Compositionality and Proof Complexity

Gabriel Istrate, Cosmin Bonchiş, Adrian Crãciun
West University of Timişoara and the e-Austria Research Institute
gabrielistrate@acm.org
ICALP 2021 paper + subsequent research.

Take-home message

- Proof complexity is often compositional: if π_{1} is a proof of $P \models Q$ and π_{2} a proof of $Q \models R$ then $\left[\pi_{1} ; \pi_{2}\right]$ is (often) a proof of $P \models R$.
- Caution: "composition of proofs" (especially size) not that trivial.
- This often allows to turn kernelizations (parameterized complexity) into proofs in various propositional proof systems.
- Technically interesting part: what kind of kernelizations needed to obtain "efficient" proofs ("theory A")

A Tapas of Prerequisites

- How notions from parameterized complexity can help us obtain efficient propositional proofs.
- Application to proof complexity of statements from computational social choice

Caution: Emphasis on philosophy, rather than technical details. Only present some of the results.

Reminder: Propositional proof complexity

- Proof systems for unsatisfiability, e.g. resolution
- $C \vee x, D \vee \bar{x} \rightarrow(C \vee D) ; x, \bar{x} \rightarrow \square$. Complexity = minimum length of a proof.
- More powerful proof system @ boundaries of proof complexity: Frege proofs. For concreteness [Hilbert Ackermann]
- propositional variables p_{1}, p_{2}, \ldots, connectives \neg, \vee.
- Axiom schematas:

1. $\neg(A \vee A) \vee A$
2. $\neg A \vee(A \vee B)$
3. $\neg(A \vee B) \vee(B \vee A)$
4. $\neg(\neg A \vee B) \vee(\neg(C \vee A) \vee(C \vee B))$

- Rule: From A and $\neg A \vee B$ derive B.
- Other systems, sequent calculus (LK), etc. All Frege proof systems equivalent (polynomially simulate eachother) s.a.

Frege versus extended Frege

- extended Frege: Frege + variable substitutions $X \leftrightarrow \Phi(\bar{Y})$. Proves same formulas, perhaps more efficiently.
- Open: Is extended Frege more powerful than Frege ?

Bonet, M.L., S. Buss, T. Pitassi. "Are there hard examples for Frege systems?." Feasible Mathematics II. Birkhauser, 1995. 30-56.

- Most natural formulas turn out to have (quasi)polynomial Frege proofs.
- Some examples: " $(A B=I) \Rightarrow(B A=I)$ " tautologies [Hrubes, Tzameret ccc'2009], Paris-Harrington tautologies [carlucci, Galesi, Lauria. ccc, 2011], Frankl Theorem [Buss et al. 2014].

Two-minute parameterized complexity

- Many problems in (co)-NP actually parameterized. E.g. Vertex Cover: Given graph G and integer k, decide whether G has VC of size at most k.
- Parameterized complexity: (fixed parameter) tractability $=$ time $O(f(k) \cdot \operatorname{poly}(n))$.
- Often achieved via kernelization: reduce instance (x, k) to "kernel instance" $\left(x^{\prime}, k^{\prime}\right)$, s.t. $(x, k) \in L$ inf $\left(x^{\prime}, k^{\prime}\right) \in L$ and $\left|x^{\prime}\right|, k^{\prime} \leq g(k)$ for some computable g.
- data reduction: algorithm A that maps in time poly $(|x|+k)$ (x, k) to $\left(x^{\prime}, k^{\prime}\right)$ s.t. $(x, k) \in L$ iff $\left(x^{\prime}, k^{\prime}\right) \in L$ and $\left|x^{\prime}\right| \leq|x|$.
- given r data reductions A_{1}, \ldots, A_{r}, a data reduction chain for instance (x, k) of L : seq. $\left(x_{0}, k_{0}\right),\left(x_{1}, k_{1}\right), \ldots,\left(x_{m}, k_{m}\right)$, where $\left(x_{0}, k_{0}\right)=(x, k), A_{t}\left(x_{m}, k_{m}\right)=\left(x_{m}, k_{m}\right)$ for $t=1, \ldots r$ and, for $i=1, \ldots, m \exists j \in 1, \ldots, r$ s.t. $\left(x_{i}, k_{i}\right)=A_{j}\left(x_{i-1}, k_{i-1}\right)$.

Main idea

- "Negative" instance (x, k) of parameterized problem in NP maps "canonically" to formula $\Phi(x, k) \in \overline{S A T}$.
- If Π_{i} proof for soundness of the reduction rule $\left(x_{i}, k_{i}\right)=A_{j}\left(x_{i-1}, k_{i-1}\right)$ and Π_{m+1} is a "brute force proof of unsatisfiability" for the kernel instance then one can prove $\Phi(x, k) \in \overline{S A T}$ by "concatenating" Π_{1}, \ldots, Π_{m} and Π_{m+1}.
In practice, to propositionally simulate proof by data reduction:
- Φ_{i} constructed from Φ_{i-1} by "case construction"; cases translate to tautology $\bigvee_{l=1}^{r_{i}} \eta_{i}^{(l)}$. Also need its proof.
- Data reduction rule with case construction proves $\Phi_{i-1}\left(X_{i-1}, k_{i-1}\right) \wedge \eta_{i}^{(l)} \vdash \Phi_{i}^{(l)}\left(Y_{i}^{(l)}, k_{i}^{(l)}\right)$ for some variable substitution $Y_{i}^{(l)}=\Xi_{i}^{(l)}\left(X_{i-1}, k_{i-1}\right)$.

Main idea (II)

- Data reduction \Rightarrow tree of propositional entailments. Don't really need tree for individual formulas, but doesn't hurt for our use cases.
- For Frege proofs: height of the tree dictates proof size (need to unwind variable substitutions).
- Proof: proofs of entailments + proofs of case tautologies + proofs of "brute force statements" (kernel instances).
- If tree arity is upper bounded by constant R then \#nodes $=\Theta\left(2^{\Theta(h)}\right)$. As long as $h=O(\log n)$ this is polynomial.
- Formula growth due to unwinding: $\Theta\left(n^{\Theta(h)}\right)$. As long as $h=O(\log n)$ this is quasipolynomial in n.

Main (meta)Theorem

- Somewhat too complicated to precisely state.
- If soundness of reduction rules can be witnessed efficiently in Frege, the length of reduction chains is $O(1)$ then unsatisfiable formulas $\Phi(x, k)$ have polynomial size Frege proofs.
- If soundness of reduction rules can be witnessed efficiently in Frege, the length of reduction chains is $O(\log (|\Phi(x, k)|))$ then unsatisfiable formulas $\Phi(x, k)$ have quasipolynomial Frege proofs.
- otherwise we normally get polynomial size extended Frege proofs.

Application: Proof Complexity of Schrijver's Theorem

Kneser's Conjecture: Let $n \geq 2 k-1 \geq 1$. Let

$c:\binom{n}{k} \rightarrow[n-2 k+1]$. Then there exist two disjoint sets A
and B with $c(A)=C(B)$. м. Kneser(1955). Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2, 27.

- $k=1$ Pigeonhole principle !
- $k=2,3$ combinatorial proofs. s.stanl. "n-Tuple colorings and associated graphs." J. Combinatorial Theory, Ser. B 20.2 (1976): 185-203. M. Garey, D.S. Johnson. "The complexity of near-optimal graph coloring." J. ACM 23.1 (1976): 43-49.
- $k \geq 4$ only proved in 1977 (Lovász, Baranyi) using Algebraic Topology.
- "Combinatorial" proofs (Matousek, Ziegler). "hide" Alg. Topology
- No efficient, "purely combinatorial" proof was known

Schrijver's Theorem

- Kneser: the chromatic number of a certain graph $K n_{n, k}$ at least $n-2 k+2$. (exact value). V: $\binom{n}{k}$. E: disjoint sets.
- E.g. $k=2, n=5$: Petersen's graph has chromatic \# 3. Note: inner cycle already chromatic \# 3.
- $A \in\binom{n}{k}$ stable if it doesn't contain consecutive elements $i, i+1$ (including $n, 1$).
- Schrijver's Theorem: Chromatic number of stable Kneser graph is $n-2 k+2$. A. Schrijver. Vertex-critical Subgraphs of Kneser-graphs. N. Archief

Proof Complexity of Schrijver's Theorem

- We proposed to study proof complexity of Kneser-Lovász Theorem in SAT'14 paper. $k=2$ poly size Frege proofs. $k=3$ poly size Extended Frege.
- We showed (ICALP'2015 \Rightarrow Information \& Computation'2018): For every fixed k formulas Kneser $_{n, k}$ have poly size Extended Frege proofs and quasipoly size Frege proofs.
- Proof idea: for every fixed k Kneser's theorem has an easy combinatorial proof that reduces the general case to the (computer verification) of a finite number of cases.

Theorem
Similar results hold for formulas encoding (the stronger)
Schrijver theorem.

- Proof idea: data reduction of length $O(\log n)$.

Critical ingredient

We show that $\Theta(n)$ color classes c are star-shaped, i.e. sets colored with color c have an element in common. For that we need a weaker version of a result of Talbot (Intersecting families of separated sets. Journal of the London Mathematical society, 68(1):37:51, 2003) that can be simulated propositionally:

Theorem

If \mathcal{C} is a color class that is not star-shaped then $|\mathcal{C}| \leq k^{2} \cdot\binom{n+k-1}{k-2}$.

Thus if there were a $n-2 k+1$ coloring c of $S K n_{n, k}$ then we could drop $r=\Theta(n)$ elements of $\{1,2, \ldots, n\}$ and equally many colors, and reduce the problem to showing that $\chi\left(S K n_{n-r, k}\right)>n-r-2 k+1$.

Applications of Kernelization Techniques to Proof Complexity

- classical (ad-hoc) kernelization for VertexCover \Rightarrow for every fixed k, negative instances of VC with parameter k have poly-size Frege proofs.
- crown decomposition for DualColoring \Rightarrow negative instances of VC with parameter k poly-size Frege proofs.
- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR \Rightarrow negative instances (G, k) of EDGE CLIQUE COVER have extended Frege proofs of poly size and Frege proofs of quasipoly size.
- sunflower lemma-based kernelization of d-HittingSet \Rightarrow negative instances of d-HittingSet with parameter k extended Frege proofs of poly size .

Applications to Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility results on ranking m objects by n agents.
- Tang \& Lin (Artificial Intelligence, 2009): Arrow's Theorem has computer-assisted propositional proofs by reducing the general case to the case $n=2, m=3$. Similar results (2008) for the Gibbard-Satterthwaite theorem.
- Their proofs: data reductions of length $\Theta(n+m)$.

We give: data reductions of length $O(n)$, whose soundness can be witnessed by efficient Frege proofs.

Theorem
Formulas Arrow $_{m, n}, G S_{m, n}$ have:

- quasipoly size Frege proofs
- poly size Frege proofs for fixed n.

Conclusions

- Theoretically interesting connections between different areas.
- Work in progress:
- Adapt this program to other techniques from parameterized complexity, e.g. iterative compression.
- Adapt this program to other proof systems, e.g. SPR (Heule,Kiesl \& Biere HVC'17, J. Autom. Reasoning '19, Buss \& Thapen SAT'19).
- Proof system that only preserves equisatisfiability, not equivalence
- Proof complexity lower bounds for hard problems in parameterized complexity?

Thanks!

