $F : \mathcal{D} \to \mathcal{D}$ be a functor whose restriction to \mathcal{C} lands in \mathcal{C} .

The *F*-scheme *I* of C in D is the limit in D of the diagram consisting of the underlying objects of *F*-algebras in C together with *F*-morphisms between them in C:

Let \mathcal{D} be a category, \mathcal{C} be its subcategory, $i : \mathcal{C} \to \mathcal{D}$ be the inclusion functor and $F : \mathcal{D} \to \mathcal{D}$ be a functor whose restriction to \mathcal{C} lands in \mathcal{C} .

The *F*-scheme *I* of C in D is the limit in D of the diagram consisting of the underlying objects of *F*-algebras in C together with *F*-morphisms between them in C:

Formally, *I* is the limit of the diagram i|-|: Alg_{*F*}(\mathcal{C}) $\rightarrow \mathcal{D}$ in \mathcal{D} .

• A construction is algebraic if it is preserved under all algebraic morphisms.

- A construction is algebraic if it is preserved under all algebraic morphisms.
- The limit extracts out all algebraic constructions in C in one object. Hence, the limit can be called the bluprint or the scheme from which the algebraic constructions in C are constructed.

・四ト ・ヨト ・ヨト

- A construction is algebraic if it is preserved under all algebraic morphisms.
- The limit extracts out all algebraic constructions in C in one object. Hence, the limit can be called the bluprint or the scheme from which the algebraic constructions in C are constructed.
- For C = Set and D = Class, the F-scheme I is the class of the sequences like (e_A)_A such that e_A ∈ |A| and f(e_A) = e_B, for any F-morphism f : A → B. The bluprint (e_A)_A dictates the way we must construct an algebraic construction in A, for any F-algebra A in C.

イロン イ理 とくほとう モン・

- A construction is algebraic if it is preserved under all algebraic morphisms.
- The limit extracts out all algebraic constructions in C in one object. Hence, the limit can be called the bluprint or the scheme from which the algebraic constructions in C are constructed.
- For C = Set and D = Class, the F-scheme I is the class of the sequences like (e_{2l})_{2l} such that e_{2l} ∈ |A| and f(e_{2l}) = e₃, for any F-morphism f : A → B. The bluprint (e_{2l})_{2l} dictates the way we must construct an algebraic construction in A, for any F-algebra A in C.
- For $F = F_{\mathbb{N}}$, the element $2 = \langle s_{\mathfrak{A}} s_{\mathfrak{A}} 0_{\mathfrak{A}} \rangle_{\mathfrak{A}}$ is the blueprint for the two iterations of a generic function on a generic element. It is reminiscent of Fregean numbers.
- The definition is predicative as the limit is not computed in C but in the possibly bigger D. One can read C as the category of sets and D as the category of classes. The limit of sets possibly goes beyond sets.

(a)

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

< 回 > < 回 > < 回 >

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

making the limit cone into F-morphisms.

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

making the limit cone into *F*-morphisms. This *F*-structure is unique in this property.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

making the limit cone into F-morphisms. This F-structure is unique in this property.

• (Absolute case) If C = D is finitely complete, then:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

making the limit cone into F-morphisms. This F-structure is unique in this property.

• (Absolute case) If C = D is finitely complete, then:

F-scheme = Initial F-algebra

・四ト ・ヨト ・ヨト

• Using the universality of limit, there is a canonical *F*-algebra structure on *I*:

making the limit cone into F-morphisms. This F-structure is unique in this property.

• (Absolute case) If C = D is finitely complete, then:

F-scheme = Initial F-algebra

The canonical *F*-algebra structure on the *F*-scheme is the initial *F*-algebra and the underlying object of any initial *F*-algebra is an *F*-scheme.

Something is Missing!

I was explaining these ideas in their embryonic form to Thierry Coquand when we both were at the Hausdorff institute (2018). He listened and then came up with an objection:
I was explaining these ideas in their embryonic form to Thierry Coquand when we both were at the Hausdorff institute (2018). He listened and then came up with an objection:

Your theory must see the difference between the real problematic infinitary *F*-algebras such as the *F*-algebra of natural numbers (F(X) = 1 + X) and the tame finitary ones such as the set with two elements (F(X) = 1 + 1)!

A (10) × (10)

I was explaining these ideas in their embryonic form to Thierry Coquand when we both were at the Hausdorff institute (2018). He listened and then came up with an objection:

Your theory must see the difference between the real problematic infinitary *F*-algebras such as the *F*-algebra of natural numbers (F(X) = 1 + X) and the tame finitary ones such as the set with two elements (F(X) = 1 + 1)!

Then, I kept the objection somewhere in my mind and put the problem aside. Recently, I picked it up again and then I saw the way to differentiate between the two!

I was explaining these ideas in their embryonic form to Thierry Coquand when we both were at the Hausdorff institute (2018). He listened and then came up with an objection:

Your theory must see the difference between the real problematic infinitary *F*-algebras such as the *F*-algebra of natural numbers (F(X) = 1 + X) and the tame finitary ones such as the set with two elements (F(X) = 1 + 1)!

Then, I kept the objection somewhere in my mind and put the problem aside. Recently, I picked it up again and then I saw the way to differentiate between the two! How to solve the issue?

I was explaining these ideas in their embryonic form to Thierry Coquand when we both were at the Hausdorff institute (2018). He listened and then came up with an objection:

Your theory must see the difference between the real problematic infinitary *F*-algebras such as the *F*-algebra of natural numbers (F(X) = 1 + X) and the tame finitary ones such as the set with two elements (F(X) = 1 + 1)!

Then, I kept the objection somewhere in my mind and put the problem aside. Recently, I picked it up again and then I saw the way to differentiate between the two! How to solve the issue?

An Idea

The limit is of course out of reach but it should not be too far! It must be approximable.

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

• Defining a set as the "least" element in a huge family is impredicative.

10/17

- Defining a set as the "least" element in a huge family is impredicative.
- However, one can still stratify the whole family into a directed family of small subfamilies (e.g. finite) for each of which we can accept the existence of the least element.

- Defining a set as the "least" element in a huge family is impredicative.
- However, one can still stratify the whole family into a directed family of small subfamilies (e.g. finite) for each of which we can accept the existence of the least element.
- The initial objects in these families then approximate the limit better and better.

A B A A B A

- Defining a set as the "least" element in a huge family is impredicative.
- However, one can still stratify the whole family into a directed family of small subfamilies (e.g. finite) for each of which we can accept the existence of the least element.
- The initial objects in these families then approximate the limit better and better.
- Having these approximations, the finitary initial *F*-algebras become already reachable while the inifinitary ones remain out of the reach.

(本部) (本語) (本語)

- Defining a set as the "least" element in a huge family is impredicative.
- However, one can still stratify the whole family into a directed family of small subfamilies (e.g. finite) for each of which we can accept the existence of the least element.
- The initial objects in these families then approximate the limit better and better.
- Having these approximations, the finitary initial *F*-algebras become already reachable while the inifinitary ones remain out of the reach.

To formalize such subfamilies we need the following:

Definition

Let C be a category. A family $\{S_i\}_{i \in I}$ of the families of C-maps is called directed if for any $i, j \in I$, there exits $k \in I$ such that S_i and S_j are subsets of S_k . It is called covering if any map of C is in one of the S_i 's.

For any family S of maps closed under F, by an F-algebra over S, we mean an F-algebra whose map is in S.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For any family S of maps closed under F, by an F-algebra over S, we mean an F-algebra whose map is in S.

The *F*-algebra \mathfrak{J} over S is called initial in $\operatorname{Alg}_F(S)$ if for any *F*-algebra \mathfrak{A} over S, there is an *F*-morphism $f : \mathfrak{J} \to \mathfrak{A}$ in S and it is unique among any such *F*-morphism constructed by a composition of the maps in S.

For any family S of maps closed under F, by an F-algebra over S, we mean an F-algebra whose map is in S.

The *F*-algebra \mathfrak{J} over S is called initial in $\operatorname{Alg}_F(S)$ if for any *F*-algebra \mathfrak{A} over S, there is an *F*-morphism $f : \mathfrak{J} \to \mathfrak{A}$ in S and it is unique among any such *F*-morphism constructed by a composition of the maps in S.

Definition

The *F*-scheme of C in D is called predicative if there exists a directed covering family $\{S_i\}_{i \in I}$ of families of *C*-maps such that each $Alg_F(S_i)$ has an initial object.

- 4 回 ト 4 回 ト

For any family S of maps closed under F, by an F-algebra over S, we mean an F-algebra whose map is in S.

The *F*-algebra \mathfrak{J} over S is called initial in $\operatorname{Alg}_F(S)$ if for any *F*-algebra \mathfrak{A} over S, there is an *F*-morphism $f : \mathfrak{J} \to \mathfrak{A}$ in S and it is unique among any such *F*-morphism constructed by a composition of the maps in S.

Definition

The *F*-scheme of C in D is called predicative if there exists a directed covering family $\{S_i\}_{i \in I}$ of families of *C*-maps such that each $Alg_F(S_i)$ has an initial object.

Now, we have completed our definition of predicative F-schemes. How to use them for computation?

< ロ > < 同 > < 三 > < 三 > <

We saw that any $F_{\mathbb{N}}$ -scheme N has a zero element and a successor. Therefore, it is possible to represent:

We saw that any $F_{\mathbb{N}}$ -scheme N has a zero element and a successor. Therefore, it is possible to represent:

• the natural number $n \in \mathbb{N}$ by the map $\overline{n} = s_N s_N \dots s_N 0_N : 1 \to N$, where *n* is the number of s_N 's, and

We saw that any $F_{\mathbb{N}}$ -scheme N has a zero element and a successor. Therefore, it is possible to represent:

- the natural number $n \in \mathbb{N}$ by the map $\overline{n} = s_N s_N \dots s_N 0_N : 1 \to N$, where *n* is the number of s_N 's, and
- a function $f : \mathbb{N}^k \to \mathbb{N}$ by a map $F : \mathbb{N}^k \to \mathbb{N}$ if for any $(n_1, \ldots, n_k) \in \mathbb{N}^k$, we have:

We saw that any $F_{\mathbb{N}}$ -scheme N has a zero element and a successor. Therefore, it is possible to represent:

- the natural number $n \in \mathbb{N}$ by the map $\overline{n} = s_N s_N \dots s_N 0_N : 1 \to N$, where *n* is the number of s_N 's, and
- a function $f : \mathbb{N}^k \to \mathbb{N}$ by a map $F : \mathbb{N}^k \to \mathbb{N}$ if for any $(n_1, \ldots, n_k) \in \mathbb{N}^k$, we have:

We can have a similar representation for binary strings by F_{W} -schemes.

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

What functions are representable by all $F_{\mathbb{N}}$ -schemes or $F_{\mathbb{W}}$ -schemes?

13/17

What functions are representable by all $F_{\mathbb{N}}$ -schemes or $F_{\mathbb{W}}$ -schemes?

Theorem

A function f : N^k → N is representable by all F_N-schemes iff it is linear space computable.

What functions are representable by all $F_{\mathbb{N}}$ -schemes or $F_{\mathbb{W}}$ -schemes?

Theorem

- A function f : N^k → N is representable by all F_N-schemes iff it is linear space computable.
- A function f : W^k → W is representable by all F_W-schemes iff it is polynomial time computable.

What functions are representable by all $F_{\mathbb{N}}$ -schemes or $F_{\mathbb{W}}$ -schemes?

Theorem

- A function f : N^k → N is representable by all F_N-schemes iff it is linear space computable.
- A function f : W^k → W is representable by all F_W-schemes iff it is polynomial time computable.

Caveat!

To have the previous theorem, one needs to add parameters everywhere in the definitions! We omit them for the sake of clearer presentation.

(a)

The Idea behind the Proof

Unfortunately, I don't have time to go into the details. However, the main idea is:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unfortunately, I don't have time to go into the details. However, the main idea is:

• Being a limit allows for a restricted recursion exactly in the amount needed for low-complexity functions.

Unfortunately, I don't have time to go into the details. However, the main idea is:

- Being a limit allows for a restricted recursion exactly in the amount needed for low-complexity functions.
- However, the fact that the limit is outside C disallows arbitrary iterations we usually have for initial *F*-algebras.

To capture low-complexity functions, people usually use:

15/17

To capture low-complexity functions, people usually use:

• syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,

To capture low-complexity functions, people usually use:

- syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,
- linear-style restrictions as in light affine set theory.

To capture low-complexity functions, people usually use:

- syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,
- linear-style restrictions as in light affine set theory.

We believe that understanding feasible mathematics calls for:

To capture low-complexity functions, people usually use:

- syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,
- linear-style restrictions as in light affine set theory.

We believe that understanding feasible mathematics calls for:

• a genuinely alternative yet rich notion of an inductive object,

To capture low-complexity functions, people usually use:

- syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,
- linear-style restrictions as in light affine set theory.

We believe that understanding feasible mathematics calls for:

- a genuinely alternative yet rich notion of an inductive object,
- such a notion must be defined in a universal way so that we can claim we really understand the notion,

To capture low-complexity functions, people usually use:

- syntactic restrictions as in Leivant's and Cook-Bellantoni's predicative recursion or using monads in Hofmann's categorical characterizations,
- linear-style restrictions as in light affine set theory.

We believe that understanding feasible mathematics calls for:

- a genuinely alternative yet rich notion of an inductive object,
- such a notion must be defined in a universal way so that we can claim we really understand the notion,
- it must be closer to the usual practice of mathematics to make it easy to use.

What we said, we believe, is the tip of the following iceberg:

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

・四ト ・ヨト ・ヨト

What we said, we believe, is the tip of the following iceberg:

The Main Thesis Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic

Analytic

What we said, we believe, is the tip of the following iceberg:

The Main Thesis
Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry

・ロト ・ 四ト ・ ヨト ・ ヨト
What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry
Martin Löf type theory	Homotopy theory

- 4 間 ト 4 直 ト 4 画 ト

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry
Martin Löf type theory	Homotopy theory

Finding a categorical characterization of low-complexity computation:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry
Martin Löf type theory	Homotopy theory

Finding a categorical characterization of low-complexity computation:

• unearths the internal structure of the low-complexity computation,

イロト イポト イヨト イヨト

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry
Martin Löf type theory	Homotopy theory

Finding a categorical characterization of low-complexity computation:

- unearths the internal structure of the low-complexity computation,
- absolute predicativism can be our light to navigate,

- 4 回 ト 4 回 ト

What we said, we believe, is the tip of the following iceberg:

The Main Thesis

Absolutly Predicative Mathematics = Feasible Mathematics

Synthetic	Analytic
Russian Constructivism	Computable Mathematics
Brouwerian Constructivism	Geometry
Martin Löf type theory	Homotopy theory

Finding a categorical characterization of low-complexity computation:

- unearths the internal structure of the low-complexity computation,
- absolute predicativism can be our light to navigate,
- helps to provide more models to prove independence results.

Thank you for your attention!

2

イロン イ理 とく ヨン イヨン