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Motivation: Data-aware Logics
I Data-aware logics reason over structures where each point

stores data values, e.g. data trees
I XPath=(↓+) is a fragment of the XML query language XPath

which
I uses the 'strict descendant' navigational axis ↓+
I allows comparison of data values for (in-)equality:

e.g.

x |= 〈↓+[b]↓+[a] = ↓+[c]〉

DataGL [Baelde, Lunel, and Schmitz 2016] is the fragment where
allowed expressions are of the form

〈ε = ↓+[ψ]〉 or 〈ε 6= ↓+[ψ]〉

2 / 11



Motivation: Data-aware Logics
I Data-aware logics reason over structures where each point

stores data values, e.g. data trees
I XPath=(↓+) is a fragment of the XML query language XPath

which
I uses the 'strict descendant' navigational axis ↓+
I allows comparison of data values for (in-)equality:

e.g.

x |= 〈↓+[b]↓+[a] = ↓+[c]〉

DataGL [Baelde, Lunel, and Schmitz 2016] is the fragment where
allowed expressions are of the form

〈ε = ↓+[ψ]〉 or 〈ε 6= ↓+[ψ]〉

2 / 11



Motivation: Data-aware Logics
I Data-aware logics reason over structures where each point

stores data values, e.g. data trees
I XPath=(↓+) is a fragment of the XML query language XPath

which
I uses the 'strict descendant' navigational axis ↓+
I allows comparison of data values for (in-)equality:

e.g.

x |= 〈↓+[b]↓+[a] = ↓+[c]〉

DataGL [Baelde, Lunel, and Schmitz 2016] is the fragment where
allowed expressions are of the form

〈ε = ↓+[ψ]〉 or 〈ε 6= ↓+[ψ]〉

2 / 11



Motivation: Data-aware Logics
I Data-aware logics reason over structures where each point

stores data values, e.g. data trees
I XPath=(↓+) is a fragment of the XML query language XPath

which
I uses the 'strict descendant' navigational axis ↓+
I allows comparison of data values for (in-)equality:

e.g.

x |= 〈↓+[b]↓+[a] = ↓+[c]〉

DataGL [Baelde, Lunel, and Schmitz 2016] is the fragment where
allowed expressions are of the form

〈ε = ↓+[ψ]〉 or 〈ε 6= ↓+[ψ]〉
2 / 11



Path Predicate Modal Logic (PPML)

PPML arises as a natural extension of Basic Modal Logic: instead
of propositional letters we consider symbols of arbitrary (�nite)
arity R1, . . .Rm:

ϕ ::= ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ♦ϕ | Ri (i ∈ {1, . . . ,m})

σ = {R0,R1, . . . ,Rm} (R0 transition relation)

σ = {R0, S ,R}
x |= ♦(♦S ∧ ♦R)
x 6|= ♦S

DataGL can be recovered as a semantic restriction of PPML using
σDGL = {R0,R=, p, q, r , . . . }
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PPML Bisimulation
A slight variation of the k-round simulation and bisimulation games
for Basic Modal Logic characterises bisimilarity for PPML:

I In the bisimulation game, Spoiler can also switch between
models.

I As is to be expected, these games characterize logical
equivalences ≡k (modal depth ≤ k fragment), ≡♦k
(negation-free subfragment).
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The PPML Comonad

De�nition

Ck : Struct∗(σ)→ Struct∗(σ) σ 3 R0

(A, a) 7→ Ck(A, a)

I Universe of Ck(A, a) is the unravelling of A starting from a

along R0 (just like for Modal Comonad Mk)

I RCk(A,a)(s1, . . . , sn) i�

1. each sequence in the tuple is an immediate successor of the
previous one

2. their ending points form a tuple in RA

Proposition

Ck de�nes a subcomonad of

I the Ehrenfeucht-Fraïssé Comonad Ek

I the Pebbling Comonad PN(σ) with N(σ) = maxR∈σ(arity(R))

(both lifted to Struct∗(σ))
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Coalgebras of the PPML comonad

I As in the Modal case, Ck is idempotent =⇒ Ck -coalgebra
structures are unique, if they exist

I Ck -coalgebras are trees of height ≤ k (just like Mk -coalgebras)
in which moreover relations only hold along paths:

∈ EM(Ck) 6∈ EM(Ck)
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Expressivity results

Theorem

Winning strategies for
Duplicator in k-round

simulation game A → B
coKleisli morphisms
Ck(A,a)→(B,b)

Thus (A, a) ≡♦k (B, b) i� there exist homomorphisms

Ck(A, a)→ (B, b) and Ck(B, b)→ (A, a).

Theorem
(A, a) ≡k (B, b) i� there exists a Ck -coalgebra (P, p) ∈ EM(Ck)
and a span of strong, surjective homomorphisms

(P, p)

Ck(A, a) Ck(B, b)
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Translation into Basic Modal Logic

σ = {R0,R1, . . . ,Rm} σ̃ := {R0, R̃1, . . . , R̃m}

where each R̃j is unary

=⇒ σ̃ is a (uni-)modal signature.

There is a functor

T : EM(Ck)→ EM(Mk)

(Mk : Struct∗(σ̃)→ Struct∗(σ̃))
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Translation into Basic Modal Logic

Theorem
T is fully faithful, preserves open pathwise embeddings, and its

(essential) image is the full subcategory of EM(Mk) spanned by

Mk -coalgebras (A, a) such that:

for any a′ ∈ |A| and n-ary relation R ∈ σ,
R̃A(a′) =⇒ the path from a to a′ has at least n points.
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Satis�ability

Lemma
ϕ ∈ PPMLk is satis�able i� it is satis�ed by a Ck -coalgebra.

Theorem
Satis�ability for PPMLk reduces linearly to satis�ability for the

modal depth ≤ k fragment of Basic Modal Logic. Thus

satis�ability for PPML is PSpace.

This is a �rst step towards the comonadic treatment of data-aware
logics.
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Thank you!
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