### **Compositionality and Proof Complexity**

Gabriel Istrate, Cosmin Bonchiş, Adrian Crāciun West University of Timişoara and the e-Austria Research Institute

gabrielistrate@acm.org

ICALP 2021 paper + subsequent research.



- Proof complexity is often compositional: if  $\pi_1$  is a proof of  $P \models Q$  and  $\pi_2$  a proof of  $Q \models R$  then  $[\pi_1; \pi_2]$  is (often) a proof of  $P \models R$ .
- Caution: "composition of proofs" (especially size) not that trivial.
- This often allows to turn kernelizations (parameterized complexity) into proofs in various propositional proof systems.
- Technically interesting part: what kind of kernelizations needed to obtain "efficient" proofs ("theory A")

#### **A Tapas of Prerequisites**



- How notions from parameterized complexity can help us obtain efficient propositional proofs.
- Application to proof complexity of statements from computational social choice

### **Caution:** Emphasis on philosophy, rather than technical details. Only present <u>some</u> of the results.

#### **Reminder: Propositional proof complexity**

- Proof systems for unsatisfiability, e.g. resolution
- $C \lor x$ ,  $D \lor \overline{x} \to (C \lor D)$ ;  $x, \overline{x} \to \Box$ . Complexity = minimum length of a proof.
- More powerful proof system @ boundaries of proof complexity: Frege proofs. For concreteness [Hilbert Ackermann]
  - propositional variables  $p_1, p_2, \ldots$ , connectives  $\neg, \lor$ .
  - Axiom schematas:
    - 1.  $\neg (A \lor A) \lor A$
    - 2.  $\neg A \lor (A \lor B)$
    - 3.  $\neg (A \lor B) \lor (B \lor A)$
    - 4.  $\neg(\neg A \lor B) \lor (\neg(C \lor A) \lor (C \lor B))$
  - Rule: From A and  $\neg A \lor B$  derive B.
- Other systems, sequent calculus (LK), etc. All Frege proof systems equivalent (polynomially simulate eachother) s.A.

- extended Frege: Frege + variable substitutions  $X \leftrightarrow \Phi(\overline{Y})$ . Proves same formulas, perhaps more efficiently.
- **Open:** Is extended Frege more powerful than Frege ?

Bonet, M.L., S. Buss, T. Pitassi. "Are there hard examples for Frege systems?" Feasible Mathematics II. Birkhauser, 1995. 30-56.

- Most natural formulas turn out to have (quasi)polynomial Frege proofs.
- Some examples: " $(AB = I) \Rightarrow (BA = I)$ " tautologies [Hrubeš, Tzameret CCC'2009], Paris-Harrington tautologies [Carlucci, Galesi, Lauria. CCC, 2011], Frankl Theorem [Buss et al. 2014].

#### Two-minute parameterized complexity

- Many problems in (co)-NP actually parameterized. E.g.
  Vertex Cover: Given graph G and integer k, decide whether G has VC of size at most k.
- **Parameterized complexity:** (fixed parameter) tractability = time  $O(f(k) \cdot poly(n))$ .
- Often achieved via **kernelization**: reduce instance (x,k) to "kernel instance" (x',k'), s.t.  $(x,k) \in L$  iff  $(x',k') \in L$  and  $|x'|, k' \leq g(k)$  for some computable g.
- **data reduction:** algorithm A that maps in time poly(|x| + k) (x, k) to (x', k') s.t.  $(x, k) \in L$  iff  $(x', k') \in L$  and  $|x'| \leq |x|$ .
- given r data reductions  $A_1, \ldots, A_r$ , a **data reduction chain** for instance (x,k) of L: seq.  $(x_0,k_0), (x_1,k_1), \ldots, (x_m,k_m)$ , where  $(x_0,k_0) = (x,k)$ ,  $A_t(x_m,k_m) = (x_m,k_m)$  for  $t = 1, \ldots, r$ and, for  $i = 1, \ldots, m \exists j \in 1, \ldots, r$  s.t.  $(x_i,k_i) = A_j(x_{i-1},k_{i-1})$ .

#### Main idea

- "Negative" instance (x, k) of parameterized problem in NP maps "canonically" to formula  $\Phi(x, k) \in \overline{SAT}$ .
- If  $\Pi_i$  proof for soundness of the reduction rule
  - $(x_i,k_i) = A_j(x_{i-1},k_{i-1})$  and  $\Pi_{m+1}$  is a "brute force proof of unsatisfiability" for the kernel instance then one can prove  $\Phi(x,k) \in \overline{SAT}$  by "concatenating"  $\Pi_1, \ldots, \Pi_m$  and  $\Pi_{m+1}$ .

# In practice, to propositionally simulate proof by data reduction:

- $\Phi_i$  constructed from  $\Phi_{i-1}$  by "case construction"; cases translate to tautology  $\bigvee_{l=1}^{r_i} \eta_i^{(l)}$ . Also need its proof.
- Data reduction rule with case construction proves  $\Phi_{i-1}(X_{i-1}, k_{i-1}) \wedge \eta_i^{(l)} \vdash \Phi_i^{(l)}(Y_i^{(l)}, k_i^{(l)}) \text{ for some variable}$ substitution  $Y_i^{(l)} = \Xi_i^{(l)}(X_{i-1}, k_{i-1}).$

### Main idea (II)

- Data reduction ⇒ tree of propositional entailments. Don't really need tree for individual formulas, but doesn't hurt for our use cases.
- For Frege proofs: height of the tree dictates proof size (need to unwind variable substitutions).
- Proof: proofs of entailments + proofs of case tautologies
  + proofs of "brute force statements" (kernel instances).
- If tree arity is upper bounded by constant R then #nodes= $\Theta(2^{\Theta(h)})$ . As long as  $h = O(\log n)$  this is polynomial.
- Formula growth due to unwinding:  $\Theta(n^{\Theta(h)})$ . As long as  $h = O(\log n)$  this is quasipolynomial in n.

#### Main (meta)Theorem

- Somewhat too complicated to precisely state.
- If soundness of reduction rules can be witnessed efficiently in Frege, the length of reduction chains is O(1)then unsatisfiable formulas  $\Phi(x,k)$  have polynomial size Frege proofs.
- If soundness of reduction rules can be witnessed efficiently in Frege, the length of reduction chains is  $O(log(|\Phi(x,k)|))$  then unsatisfiable formulas  $\Phi(x,k)$  have quasipolynomial Frege proofs.
- otherwise we normally get polynomial size extended Frege proofs.

#### **Application: Proof Complexity of Schrijver's Theorem**

Kneser's Conjecture: Let  $n \ge 2k - 1 \ge 1$ . Let  $c : \binom{n}{k} \to [n - 2k + 1]$ . Then there exist two disjoint sets A and B with c(A) = c(B). M. Kneser(1955). Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2, 27.

- k = 1 Pigeonhole principle !
- k=2,3 combinatorial proofs. s. Stahl. "n-Tuple colorings and associated

graphs." J. Combinatorial Theory, Ser. B 20.2 (1976): 185-203. M. Garey, D.S. Johnson. "The complexity of

near-optimal graph coloring." J. ACM 23.1 (1976): 43-49.

- $k \ge 4$  only proved in 1977 (Lovász, Baranyi) using Algebraic Topology.
- "Combinatorial" proofs (Matousek, Ziegler). "hide" Alg. Topology
- No efficient, "purely combinatorial" proof was known

#### Schrijver's Theorem



- Kneser: the chromatic number of a certain graph  $Kn_{n,k}$  at least n 2k + 2. (exact value). V:  $\binom{n}{k}$ . E: disjoint sets.
- E.g. k = 2, n = 5: Petersen's graph has chromatic # 3. Note: inner cycle already chromatic # 3.
- $A \in {n \choose k}$  stable if it doesn't contain consecutive elements *i*, *i* + 1 (including *n*, 1).
- Schrijver's Theorem: Chromatic number of stable Kneser graph is n 2k + 2. A. Schrijver. Vertex-critical Subgraphs of Kneser-graphs. N. Archief

#### **Proof Complexity of Schrijver's Theorem**

- We proposed to study proof complexity of Kneser-Lovász Theorem in SAT'14 paper. k = 2 poly size Frege proofs.
   k = 3 poly size Extended Frege.
- We showed (ICALP'2015 ⇒ Information & Computation'2018): For every fixed k formulas Kneser<sub>n,k</sub> have poly size Extended Frege proofs and quasipoly size Frege proofs.
- Proof idea: for every fixed *k* Kneser's theorem has an easy combinatorial proof that reduces the general case to the (computer verification) of a finite number of cases.

#### Theorem

Similar results hold for formulas encoding (the stronger) Schrijver theorem.

- Proof idea: data reduction of length  $O(\log n)$ .

### **Critical ingredient**

We show that  $\Theta(n)$  color classes *c* are star-shaped, i.e. sets colored with color *c* have an element in common. For that we need a weaker version of a result of Talbot (Intersecting families of separated sets. Journal of the London Mathematical Society, 68(1):37?51, 2003) that can be simulated propositionally:

**Theorem** If C is a color class that is not star-shaped then  $|C| \le k^2 \cdot \binom{n+k-1}{k-2}$ .

Thus if there were a n - 2k + 1 coloring c of  $SKn_{n,k}$  then we could drop  $r = \Theta(n)$  elements of  $\{1, 2, ..., n\}$  and equally many colors, and reduce the problem to showing that  $\chi(SKn_{n-r,k}) > n - r - 2k + 1$ .

#### **Applications of Kernelization Techniques to Proof Complexity**

- classical (ad-hoc) kernelization for VertexCover ⇒ for every fixed k, negative instances of VC with parameter k have poly-size Frege proofs.
- crown decomposition for DualColoring ⇒ negative instances of VC with parameter k poly-size Frege proofs.
- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR
  ⇒ negative instances (G,k) of EDGE CLIQUE COVER have extended Frege proofs of poly size and Frege proofs of quasipoly size.
- sunflower lemma-based kernelization of *d*-HittingSet⇒ negative instances of *d*-HittingSet with parameter *k* extended Frege proofs of poly size.

#### **Applications to Computational Social Choice**

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility results on ranking *m* objects by *n* agents.
- Tang & Lin (Artificial Intelligence, 2009): Arrow's Theorem has computer-assisted propositional proofs by reducing the general case to the case n = 2, m = 3. Similar results (2008) for the Gibbard-Satterthwaite theorem.
- Their proofs: data reductions of length  $\Theta(n+m)$ .

We give: **data reductions of length** O(n), whose soundness can be witnessed by efficient Frege proofs.

**Theorem** Formulas  $Arrow_{m,n}$ ,  $GS_{m,n}$  have:

- quasipoly size Frege proofs
- poly size Frege proofs for fixed n.

#### Conclusions

- Theoretically interesting connections between different areas.
- Work in progress:
  - Adapt this program to other techniques from parameterized complexity, e.g. iterative compression.
  - Adapt this program to other proof systems, e.g. *SPR*<sup>-</sup> (Heule,Kiesl & Biere HVC'17, J. Autom. Reasoning '19, Buss & Thapen SAT'19).
  - Proof system that only preserves equisatisfiability, **not** equivalence
- Proof complexity lower bounds for hard problems in parameterized complexity ?

## Thanks !