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Take-home message

- Proof complexity is often compositional: if π1 is a proof of
P |= Q and π2 a proof of Q |= R then [π1;π2] is (often) a
proof of P |= R.

• Caution: "composition of proofs" (especially size) not
that trivial.

- This often allows to turn kernelizations (parameterized
complexity) into proofs in various propositional proof
systems.

- Technically interesting part: what kind of kernelizations
needed to obtain "e�cient" proofs ("theory A")
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A Tapas of Prerequisites

- How notions from
parameterized complexity
can help us obtain
e�cient propositional
proofs.

- Application to proof
complexity of statements
from computational social
choice

Caution: Emphasis on philosophy, rather than technical
details. Only present some of the results.
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Reminder: Propositional proof complexity

- Proof systems for unsatisfiability, e.g. resolution
- C ∨ x, D ∨ x→ (C ∨D); x, x→ �. Complexity = minimum

length of a proof.
- More powerful proof system @ boundaries of proof

complexity: Frege proofs. For concreteness [Hilbert
Ackermann]

• propositional variables p1, p2, . . . ., connectives ¬,∨.
• Axiom schematas:

1. ¬(A ∨ A) ∨ A
2. ¬A ∨ (A ∨ B)
3. ¬(A ∨ B) ∨ (B ∨ A)

4. ¬(¬A ∨ B) ∨ (¬(C ∨ A) ∨ (C ∨ B))
• Rule: From A and ¬A ∨ B derive B.

- Other systems, sequent calculus (LK), etc. All Frege proof
systems equivalent (polynomially simulate eachother) S.A.

Cook,R. Reckhow. "The relative e�ciency of propositional proof systems." J. Symb. Logic 44.1(1979):36-50. 4



Frege versus extended Frege

- extended Frege: Frege + variable substitutions X↔ Φ(Y).
Proves same formulas, perhaps more e�ciently.

- Open: Is extended Frege more powerful than Frege ?
Bonet, M.L., S. Buss, T. Pitassi. "Are there hard examples for Frege systems?." Feasible Mathematics II.

Birkhauser, 1995. 30-56.

- Most natural formulas turn out to have (quasi)polynomial
Frege proofs.

- Some examples: “(AB = I)⇒ (BA = I)” tautologies [Hrubeš,

Tzameret CCC’2009], Paris-Harrington tautologies [Carlucci, Galesi, Lauria. CCC,

2011], Frankl Theorem [Buss et al. 2014].
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Two-minute parameterized complexity

- Many problems in (co)-NP actually parameterized. E.g.
Vertex Cover: Given graph G and integer k, decide whether
G has VC of size at most k.

- Parameterized complexity: (fixed parameter) tractability
= time O(f (k) · poly(n)).

- Often achieved via kernelization: reduce instance (x, k) to
"kernel instance" (x′, k′), s.t. (x, k) ∈ L i� (x′, k′) ∈ L and
|x′|, k′ ≤ g(k) for some computable g.

- data reduction: algorithm A that maps in time poly(|x|+ k)
(x, k) to (x′, k′) s.t. (x, k) ∈ L i� (x′, k′) ∈ L and |x′| ≤ |x|.

- given r data reductions A1, . . . ,Ar, a data reduction chain
for instance (x, k) of L: seq. (x0, k0), (x1, k1), . . . , (xm, km),
where (x0, k0) = (x, k), At(xm, km) = (xm, km) for t = 1, . . . r
and, for i = 1, . . . ,m ∃j ∈ 1, . . . , r s.t. (xi, ki) = Aj(xi−1, ki−1).
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Main idea

- "Negative" instance (x, k) of parameterized problem in NP
maps "canonically" to formula Φ(x, k) ∈ SAT.

- If Πi proof for soundness of the reduction rule
(xi, ki) = Aj(xi−1, ki−1) and Πm+1 is a "brute force proof of
unsatisfiability" for the kernel instance then one can
prove Φ(x, k) ∈ SAT by "concatenating" Π1, . . . ,Πm and
Πm+1.

In practice, to propositionally simulate proof by data
reduction:

- Φi constructed from Φi−1 by "case construction"; cases
translate to tautology

∨ri
l=1 η

(l)
i . Also need its proof.

- Data reduction rule with case construction proves
Φi−1(Xi−1, ki−1) ∧ η(l)

i ` Φ
(l)
i (Y(l)

i , k(l)
i ) for some variable

substitution Y(l)
i = Ξ

(l)
i (Xi−1, ki−1). 7



Main idea (II)

- Data reduction⇒ tree of propositional entailments. Don’t
really need tree for individual formulas, but doesn’t hurt
for our use cases.

- For Frege proofs: height of the tree dictates proof size
(need to unwind variable substitutions).

- Proof: proofs of entailments + proofs of case tautologies
+ proofs of "brute force statements" (kernel instances).

- If tree arity is upper bounded by constant R then
#nodes=Θ(2Θ(h)). As long as h = O(log n) this is
polynomial.

- Formula growth due to unwinding: Θ(nΘ(h)). As long as
h = O(log n) this is quasipolynomial in n.
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Main (meta)Theorem

- Somewhat too complicated to precisely state.
- If soundness of reduction rules can be witnessed

e�ciently in Frege, the length of reduction chains is O(1)

then unsatisfiable formulas Φ(x, k) have polynomial size
Frege proofs.

- If soundness of reduction rules can be witnessed
e�ciently in Frege, the length of reduction chains is
O(log(|Φ(x, k)|)) then unsatisfiable formulas Φ(x, k) have
quasipolynomial Frege proofs.

- otherwise we normally get polynomial size extended
Frege proofs.
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Application: Proof Complexity of Schrijver’s Theorem

Kneser’s Conjecture: Let n ≥ 2k− 1 ≥ 1. Let
c :
(n

k

)
→ [n− 2k + 1]. Then there exist two disjoint sets A

and B with c(A) = c(B). M. Kneser(1955). Aufgabe 360. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 2, 27.

- k = 1 Pigeonhole principle !
- k = 2, 3 combinatorial proofs. S. Stahl. "n-Tuple colorings and associated

graphs." J. Combinatorial Theory, Ser. B 20.2 (1976): 185-203. M. Garey, D.S. Johnson. "The complexity of

near-optimal graph coloring." J. ACM 23.1 (1976): 43-49.

- k ≥ 4 only proved in 1977 (Lovász, Baranyi) using Algebraic
Topology.

- "Combinatorial" proofs (Matousek, Ziegler). "hide" Alg.
Topology

- No e�cient, "purely combinatorial" proof was known
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Schrijver’s Theorem

- Kneser: the chromatic number of a certain graph Knn,k at
least n− 2k + 2. (exact value). V:

(n
k

)
. E: disjoint sets.

- E.g. k = 2, n = 5: Petersen’s graph has chromatic # 3. Note:
inner cycle already chromatic # 3.

- A ∈
(n

k

)
stable if it doesn’t contain consecutive elements

i, i + 1 (including n, 1).
- Schrijver’s Theorem: Chromatic number of stable Kneser

graph is n− 2k + 2. A. Schrijver. Vertex-critical Subgraphs of Kneser-graphs. N. Archief

Wiskunde XXVI (1978), 454-461. 11



Proof Complexity of Schrijver’s Theorem

- We proposed to study proof complexity of Kneser-Lovász
Theorem in SAT’14 paper. k = 2 poly size Frege proofs.
k = 3 poly size Extended Frege.

- We showed (ICALP’2015⇒ Information &
Computation’2018): For every fixed k formulas Knesern,k

have poly size Extended Frege proofs and quasipoly size
Frege proofs.

- Proof idea: for every fixed k Kneser’s theorem has an easy
combinatorial proof that reduces the general case to the
(computer verification) of a finite number of cases.

Theorem
Similar results hold for formulas encoding (the stronger)
Schrijver theorem.

- Proof idea: data reduction of length O(log n). 12



Critical ingredient

We show that Θ(n) color classes c are star-shaped, i.e. sets
colored with color c have an element in common. For that we
need a weaker version of a result of Talbot (Intersecting families of separated

sets. Journal of the London Mathematical Society, 68(1):37?51, 2003) that can be simulated
propositionally:

Theorem
If C is a color class that is not star-shaped then
|C| ≤ k2 ·

(n+k−1
k−2

)
.

Thus if there were a n− 2k + 1 coloring c of SKnn,k then we
could drop r = Θ(n) elements of {1, 2, . . . ,n} and equally
many colors, and reduce the problem to showing that
χ(SKnn−r,k) > n− r− 2k + 1.
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Applications of Kernelization Techniques to Proof Complexity

- classical (ad-hoc) kernelization for VertexCover⇒ for
every fixed k, negative instances of VC with parameter k
have poly-size Frege proofs.

- crown decomposition for DualColoring⇒ negative
instances of VC with parameter k poly-size Frege proofs.

- improved (ad-hoc) kernelization for EDGE CLIQUE COLOR
⇒ negative instances (G,k) of EDGE CLIQUE COVER have
extended Frege proofs of poly size and Frege proofs of
quasipoly size.

- sunflower lemma-based kernelization of d-HittingSet⇒
negative instances of d-HittingSet with parameter k
extended Frege proofs of poly size .
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Applications to Computational Social Choice

- Arrow, Gibbard-Satterthwaite: Fundamental impossibility
results on ranking m objects by n agents.

- Tang & Lin (Artificial Intelligence, 2009): Arrow’s Theorem has
computer-assisted propositional proofs by reducing the
general case to the case n = 2,m = 3. Similar results
(2008) for the Gibbard-Satterthwaite theorem.

- Their proofs: data reductions of length Θ(n + m).

We give: data reductions of length O(n), whose soundness
can be witnessed by e�cient Frege proofs.

Theorem
Formulas Arrowm,n,GSm,n have:

• quasipoly size Frege proofs
• poly size Frege proofs for fixed n. 15



Conclusions

- Theoretically interesting connections between di�erent
areas.

- Work in progress:
• Adapt this program to other techniques from

parameterized complexity, e.g. iterative compression.
• Adapt this program to other proof systems, e.g. SPR−

(Heule,Kiesl & Biere HVC’17, J. Autom. Reasoning ’19, Buss & Thapen SAT’19).
• Proof system that only preserves equisatisfiability, not

equivalence
- Proof complexity lower bounds for hard problems in

parameterized complexity ?

Thanks !
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