Coherence, conjectures, and congruential functions

Peter M. Hines — University of York

Structure Meets Power

Paris, le 4 Juillet 1932(+90)

Au fond de l'Inconnu pour trouver du nouveau!

It was 90 years ago today ...

"In his notebook dated July 1, 1932, he [Lothar Collatz] considered the function

$$
n \mapsto \begin{cases}\frac{2}{3} n & \text { if } n \equiv 0(\bmod 3) \\ \frac{4}{3} n-\frac{1}{3} & \text { if } n \equiv 1(\bmod 3) \\ \frac{4}{3} n+\frac{1}{3} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

He posed the problem of whether the cycle containing 8 is finite or infinite. I will call this the Original Collatz Problem. His original question has never been answered."

The $3 x+1$ problem \& its generalisations

- Jeffrey Lagarias (1985)

The bijection from the OCP is a congruential function

From J. Conway's "Unpredictable Iterations" paper (1972), this problem -might- be undecidable, but could never be proved to be so.

Thanks to J. Lagarias for references \& anecdotes on the OCP!

I want to play a game!

Two players - Alice and Bob - play against a Dealer with an infinite deck of cards.

The game is based around shuffling and dealing packs of cards.

- Fair deals - passing cards to each player, in turn.
- Riffle (or Fano) shuffles - perfect interleavings of decks of cards.

The nature of my game

To start the game : Alice and Bob mark a single card (number 8).
Step 1 The Dealer shares out the cards to all players, including himself.

Step 2 Bob passes his hand of cards to the Dealer, who shuffles it together with his own hand of cards.

Step 3 Alice does the same,
 leaving the Dealer holding all the cards.

In each round, Steps 1.-3. are repeated:
They win when their card returns to its original position in the Dealer's hand.

The other way to play

To start the game : Alice and Bob mark a single card (number 7).
Step 1 The Dealer shares out the cards to all players, including himself.

Step 2 Alice passes her hand of cards to Bob, who shuffles it together with his own hand of cards.

Step 3 Bob passes the result to
 the Dealer, who shuffles it together with his hand.

The two games can never be the same!

- a corollary of, "Coherence \& Strictification for Self-Similarity" Journal of Homotopy \& Related Structures (PMH 2016)

The two paths you can go by

The left-associated Shuffle Game

The left Collatz bijection

$$
\gamma_{L}(n)= \begin{cases}\frac{4 n}{3} & n \equiv 0(\bmod 3) \\ \frac{4 n+2}{3} & n \equiv 1(\bmod 3) \\ \frac{2 n-1}{3} & n \equiv 2(\bmod 3)\end{cases}
$$

The right-associated Shuffle Game

The right Collatz bijection

$$
\gamma_{r}(n)= \begin{cases}\frac{2}{3} n & \text { if } n \equiv 0(\bmod 3) \\ \frac{4 n-1}{3} & \text { if } n \equiv 1(\bmod 3) \\ \frac{4 n-1}{3} & \text { if } n \equiv 2(\bmod 3)\end{cases}
$$

The two games are simply shifted versions of each other

$$
1+\gamma_{L}^{K}(n)=\gamma_{R}^{K}(n+1) \quad \forall K \in \mathbb{N}
$$

Natural transformations between left- and right- associativity

For all $K \in \mathbb{N}$ we have a commuting diagram of partial injective functions :

The successor function Succ $\in \mathcal{I}(\mathbb{N})$ is the unique component of a natural transformation between monoid homomorphisms

Using the generalised inverse of the successor,

$$
\gamma_{L}^{K}=\text { succ }^{-1} \cdot \gamma_{R}^{K} \cdot \text { succ but } \quad \gamma_{R}^{K} \neq \text { succ. }^{K} \gamma_{L}^{K} \cdot \text { succ }^{-1}
$$

A more 'traditional' approach to associativity

Define the associator $\alpha \in \mathcal{I}(\mathbb{N})$ to be the bijection that maps :

1. The result of the right shuffle game, to $\mathbf{2}$. The result of the left shuffle game.

$$
\alpha(n)=\gamma_{L} \gamma_{R}^{-1}(n)=\left\{\begin{array}{cl}
2 n & n \equiv 0(\bmod 2) \\
n+1 & n \equiv 4(\bmod 4) \\
\frac{n-1}{2} & n \equiv 3(\bmod 4)
\end{array}\right.
$$

The associator is a commutator :)

Using the connection with the successor function \& its generalised inverse :

$$
\alpha=\gamma_{L} \gamma_{R}^{-1}=\text { Succ }^{-1} \cdot \gamma_{R} \cdot \text { Succ. } \gamma_{R}^{-1}=\left[{\text { Succ }, \gamma_{R}^{-1}}_{-1}\right.
$$

Remark : Characterising finite orbits under the associator is trivial.

$$
\alpha(0)=0, \quad \alpha^{K}(n) \neq n \quad \forall K, n>0
$$

Writing the Dealer out of the game

Girard's model of multiplicative conjunction, from Geometry of Interaction (I) and (II)
(1) Cards are dealt out to Alice and Bob.
(2) They both apply their favourite (partial?) permutation :

- Alice applies $a: \mathbb{N} \rightarrow \mathbb{N}$,
- Bob applies $b: \mathbb{N} \rightarrow \mathbb{N}$.
(3) Their (permuted) cards are shuffled back together.

As a homomorphism (_* $): \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \hookrightarrow \mathcal{I}(\mathbb{N})$

$$
(a \star b)(n)= \begin{cases}2 \cdot a\left(\frac{n}{2}\right) & n \text { even } \\ 2 \cdot b\left(\frac{n-1}{2}\right)+1 & n \text { odd }\end{cases}
$$

Alice and Bob in conjunction

Girard's Conjunction (-*_) is a (semi-monoidal) categorical tensor on $\mathcal{I}(\mathbb{N})$

- It is associative up to (fixed) isomorphism

$$
\alpha \cdot(a \star(b \star c))=((a \star b) \star c) \cdot \alpha \quad \forall a, b, c \in \mathcal{I}(\mathbb{N})
$$

i.e. the associator $\alpha=\left[\right.$ Succ, $\left.\gamma_{R}^{-1}\right]$.

- This is the unique component of a natural isomorphism :

- MacLane's pentagon condition is satisfied.

$$
\alpha^{2}=(\alpha \star I d) \alpha(I d \star \alpha)
$$

The group of canonical isomorphisms

As a corollary of :
"The Structure Group for the Associativity Identity"

- Patrick Dehornoy (1996)
the subgroup of $\mathcal{I}(\mathbb{N})$ generated by the bijections

$$
\begin{aligned}
& X_{0}=\alpha \\
& X_{1}=(l d \star \alpha) \\
& X_{2}=(1 d \star(I d \star \alpha)) \\
& X_{3}=(1 d \star(I d \star(l d \star \alpha)))
\end{aligned}
$$

is isomorphic to Thompson's group $\mathcal{F}=\left\langle X_{i}: X_{i}^{-1} X_{j} X_{i}=X_{j+1} \quad \forall i<j \in \mathbb{N}\right\rangle$.
A minimal generating set is :

$$
X_{0}(n)=\left\{\begin{array}{ll}
2 n & n \equiv 0(\bmod 2) \\
n+1 & n \equiv 1(\bmod 4) \\
\frac{n-1}{2} & n \equiv 3(\bmod 4)
\end{array} \quad X_{1}(n)= \begin{cases}n & n \equiv 0(\bmod 2) \\
2 n-1 & n \equiv 1(\bmod 4) \\
n+2 & n \equiv 3(\bmod 8) \\
\frac{n-1}{2} & n \equiv 7(\bmod 8)\end{cases}\right.
$$

MacLane's Pentagon for Girard's conjunction

A commuting diagram

A series of shuffles \& deals

"Elementary arithmetic" proofs, for MacLane's pentagon and hexagon

"Modular arithmetic identities from untyped categorical coherence", Reversible Computing, Springer L.N.C.S. (PMH - 2013)

Alice and Bob split the associator

Let's add in the decomposition of the associator $\alpha=\gamma_{L} \gamma_{R}^{-1}$ to MacLane's pentagon!

Where :

- (- $_{-}$) is Girard's conjunction,
- $\gamma_{R}: \mathbb{N} \rightarrow \mathbb{N}$ is the operator from the original Collatz conjecture,
- $\gamma_{L}=$ succ $^{-1} \cdot \gamma_{R}$.succ is another way of expressing Collatz's conjecture.
- $\alpha=\left[\right.$ succ,,$\left.\gamma_{R}^{-1}\right]=\gamma_{L} \gamma_{R}^{-1}$ is the associator for (_*_).

The temptation to complete the inner pentagon is overwhelming!

Completing the ... pentagram??

A Convergent Series?

MacLane's pentagon is the 1 -skeleton of Stasheff's associahedron \mathcal{K}_{4}; we understand the rest of the pentagram in similar terms.

Mapping between Edges

Girard-Collatz composites

These are (unique components of) natural transformations in a functor category

A and B, and the Dealer makes three

Girard's conjunction: (\star_{\star}) : $\mathcal{I}(\mathbb{N})^{\times 2} \hookrightarrow \mathcal{I}(\mathbb{N})$, defined by

$$
(a \star b)(n)= \begin{cases}2 \cdot a\left(\frac{n}{2}\right) & n \equiv 0(\bmod 2) \\ 2 \cdot b\left(\frac{n-1}{2}\right)+1 & n \equiv 1(\bmod 2)\end{cases}
$$

The three-fold conjunction: We define (-*-* $): \mathcal{I}(\mathbb{N})^{\times 3} \hookrightarrow \mathcal{I}(\mathbb{N})$, by

$$
(a \star b \star d)(n)= \begin{cases}3 \cdot a\left(\frac{n}{3}\right) & n \equiv 0(\bmod 3) \\ 3 \cdot b\left(\frac{n-1}{3}\right)+1 & n \equiv 1(\bmod 3) \\ 3 \cdot d\left(\frac{n-2}{3}\right)+2 & n \equiv 2(\bmod 3)\end{cases}
$$

Which natural transformations relate the following

$$
\left(-\star_{-} \star_{-}\right),\left(-\star\left(-\star_{-}\right)\right),\left(\left(-\star_{-}\right) \star_{-}\right): \mathcal{I}(\mathbb{N})^{\times 3} \hookrightarrow \mathcal{I}(\mathbb{N})
$$

injective homomorphisms?

A familiar game!

In the category of homomorphisms / natural transformations:

The natural interpretation :

The associator / its inverse : left- and right- associated re-bracketing The Collatz bijections / their inverses : deleting / inserting brackets

We may view re-bracketing as deleting then re-inserting brackets.

Conveniently, the category generated by (_$\left.\left.\star_{-}\right),\left(\text {_ }_{\star_{-}}\right)_{-}\right)$, along with these natural isomorphisms between them, is also posetal ${ }^{1}$.

[^0]
References \& Acknowledgements

https://arXiv.org/abs/2202.04443v1 From a conjecture of Collatz to Thompson's group \mathcal{F}, via a conjunction of Girard.
https://arxiv.org/abs/2206.07412v2 The inverse semigroup theory of elementary arithmetic.

Many thanks to :

Matt Brin (Binghampton), for history, theory, \& references on Thompson groups \& their connection with coherence.
Jeffrey Lagarias (Michigan), for references and anecdotes concerning Collatz's conjectures.
Noson Yanofsky (New York), for many in-depth discussions, leading to the development of this theory.

[^0]: ${ }^{1}$ A special case of a more general result ...

