PPML and its Comonadic Semantics

Gabriel Goren and Santiago Figueira

Universidad de Buenos Aires & ICC, CONICET

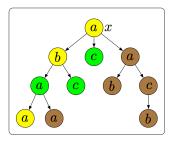
SmP 2022

- Data-aware logics reason over structures where each point stores data values, e.g. data trees
- ➤ XPath₌(↓₊) is a fragment of the XML query language XPath which

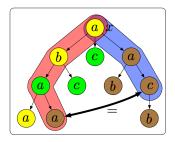
 \blacktriangleright uses the 'strict descendant' navigational axis \downarrow_+

allows comparison of data values for (in-)equality:

- Data-aware logics reason over structures where each point stores data values, e.g. data trees
- ➤ XPath₌(↓₊) is a fragment of the XML query language XPath which
 - \blacktriangleright uses the 'strict descendant' navigational axis \downarrow_+
 - allows comparison of data values for (in-)equality:

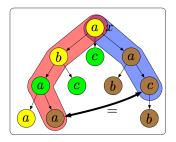


- Data-aware logics reason over structures where each point stores data values, e.g. data trees
- XPath₌(\u03c4₊) is a fragment of the XML query language XPath which
 - \blacktriangleright uses the 'strict descendant' navigational axis \downarrow_+
 - allows comparison of data values for (in-)equality:



e.g. $x \models \langle \downarrow_+[b] \downarrow_+[a] = \downarrow_+[c] \rangle$

- Data-aware logics reason over structures where each point stores data values, e.g. data trees
- XPath₌(\u03c4₊) is a fragment of the XML query language XPath which
 - \blacktriangleright uses the 'strict descendant' navigational axis \downarrow_+
 - allows comparison of data values for (in-)equality:



e.g.
$$x \models \langle \downarrow_+[b] \downarrow_+[a] = \downarrow_+[c] \rangle$$

 $\rm DataGL$ [Baelde, Lunel, and Schmitz 2016] is the fragment where allowed expressions are of the form

$$\langle \varepsilon = \downarrow_+ [\psi] \rangle \quad \text{or} \quad \langle \varepsilon \neq \downarrow_+ [\psi] \rangle$$

Path Predicate Modal Logic (PPML)

PPML arises as a natural extension of Basic Modal Logic: instead of propositional letters we consider symbols of arbitrary (finite) arity $R_1, \ldots R_m$:

 $\varphi ::= \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \Diamond \varphi \mid R_i \quad (i \in \{1, \dots, m\})$ $\sigma = \{R_0, R_1, \dots, R_m\} \quad (R_0 \text{ transition relation})$

Path Predicate Modal Logic (PPML)

PPML arises as a natural extension of Basic Modal Logic: instead of propositional letters we consider symbols of arbitrary (finite) arity $R_1, \ldots R_m$:

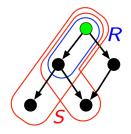
 $\varphi ::= \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \Diamond \varphi \mid R_i \quad (i \in \{1, \dots, m\})$ $\sigma = \{R_0, R_1, \dots, R_m\} \quad (R_0 \text{ transition relation})$ $\sigma = \{R_0, S, R\}$ $x \models \Diamond (\Diamond S \land \Diamond R)$ $x \not\models \Diamond S$

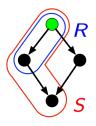
Path Predicate Modal Logic (PPML)

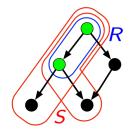
PPML arises as a natural extension of Basic Modal Logic: instead of propositional letters we consider symbols of arbitrary (finite) arity $R_1, \ldots R_m$:

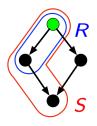
 $\varphi ::= \varphi \land \psi \mid \varphi \lor \psi \mid \neg \varphi \mid \Diamond \varphi \mid R_i \quad (i \in \{1, \dots, m\})$ $\sigma = \{R_0, R_1, \dots, R_m\} \quad (R_0 \text{ transition relation})$ $\sigma = \{R_0, S, R\}$ $x \models \Diamond (\Diamond S \land \Diamond R)$ $x \not\models \Diamond S$

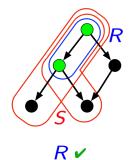
DataGL can be recovered as a semantic restriction of PPML using $\sigma_{DGL} = \{R_0, R_=, p, q, r, \dots\}$

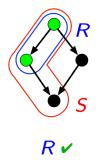


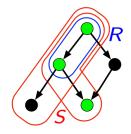


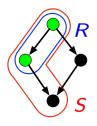


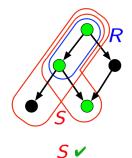


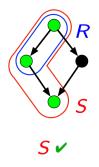


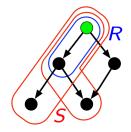


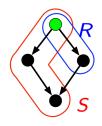


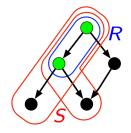


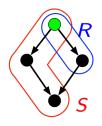




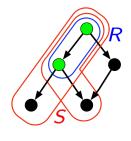


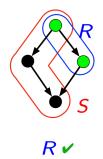




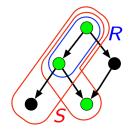


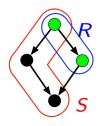
A slight variation of the k-round simulation and bisimulation games for Basic Modal Logic characterises bisimilarity for PPML:



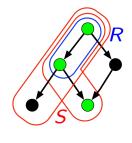


R ✓

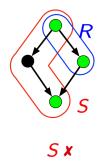




A slight variation of the k-round simulation and bisimulation games for Basic Modal Logic characterises bisimilarity for PPML:

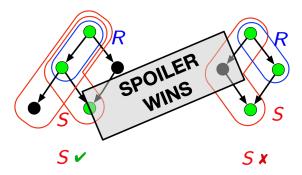


S v

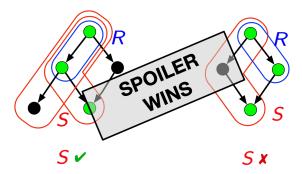




A slight variation of the k-round simulation and bisimulation games for Basic Modal Logic characterises bisimilarity for PPML:



In the bisimulation game, Spoiler can also switch between models.



- In the bisimulation game, Spoiler can also switch between models.
- As is to be expected, these games characterize logical equivalences ≡_k (modal depth ≤ k fragment), ≡[◊]_k (negation-free subfragment).

The PPML Comonad

Definition

$$\mathbb{C}_k : \operatorname{Struct}_*(\sigma) \to \operatorname{Struct}_*(\sigma) \qquad \sigma \ni R_0$$

 $(\mathcal{A}, a) \mapsto \mathbb{C}_k(\mathcal{A}, a)$

The PPML Comonad

Definition

$$\mathbb{C}_k : \operatorname{Struct}_*(\sigma) \to \operatorname{Struct}_*(\sigma) \qquad \sigma \ni R_0$$

 $(\mathcal{A}, a) \mapsto \mathbb{C}_k(\mathcal{A}, a)$

Universe of C_k(A, a) is the unravelling of A starting from a along R₀ (just like for Modal Comonad M_k)

$$\blacktriangleright \ R^{\mathbb{C}_k(\mathcal{A},a)}(s_1,\ldots,s_n) \text{ iff}$$

- 1. each sequence in the tuple is an immediate successor of the previous one
- 2. their ending points form a tuple in $R^{\mathcal{A}}$

The PPML Comonad

Definition

$$\mathbb{C}_k : \operatorname{Struct}_*(\sigma) \to \operatorname{Struct}_*(\sigma) \qquad \sigma \ni R_0$$

 $(\mathcal{A}, a) \mapsto \mathbb{C}_k(\mathcal{A}, a)$

Universe of C_k(A, a) is the unravelling of A starting from a along R₀ (just like for Modal Comonad M_k)

$$\blacktriangleright \ R^{\mathbb{C}_k(\mathcal{A}, \mathbf{a})}(s_1, \dots, s_n) \text{ iff }$$

- 1. each sequence in the tuple is an immediate successor of the previous one
- 2. their ending points form a tuple in $R^{\mathcal{A}}$

Proposition

- \mathbb{C}_k defines a subcomonad of
 - ▶ the Ehrenfeucht-Fraïssé Comonad \mathbb{E}_k

► the Pebbling Comonad $\mathbb{P}_{N(\sigma)}$ with $N(\sigma) = \max_{R \in \sigma} (\operatorname{arity}(R))$ (both lifted to Struct_{*}(σ)) 5 / 11

Coalgebras of the PPML comonad

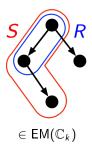
► As in the Modal case, C_k is idempotent ⇒ C_k-coalgebra structures are unique, if they exist

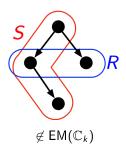
Coalgebras of the PPML comonad

- ► As in the Modal case, C_k is idempotent ⇒ C_k-coalgebra structures are unique, if they exist
- ▶ \mathbb{C}_k -coalgebras are trees of height $\leq k$ (just like \mathbb{M}_k -coalgebras) in which moreover relations only hold along paths:

Coalgebras of the PPML comonad

- ► As in the Modal case, C_k is idempotent ⇒ C_k-coalgebra structures are unique, if they exist
- ▶ \mathbb{C}_k -coalgebras are trees of height $\leq k$ (just like \mathbb{M}_k -coalgebras) in which moreover *relations only hold along paths*:





Expressivity results

Theorem

Winning strategies for Duplicator in k-round simulation game $\mathcal{A} \to \mathcal{B}$ $\longleftrightarrow \mathbb{C}_k(\mathcal{A}, a) \to (\mathcal{B}, b)$

Thus $(\mathcal{A}, a) \equiv^{\Diamond}_{k} (\mathcal{B}, b)$ iff there exist homomorphisms $\mathbb{C}_{k}(\mathcal{A}, a) \rightarrow (\mathcal{B}, b)$ and $\mathbb{C}_{k}(\mathcal{B}, b) \rightarrow (\mathcal{A}, a)$.

Expressivity results

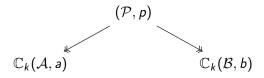
Theorem

Winning strategies for Duplicator in k-round simulation game $\mathcal{A} \to \mathcal{B}$ $\longleftrightarrow \mathbb{C}_k(\mathcal{A}, a) \to (\mathcal{B}, b)$

Thus $(\mathcal{A}, a) \equiv_{k}^{\Diamond} (\mathcal{B}, b)$ iff there exist homomorphisms $\mathbb{C}_{k}(\mathcal{A}, a) \rightarrow (\mathcal{B}, b)$ and $\mathbb{C}_{k}(\mathcal{B}, b) \rightarrow (\mathcal{A}, a)$.

Theorem

 $(\mathcal{A}, a) \equiv_k (\mathcal{B}, b)$ iff there exists a \mathbb{C}_k -coalgebra $(\mathcal{P}, p) \in \mathsf{EM}(\mathbb{C}_k)$ and a span of **strong**, **surjective** homomorphisms



$$\sigma = \{R_0, R_1, \dots, R_m\} \longrightarrow \widetilde{\sigma} := \{R_0, \widetilde{R}_1, \dots, \widetilde{R}_m\}$$

where each \widetilde{R}_j is unary

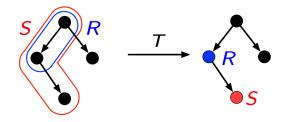
$$\sigma = \{R_0, R_1, \dots, R_m\} \xrightarrow{\sim} \widetilde{\sigma} := \{R_0, \widetilde{R}_1, \dots, \widetilde{R}_m\}$$

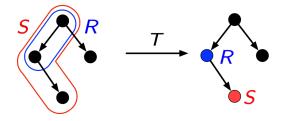
where each \widetilde{R}_j is unary $\implies \widetilde{\sigma}$ is a *(uni-)modal* signature.

$$\sigma = \{R_0, R_1, \dots, R_m\} \xrightarrow{} \widetilde{\sigma} := \{R_0, \widetilde{R}_1, \dots, \widetilde{R}_m\}$$

where each \widetilde{R}_j is unary $\implies \widetilde{\sigma}$ is a *(uni-)modal* signature.
There is a functor

$$T: \mathsf{EM}(\mathbb{C}_k) \to \mathsf{EM}(\mathbb{M}_k)$$
$$(\mathbb{M}_k: \mathsf{Struct}_*(\widetilde{\sigma}) \to \mathsf{Struct}_*(\widetilde{\sigma}))$$





Theorem

T is fully faithful, preserves open pathwise embeddings, and its (essential) image is the full subcategory of $EM(\mathbb{M}_k)$ spanned by \mathbb{M}_k -coalgebras (\mathcal{A}, a) such that:

for any
$$\mathsf{a}'\in |\mathcal{A}|$$
 and n-ary relation $R\in\sigma$,
 $\widetilde{R}^{\mathcal{A}}(\mathsf{a}')\implies$ the path from a to a' has at least n points.

Satisfiability

Lemma

 $\varphi \in \operatorname{PPML}_k$ is satisfiable iff it is satisfied by a \mathbb{C}_k -coalgebra.

Satisfiability

Lemma

 $\varphi \in \operatorname{PPML}_k$ is satisfiable iff it is satisfied by a \mathbb{C}_k -coalgebra.

Theorem

Satisfiability for $PPML_k$ reduces linearly to satisfiability for the modal depth $\leq k$ fragment of Basic Modal Logic. Thus satisfiability for PPML is PSpace.

Satisfiability

Lemma

 $\varphi \in \operatorname{PPML}_k$ is satisfiable iff it is satisfied by a \mathbb{C}_k -coalgebra.

Theorem

Satisfiability for $PPML_k$ reduces linearly to satisfiability for the modal depth $\leq k$ fragment of Basic Modal Logic. Thus satisfiability for PPML is PSpace.

This is a first step towards the comonadic treatment of data-aware logics.

Thank you!