A Categorical Approach to Descriptive Complexity Theory

Damiano Mazza CNRS, LIPN, Université Paris 13

Structure Meets Power 2022 ICALP 2022, Paris, 4 July 2022

Boolean Categories

Boolean toposes	higher-order theories
Boolean pretoposes	first-order theories
Boolean lextensive categories	"quantifier-free" theories

- Boolean (lextensive) category [Carboni, Lack, Walters 1993]:
 - finite products (the structure below in fact implies all finite limits);
 - finite coproducts;
 - 1 + 1 is disjoint, pullback-stable and the subobject classifier.
- Logical functor: functor preserving fin. prods. and fin. coprods.
- Examples (small):
 - \mathcal{F} : (skeleton of) finite sets and functions;
 - \mathcal{F}_{ω} : (skeleton of) countable sets and functions;
 - syntactic categories of Boolean theories (next slide).

Boolean Categories of Finite Presentation

- Finite Boolean theory $\mathbb{T} := (Sort, Rel, Ax)$:
 - Sort finite set of *sorts*;
 - Rel finite set of *relation symbols*, $R \rightarrow A_1, \ldots, A_k$, with A_i sorts;
 - Ax finite set of *axioms*, quantifier-free (except for provably unique \exists).

(So a Boolean theory is a multisorted, relational FO theory with equality, with closed axioms of the form $\forall \vec{x}. \varphi$ with φ quantifier-free except for provably unique \exists).

- $\mathcal{F}[\mathbb{T}]$: the cat of definable sets and functions in \mathbb{T} .
 - $\mathcal{F} = \mathcal{F}[\mathbb{E}]$ where \mathbb{E} is the empty theory.
 - The obj. of $\mathcal{F}[N; E \rightarrow N^2]$ are "polynomials" on N, E and \overline{E} .
 - \mathcal{F}_{ω} is not of finite presentation.
- $BoolCat_{fp} := fin.$ pres. Bool cats and logical functors modulo iso.
- Analogy with \mathbb{Q} -algebras: $\mathcal{F}[Sort; Rel]/\langle Ax \rangle$ is like $\mathbb{Q}[Var]/\langle Poly \rangle$.

Data Presheaves

- Define a data presheaf as a functor $\mathcal{B}ool\mathcal{C}at_{\mathrm{fp}} \to \mathbf{Set}$.
 - We write $\operatorname{Spec} \mathcal{B} := \mathcal{B}ool\mathcal{C}at_{\operatorname{fp}}(\mathcal{B}, -)$ (a data specification).
 - Morphism $\operatorname{Spec} \mathcal{B} \to \operatorname{Spec} \mathcal{A} = \operatorname{logical} \operatorname{functor} \mathcal{A} \to \mathcal{B} \pmod{\operatorname{iso}}$.
 - The (small) category $\mathcal{D}ata$ of data specs is lextensive.
- Global section functor Γ : **DataPSh** \rightarrow **Set**: $X \mapsto X(\mathcal{F})$
 - $\Gamma(\operatorname{Spec} \mathcal{F}[\mathbb{T}]) = \{ \text{logical } \mathcal{F}[\mathbb{T}] \to \mathcal{F} \} = \text{finite models of } \mathbb{T}.$
 - If $f: X \to \operatorname{Spec} \mathcal{F}[\mathbb{T}]$, $\operatorname{im} \Gamma(f) \subseteq \Gamma(\operatorname{Spec} \mathcal{F}[\mathbb{T}])$ is a Boolean query.
 - Morphism $h : \operatorname{Spec} \mathcal{F}[\mathbb{S}] \to \operatorname{Spec} \mathcal{F}[\mathbb{T}] \approx$ quantifier-free query from the fin. models of \mathbb{S} to the fin. models of \mathbb{T} .
 - Pullback $h^*f : X' \to \operatorname{Spec} \mathcal{F}[\mathbb{S}] = \operatorname{quantifier-free}$ reduction (parsimonious).
- Str: 1 sort, total order, predicate isOne. $Str_{+\times} := Str + arithmetic$. Spec $\mathcal{F}[Str_{+\times}] \to Spec \mathcal{F}[Str] = uniform NC^0$ function.

Computability and Complexity

- If $f : \mathcal{F}[\mathbb{T}] \to \mathcal{B}$ with \mathcal{B} fin. pres., then $\mathcal{B} \cong \mathcal{F}[\mathbb{T}_f]$ s.t. $Sort(\mathbb{T}) \subseteq Sort(\mathbb{T}_f)$, $Rel(\mathbb{T}) \subseteq Rel(\mathbb{T}_f)$, $Ax(\mathbb{T}) \subseteq Ax(\mathbb{T}_f)$ and $f = iso \circ inclusion$.
- Types of morphism $\operatorname{Spec} \mathcal{B} \to \operatorname{Spec} \mathcal{F}[\mathbb{T}]$ according to the dual f:
 - relational: $Sort(\mathbb{T}_f) = Sort(\mathbb{T});$
 - Horn: relational + constraints on $Ax(\mathbb{T}_f) \setminus Ax(\mathbb{T})$;
 - Krom: relational + other constraints on $Ax(\mathbb{T}_f) \setminus Ax(\mathbb{T})$.

Theorem. $A \subseteq \{0,1\}^*$ is r.e. iff $\exists f : X \to \operatorname{Spec} \mathcal{F}[\operatorname{Str}]$ s.t. $A = \operatorname{im} \Gamma(f)$. Moreover:

- $A \in \mathsf{NP}$ iff f is relational;
- $A \in \mathsf{P}$ iff f is Horn;
- $A \in \mathsf{NL}$ iff $f: X \to \operatorname{Spec} \mathcal{F}[\operatorname{Str}_{+\times}]$ is Krom.

Complete Problems

• Define $R, R_{\bullet} : BoolCat_{fp} \to Set$ by (on arrows, act by pullback): $R(\mathcal{B}) := \{ relational morphisms over \operatorname{Spec} \mathcal{B} \}$

 $R_{\bullet}(\mathcal{B}) := \{(f, s) \mid f \text{ rel. morphism over } \operatorname{Spec} \mathcal{B}, f \circ s = \operatorname{id} \}$

• Proj. $u: R_{\bullet} \to R =$ "universal" NP problem: \forall rel. mor. $f: U \to$ Spec $\mathcal{F}[S]$, $U \longrightarrow R_{\bullet}$

 $\Gamma(R) = \{ \mathsf{CNFs} \}, \Gamma(R_{\bullet}) = \{ (\varphi, \sigma) \mid \sigma \models \varphi \} \text{ and } \operatorname{im} \Gamma(u) = \mathsf{Sat.}$

- Can do the same with Horn (H, H_{\bullet}) and Krom (K, K_{\bullet}) morphism:
 - for H, $\operatorname{im} \Gamma(u) = \operatorname{Horn} \operatorname{Sat};$
 - for K, $\operatorname{im} \Gamma(u) = \operatorname{Krom} \operatorname{Sat}$.

Perspectives

- More complexity classes?
 - CSPs are immediate. Uniform $AC^0 = LH = FO$ seems easy.
 - L maybe. Don't know about PH or PSPACE.
 - In any case, is the "moduli space" of these classes meaningful?
- A "fibrational" view of (search) problems?
- Colimits of presheaves are bad. We need sheaves.
- Algebraic geometry with Boolean cats instead of comm. rings?
 - Bool cats are intriguingly similar to Q-algebras which are integral domains.
 - Zarisky topology? Data schemes = locally representable sheaves? (*Categories of spaces built from local models* [Zhen Lin Low 2016]).
 - Caveat: likely, alg. geom. questions \cong complexity theory questions!