
Indexed complexity classes

Siddharth Bhaskar

Department of Computer Science, James Madison University



Grounded programming languages

• A programming language consists of a set P of programs, D
of data, and a ternary relation [[p]](x) = y.
• (a.k.a. ϕp(x) = y)

• It is grounded if P ⊆ D.
• Its first-order [[]]-theory captures some coarse structural

information about it.

(∀p, q ∈ P)(∃c ∈ P)(∀x ∈ D) [[c]](x) = [[p]]([[q]](x))



Grounded programming languages

• A programming language consists of a set P of programs, D
of data, and a ternary relation [[p]](x) = y.
• (a.k.a. ϕp(x) = y)

• It is grounded if P ⊆ D.
• Its first-order [[]]-theory captures some coarse structural

information about it.

(∀p, q ∈ P)(∃c ∈ P)(∀x ∈ D) [[c]](x) = [[p]]([[q]](x))



Classical recursion theory

• The classical case is when we consider a non-pathological
Turing-complete programming language.
• This yields an acceptable indexing of the partial recursive

functions.
• Any two such languages have an identical first-order

[[]]-theory.
• Upshot: in the classical case, structure does not meet

power.



Complexity classes

• Consider a non-Turing complete programming language
that captures C a complexity class.
• This yields an indexing of C.
• Here, we have the possibility of different indexings with

different structural properties.



Kozen’s axioms

• Getting off the ground: any analogue of acceptability?
• Yes (Kozen 1978):

• Constant functionals:
(∀x ∈ D)(∃p ∈ P)(∀y ∈ D) [[[[p]]]](y) = x.

• Sequential composition:
(∀p, q ∈ P)(∃c ∈ P)(∀x ∈ D) [[c]](x) = [[p]]([[q]](x)).

• Parallel composition:
(∀p, q ∈ P)(∃c ∈ P)(∀x ∈ D) [[c]](x) = ([[p]](x), [[q]](x)).

• Nontrivial consequences, e.g.,
• Kleene’s second recursion theorem
• abstract Rice’s theorem



Motivating questions

• A provocative question: Do complexity classes obey
conservation of structure?
• In other words: to be sufficiently expressive, do you have

to be sufficiently structurally complex?
• Kozen: YES, in the special case of clocked indexings of

PTIME.



Motivating questions

• Other questions:
• How many indexings of a given complexity class are there,

up to computable isomorphism?
• When can one programming language be efficiently

compiled into another?



Why now?

• Study of subrecursive indexings: ≤ 1980′s
• mostly “large” classes

• Implicit computational complexity: ≥ 1990′s
• New examples from the perspective of subrecursive

indexings.
• New questions from the perspective of ICC.



Timed indexed classes

• We can further extend the [[]]-theory of a programming
language by the additional relation

〈〈p〉〉(d) < n,

meaning “program p halts within time n on input d.”
• This is basically the Blum relation Φp(d) < n.
• The resulting theory encodes even more intensional

information.



Timed indexed classes

• Classical case: extend acceptable indexings ϕe of partial
recursive functions by the additional relation Φe plus
Blum’s axioms
• Significant consequences: Rabin’s theorem, upward and

downward gap theorems, speedup theorem
• Is there a subrecursive analogue?

• YES (Alton, 1980), a self-simulating indexing.



Open questions

• Which complexity classes admit a self-simulating
indexing?
• Can such indexings be used to exhibit speedup

phenomena?


