
Datalog reductions between constraint
satisfaction problems

Jakub Opršal (ISTA)

Joined work with V. Dalmau (UPF) and M. Wrochna (MIMUW).

This project has received funding under the European Union’s Horizon 2020 research
and innovation programme (ERC grant agreement No 714532 & MSCA grant agree-
ment No 101034413).



Part I

Why do we care about reductions?



A reduction from a problem A to a problem B is an (efficiently
computable) function ϕ that maps instances of A to instances of B
and preserves the answer, i.e.,

▶ if i ∈ A then ϕ(i) ∈ B , and
▶ if i /∈ A then ϕ(i) /∈ B .



the class NP under P-time reductions



the constraint satisfaction problem(s)

CSP Given a list of constraints over some domain D involving
variables from V where each constraint is of the form
(v1, ... , vk) ∈ R for some R ⊆ Dk , decide whether there is
a satisfying assignment V → D .

CSP(A) Fix a relational structure A (e.g., a graph). Given a
relational structureQ of the same type, decide if there is a
homomoprhism h : Q→ A.

examples
▶ CSP(K3) is the 3-colouring.
▶ 3-SAT is expressible as CSP(S3) for a suitable S3.
▶ Solving systems of linear equations mod p is CSP(Zp).
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a brief introduction to algebraic approach

▶ assigns to CSP(A) an ‘algebraic’ structure pol(A)
▶ shows that up to log-space reductions, the complexity of

CSP(A) depends only on pol(A)

In fact, the algebraic approach is a characterisation of gadget
reductions.

Theorem [Bulatov, Jeavons, & Krokhin ‘05 and Barto, , & Pinsker ‘17].

CSP(A) ≤gadget CSP(B) iff pol(B)→ pol(A)
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the success of algebraic approach



a failure of algebraic approach

Widen the scope of CSPs to promise problems.

PCSP(A,B) Fix relational structures A→ B. Given a relational
structureQ of the same type, decide between two cases:

▶ there is a homomorphism h : Q→ A, or
▶ there is no homomorphism h′ : Q→ B.

Example. Given a graph G decide whether it is 3-colourable or
not even 5-colourable.

Not all NP-hardness of PCSPs is shown by gadget reductions, e.g.,
PCSP(K3,K5) is NP-hard, but

3-SAT ̸≤gadget PCSP(K3,K5)
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Part II

The reduction



Datalog programs

Datalog program ϕ with input signature τ is a finite set of rules of
the form

R(x1, ... , xn)← S1(xi1 , ... , xik1 ), ... , Sr (xi∗+1 , ... , xi∗+kr
)

where the symbols come from τ ′ ⊇ τ . We design one symbol
O ∈ τ ′ as an output — we call it’s aritym the arity of the Datalog
program.

For a τ -structure ϕ(A) is then computed as follows:

1. initialise: Rτ = RA if R ∈ τ and Rτ = ∅ otherwise.
2. repeat until stabilises: whenever for some x1, ... , xk ∈ A

match the body, add (x1, ... , xn) into R .
3. output: Oτ ⊆ Am.

Datalog can be viewed as a fragment of ∃+Lk∞,ω .
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local reductions

Datalog interpretation. Fix a signature σ, a τ -structure A, and
Datalog programs ϕ and ϕR for R ∈ σ of aritiesm andm ar(R) for
R ∈ σ.

B = (ϕ(A);ϕR(A), ... )

where ϕR(A) is interpreted as ar(R)-ary relation on ϕ(A).

Definition
A local construction is arbitrary composition of Datalog
interpretations and gadget replacement.
We say that CSP(A) locally reduces to CSP(B) if there is a local
construction that is a reduction between these two problems.

Example. CSP(K2) locally reduces to CSP(T) where
T = ({∗};⊥) with ⊥ being the nullary empty relation.
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k-consistency as a reduction

Assume we are reducing from CSP(A) to CSP(B). Given an
instanceQ of CSP(A):

1. for each K ∈
( Q
≤k

)
, let FK be the set of partial

homomorphisms h : K → A.
2. while anything changes: for each L ⊂ K

▶ FL ← FL ∩ {h|L : h ∈ FK},
▶ remove from FK all h, s.t., h|L /∈ FL.

3. create the output instance ϕ(Q) of CSP(B):
▶ for each K , introduce to ϕ(Q) a copy of BFK .
▶ for each L ⊂ K , identify each element b : FL → B of BFK with

the element b′ of BFK defined as b′(h) = b(h|L).
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Part III

What can we prove?



Boolean CSPs (i.e., CSP(B) where the domain of B is {0, 1})



some observations

▶ Every CSP whose complement is definable in Datalog (i.e.,
every CSP that is solvable by local consistency) is reducible to
the trivial CSP.

▶ CSP(A) is solvable by some level of Sherali-Adams relaxation
iff it is locally reducible to Linear Programming.

▶ CSP(Zp) is not locally reducible to CSP(Zq) for any primes
p ̸= q. [Atserias, Bulatov, & Dawar ‘09 and Grädel & Pakusa ‘19]

▶ 3-SAT is not locally reducible to CSP(Zp) for any prime p.
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what can we prove?

▶ Local reductions have the same power as k-consistency
reductions.

▶ [Barto & Kozik ‘22] give a sufficient (but not necessary) condition
for a local reduction.

▶ 3-SAT ≤local PCSP(K3,K5) [Barto & Kozik ‘22 and Wrochna ‘22].
▶ We have a characterisation of arc-consistency reduction by

the means of certain co-monad µ acting on polymorphisms:

Theorem
CSP(A) reduces to CSP(B) by the arc-consistency reduction iff

µ(pol(B))→ pol(A).



what can we prove?

▶ Local reductions have the same power as k-consistency
reductions.

▶ [Barto & Kozik ‘22] give a sufficient (but not necessary) condition
for a local reduction.

▶ 3-SAT ≤local PCSP(K3,K5) [Barto & Kozik ‘22 and Wrochna ‘22].
▶ We have a characterisation of arc-consistency reduction by

the means of certain co-monad µ acting on polymorphisms:

Theorem
CSP(A) reduces to CSP(B) by the arc-consistency reduction iff

µ(pol(B))→ pol(A).



what can we prove?

▶ Local reductions have the same power as k-consistency
reductions.

▶ [Barto & Kozik ‘22] give a sufficient (but not necessary) condition
for a local reduction.

▶ 3-SAT ≤local PCSP(K3,K5) [Barto & Kozik ‘22 and Wrochna ‘22].

▶ We have a characterisation of arc-consistency reduction by
the means of certain co-monad µ acting on polymorphisms:

Theorem
CSP(A) reduces to CSP(B) by the arc-consistency reduction iff

µ(pol(B))→ pol(A).



what can we prove?

▶ Local reductions have the same power as k-consistency
reductions.

▶ [Barto & Kozik ‘22] give a sufficient (but not necessary) condition
for a local reduction.

▶ 3-SAT ≤local PCSP(K3,K5) [Barto & Kozik ‘22 and Wrochna ‘22].
▶ We have a characterisation of arc-consistency reduction by

the means of certain co-monad µ acting on polymorphisms:

Theorem
CSP(A) reduces to CSP(B) by the arc-consistency reduction iff

µ(pol(B))→ pol(A).



what can’t we prove?

▶ Is 3-SAT locally reducible to CSP(Z)? (Not unless P ̸= NP.)
▶ Is every tractable CSP reducible to CSP(Z)? Or to CSP(Zn) for

some n?

Conjecture.
For all finite structures A, if 3-SAT ̸≤gadget CSP(A), then

CSP(A) ≤local CSP(Z)

■
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