Query Algorithms Based on Homomorphism Counts

Wei-Lin Wu
University of California Santa Cruz, USA
ICALP Structure Meets Power Workshop
July 04, 2022
Joint work with Phokion G. Kolaitis

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H : A function $h: V(G) \rightarrow V(H)$ such that for all $u, v \in V(G)$:

$$
\text { if }(u, v) \in E(G), \quad \text { then }(h(u), h(v)) \in E(H) \text {. }
$$

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H : A function $h: V(G) \rightarrow V(H)$ such that for all $u, v \in V(G)$:

$$
\text { if }(u, v) \in E(G), \quad \text { then }(h(u), h(v)) \in E(H) \text {. }
$$

2. hom (G, H) : number of homomorphisms from G to H.

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H : A function $h: V(G) \rightarrow V(H)$ such that for all $u, v \in V(G)$:

$$
\text { if }(u, v) \in E(G), \quad \text { then }(h(u), h(v)) \in E(H) \text {. }
$$

2. hom (G, H) : number of homomorphisms from G to H.
E.g., hom $(G, H)=4$ for the graphs G and H below:

G

H

Query Algorithms Based on Homomorphism Counts

Let \mathcal{C} be a class of (isomorphism types of) graphs.

Query Algorithms Based on Homomorphism Counts

Let \mathcal{C} be a class of (isomorphism types of) graphs.
Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. \mathcal{C} admits a k-non-adaptive left algorithm $(k \geq 1)$ if there are k fixed graphs $F_{1}, F_{2}, \ldots, F_{k}$ such that for every G, $G \in \mathcal{C} \quad$ iff $\quad\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in X$
where

- $X \subseteq \mathbb{N}^{k}$ is decidable (\mathbb{N} : non-negative integers), and
- $n_{1}:=\operatorname{hom}\left(F_{1}, G\right), n_{2}:=\operatorname{hom}\left(F_{2}, G\right), \ldots, n_{k}:=\operatorname{hom}\left(F_{k}, G\right)$ are left homomorphism counts as queries made to the input G.

Query Algorithms Based on Homomorphism Counts

Let \mathcal{C} be a class of (isomorphism types of) graphs.
Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. \mathcal{C} admits a k-non-adaptive left algorithm $(k \geq 1)$ if there are k fixed graphs $F_{1}, F_{2}, \ldots, F_{k}$ such that for every G,
$G \in \mathcal{C} \quad$ iff $\quad\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in X$
where

- $X \subseteq \mathbb{N}^{k}$ is decidable (\mathbb{N} : non-negative integers), and
- $n_{1}:=\operatorname{hom}\left(F_{1}, G\right), n_{2}:=\operatorname{hom}\left(F_{2}, G\right), \ldots, n_{k}:=\operatorname{hom}\left(F_{k}, G\right)$ are left homomorphism counts as queries made to the input G.

2. \mathcal{C} admits a k-adaptive left algorithm $(k \geq 1)$ if the same holds except that $F_{i}=F_{i}\left(n_{1}, \ldots, n_{i-1}\right)$ is a function of n_{1}, \ldots, n_{i-1} for $2 \leq i \leq k$.

Query Algorithms Based on Homomorphism Counts

Let \mathcal{C} be a class of (isomorphism types of) graphs.
Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. \mathcal{C} admits a k-non-adaptive left algorithm $(k \geq 1)$ if there are k fixed graphs $F_{1}, F_{2}, \ldots, F_{k}$ such that for every G,
$G \in \mathcal{C} \quad$ iff $\quad\left(n_{1}, n_{2}, \ldots, n_{k}\right) \in X$
where

- $X \subseteq \mathbb{N}^{k}$ is decidable (\mathbb{N} : non-negative integers), and
- $n_{1}:=\operatorname{hom}\left(F_{1}, G\right), n_{2}:=\operatorname{hom}\left(F_{2}, G\right), \ldots, n_{k}:=\operatorname{hom}\left(F_{k}, G\right)$ are left homomorphism counts as queries made to the input G.

2. \mathcal{C} admits a k-adaptive left algorithm $(k \geq 1)$ if the same holds except that $F_{i}=F_{i}\left(n_{1}, \ldots, n_{i-1}\right)$ is a function of n_{1}, \ldots, n_{i-1} for $2 \leq i \leq k$.
3. "C admits a k-(non-)adaptive right algorithm" is analogous.

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some $k \geq 1$):

1. class of graphs definable by a Boolean combination of universal first-order sentences

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some $k \geq 1$):

1. class of graphs definable by a Boolean combination of universal first-order sentences
2. class of 3-regular (or any m-regular) graphs

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some $k \geq 1$):

1. class of graphs definable by a Boolean combination of universal first-order sentences
2. class of 3-regular (or any m-regular) graphs
but not the class of graphs containing an isolated node.

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision problem: Given G, is $\operatorname{hom}(G, H)>0$?

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision problem: Given G, is hom $(G, H)>0$?

Fact:
$\operatorname{CSP}(H):=\{G \mid$ hom $(G, H)>0\}$ admits a trivial non-adaptive right algorithm $(k=1)$: Take $F_{1}=H$ and $X=\{n \in \mathbb{N} \mid n>0\}$.

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision problem: Given G, is hom $(G, H)>0$?

Fact:
$\operatorname{CSP}(H):=\{G \mid$ hom $(G, H)>0\}$ admits a trivial non-adaptive right algorithm $(k=1)$: Take $F_{1}=H$ and $X=\{n \in \mathbb{N} \mid n>0\}$.

Theorem (Kolaitis-W. 2022):
For every H, the class $\operatorname{CSP}(H)$ admits a k-non-adaptive left algorithm for some $k \geq 1$ iff H contains no edge.

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision problem: Given G, is $\operatorname{hom}(G, H)>0$?

> Fact:
> $\operatorname{CSP}(H):=\{G \mid$ hom $(G, H)>0\}$ admits a trivial non-adaptive right algorithm $(k=1)$: Take $F_{1}=H$ and $X=\{n \in \mathbb{N} \mid n>0\}$.

Theorem (Kolaitis-W. 2022):
For every H, the class $\operatorname{CSP}(H)$ admits a k-non-adaptive left algorithm for some $k \geq 1$ iff H contains no edge.

- Trivial when H contains no edge: $k=1$, take $F_{1}=K_{2}$ (single-edge graph $)$ and $X=\{0\} . \quad\left(\operatorname{hom}\left(K_{2}, G\right)=2 \times|E(G)|.\right)$

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with $\operatorname{hom}\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H,
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$.

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H,
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected.

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H, C_{n} : cycle of size n, \oplus : disjoint union.
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd $n>0$ and take $G_{0}=C_{2 n}, G_{1}=C_{n} \oplus C_{n}$.

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with $\operatorname{hom}\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H, C_{n} : cycle of size n, \oplus : disjoint union.
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd $n>0$ and take $G_{0}=C_{2 n}, G_{1}=C_{n} \oplus C_{n}$.

Case 2: $\chi(H) \geq 3$. Let $n>$ the tree-width of every $F \in \mathcal{F}$.

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H, C_{n} : cycle of size n, \oplus : disjoint union.
Case 1: $\chi(H)=2$. $\operatorname{Then} \operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd $n>0$ and take $G_{0}=C_{2 n}, G_{1}=C_{n} \oplus C_{n}$.
C^{n} : first-order counting logic with at most n variables.
Case 2: $\chi(H) \geq 3$. Let $n>$ the tree-width of every $F \in \mathcal{F}$. Then there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ such that, successively:
G_{0}, G_{1} satisfy same C^{n}-sentences (Atserias-Kolaitis-W. 2021),

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H, C_{n} : cycle of size n, \oplus : disjoint union.
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd $n>0$ and take $G_{0}=C_{2 n}, G_{1}=C_{n} \oplus C_{n}$.
C^{n} : first-order counting logic with at most n variables.
Case 2: $\chi(H) \geq 3$. Let $n>$ the tree-width of every $F \in \mathcal{F}$. Then there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ such that, successively:
G_{0}, G_{1} satisfy same C^{n}-sentences (Atserias-Kolaitis-W. 2021),
$\Leftrightarrow \quad \operatorname{hom}\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for F of tree-width $<n$ (Dvořák 2010),

Proof of the Theorem

Let H contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ with hom $\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.
$\chi(H)$: chrom. num. of H, C_{n} : cycle of size n, \oplus : disjoint union.
Case 1: $\chi(H)=2$. Then $\operatorname{CSP}(H)=\{G \mid G$ is 2-colorable $\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd $n>0$ and take $G_{0}=C_{2 n}, G_{1}=C_{n} \oplus C_{n}$.
C^{n} : first-order counting logic with at most n variables.
Case 2: $\chi(H) \geq 3$. Let $n>$ the tree-width of every $F \in \mathcal{F}$. Then there are $G_{0} \in \operatorname{CSP}(H), G_{1} \notin \operatorname{CSP}(H)$ such that, successively:
G_{0}, G_{1} satisfy same C^{n}-sentences (Atserias-Kolaitis-W. 2021),
$\Leftrightarrow \quad \operatorname{hom}\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for F of tree-width $<n$ (Dvořák 2010),
$\Rightarrow \quad \operatorname{hom}\left(F, G_{0}\right)=\operatorname{hom}\left(F, G_{1}\right)$ for $F \in \mathcal{F}$.

Isomorphism and Adaptive Query Algorithms

\cong : isomorphic
Theorem (Chen-Flum-Liu-Xun 2022):
For $n>0$, two graphs $F_{1}=F_{1}(n), F_{2}=F_{2}(n)$ can be constructed such that for all G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for } F \in\left\{F_{1}, F_{2}\right\}
$$

Isomorphism and Adaptive Query Algorithms

\cong : isomorphic
Theorem (Chen-Flum-Liu-Xun 2022):
For $n>0$, two graphs $F_{1}=F_{1}(n), F_{2}=F_{2}(n)$ can be constructed such that for all G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for } F \in\left\{F_{1}, F_{2}\right\}
$$

Proof based on theorem by Lovász (1967):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Isomorphism and Adaptive Query Algorithms

\cong : isomorphic
Theorem (Chen-Flum-Liu-Xun 2022):
For $n>0$, two graphs $F_{1}=F_{1}(n), F_{2}=F_{2}(n)$ can be constructed such that for all G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for } F \in\left\{F_{1}, F_{2}\right\}
$$

Proof based on theorem by Lovász (1967):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Corollary:
Three adaptive left queries hom $\left(\iota_{1}, \cdot\right)$, hom $\left(F_{1}, \cdot\right)$, hom $\left(F_{2}, \cdot\right)$ suffice to determine, for all G and H, whether $G \cong H$.

Isomorphism and Adaptive Query Algorithms

\cong : isomorphic
Theorem (Chen-Flum-Liu-Xun 2022):
For $n>0$, two graphs $F_{1}=F_{1}(n), F_{2}=F_{2}(n)$ can be constructed such that for all G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for } F \in\left\{F_{1}, F_{2}\right\} .
$$

Proof based on theorem by Lovász (1967):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Corollary:

Three adaptive left queries hom $\left(\iota_{1}, \cdot\right)$, hom $\left(F_{1}, \cdot\right)$, hom $\left(F_{2}, \cdot\right)$ suffice to determine, for all G and H, whether $G \cong H$.

- hom $\left(I_{1}, G\right)=|V(G)| \quad\left(I_{1}\right.$: single-node graph $)$

Isomorphism and Adaptive Query Algorithms

\cong : isomorphic
Theorem (Chen-Flum-Liu-Xun 2022):
For $n>0$, two graphs $F_{1}=F_{1}(n), F_{2}=F_{2}(n)$ can be constructed such that for all G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for } F \in\left\{F_{1}, F_{2}\right\} .
$$

Proof based on theorem by Lovász (1967):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(F, G)=\operatorname{hom}(F, H) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Corollary:

Three adaptive left queries hom $\left(\iota_{1}, \cdot\right)$, $\operatorname{hom}\left(F_{1}, \cdot\right)$, hom $\left(F_{2}, \cdot\right)$ suffice to determine, for all G and H, whether $G \cong H$.

- hom $\left(l_{1}, G\right)=|V(G)| \quad$ (I_{1} : single-node graph)
- Optimal in number of queries made when only left homomorphism counts are allowed.

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any k-adaptive right algorithm ($k \geq 1$).

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any k-adaptive right algorithm ($k \geq 1$).

- Proof implies that no fixed number of adaptive right queries suffice to determine, for all G and H, whether $G \cong H$.

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any k-adaptive right algorithm ($k \geq 1$).

- Proof implies that no fixed number of adaptive right queries suffice to determine, for all G and H, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):
For $n>0$, a single graph $F_{0}=F_{0}(n)$ can be constructed such that for G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}\left(G, F_{0}\right)=\operatorname{hom}\left(H, F_{0}\right)
$$

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any k-adaptive right algorithm ($k \geq 1$).

- Proof implies that no fixed number of adaptive right queries suffice to determine, for all G and H, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):
For $n>0$, a single graph $F_{0}=F_{0}(n)$ can be constructed such that for G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}\left(G, F_{0}\right)=\operatorname{hom}\left(H, F_{0}\right)
$$

Corollary:
One left hom $\left(I_{1}, \cdot\right)$ and one adaptive right query hom $\left(\cdot, F_{0}\right)$ suffice to determine, for all G and H, whether $G \cong H$.

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any k-adaptive right algorithm ($k \geq 1$).

- Proof implies that no fixed number of adaptive right queries suffice to determine, for all G and H, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):
For $n>0$, a single graph $F_{0}=F_{0}(n)$ can be constructed such that for G, H of size n :

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}\left(G, F_{0}\right)=\operatorname{hom}\left(H, F_{0}\right)
$$

Corollary:
One left hom $\left(I_{1}, \cdot\right)$ and one adaptive right query hom $\left(\cdot, F_{0}\right)$ suffice to determine, for all G and H, whether $G \cong H$.

- Optimal in number of queries made when both left and right homomorphism counts are allowed.

Proof of the Theorem

Proof based on theorem by Chaudhuri and Vardi (1993):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(G, F)=\operatorname{hom}(H, F) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Proof of the Theorem

Proof based on theorem by Chaudhuri and Vardi (1993):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(G, F)=\operatorname{hom}(H, F) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Let A_{1}, \ldots, A_{s} enumerate all graphs of size $\leq n$.

Proof of the Theorem

Proof based on theorem by Chaudhuri and Vardi (1993):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(G, F)=\operatorname{hom}(H, F) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Let A_{1}, \ldots, A_{s} enumerate all graphs of size $\leq n$.
Goal:
Given $n>0$, construct a graph $F_{0}(n)$ such that for every G of size n, hom $\left(G, F_{0}(n)\right)$ gives information of all hom $\left(G, A_{j}\right)$.

Proof of the Theorem

Proof based on theorem by Chaudhuri and Vardi (1993):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(G, F)=\operatorname{hom}(H, F) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Let A_{1}, \ldots, A_{s} enumerate all graphs of size $\leq n$.
Goal:
Given $n>0$, construct a graph $F_{0}(n)$ such that for every G of size n, hom $\left(G, F_{0}(n)\right)$ gives information of all hom $\left(G, A_{j}\right)$.

Observation:
Given (large) $D>0$, every sequence (a_{0}, \ldots, a_{k-1}) of fixed length k with $0 \leq a_{0}, \ldots, a_{k-1}<D$ is encoded by the unique integer $a_{0} \times D^{0}+\cdots+a_{k-1} \times D^{k-1}$.

Proof of the Theorem

Proof based on theorem by Chaudhuri and Vardi (1993):

$$
G \cong H \quad \text { iff } \quad \operatorname{hom}(G, F)=\operatorname{hom}(H, F) \text { for all } F
$$

- Sufficient to consider all F of size $\leq \min \{|V(G)|,|V(H)|\}$.

Let A_{1}, \ldots, A_{s} enumerate all graphs of size $\leq n$.
Goal:
Given $n>0$, construct a graph $F_{0}(n)$ such that for every G of size n, hom $\left(G, F_{0}(n)\right)$ gives information of all hom $\left(G, A_{j}\right)$.

Observation:
Given (large) $D>0$, every sequence (a_{0}, \ldots, a_{k-1}) of fixed length k with $0 \leq a_{0}, \ldots, a_{k-1}<D$ is encoded by the unique integer $a_{0} \times D^{0}+\cdots+a_{k-1} \times D^{k-1}$.

- Make D-ary representation of hom $\left(G, F_{0}(n)\right)$ contain all hom $\left(G, A_{j}\right)$ as certain digits.

Proof of the Theorem

Take $\quad F_{0}(n):=\bigoplus_{j=1}^{s}\left(D^{e_{j}}\right.$ disjoint copies of $\left.A_{j}\right) \quad$ for suitable positive integers $e_{1}, \ldots, e_{s}, D . \quad$ (\oplus : disjoint union)

Proof of the Theorem

Take $\quad F_{0}(n):=\bigoplus_{j=1}^{s}\left(D^{e_{j}}\right.$ disjoint copies of $\left.A_{j}\right) \quad$ for suitable positive integers $e_{1}, \ldots, e_{s}, D . \quad$ (\oplus : disjoint union)

By additivity and multiplicativity of hom (\cdot, \cdot), for arbitrary graph G of size n with connected components G_{1}, \ldots, G_{r}, we have

Proof of the Theorem

Take $\quad F_{0}(n):=\bigoplus_{j=1}^{s}\left(D^{e_{j}}\right.$ disjoint copies of $\left.A_{j}\right) \quad$ for suitable positive integers $e_{1}, \ldots, e_{s}, D . \quad$ (\oplus : disjoint union)

By additivity and multiplicativity of hom (\cdot, \cdot), for arbitrary graph G of size n with connected components G_{1}, \ldots, G_{r}, we have

$$
\operatorname{hom}\left(G, F_{0}\right)=\sum_{e \in \mathcal{E}^{+} \leq n}\left(\sum_{\substack{1 \leq i_{i}, \ldots, j j_{i} \leq \leq \\ e_{j}+\ldots+e_{j}=e}} \prod_{k=1}^{r} \operatorname{hom}\left(G_{k}, A_{j_{k}}\right)\right) \times D^{e} .
$$

- $\mathcal{E}_{\leq n}^{+}$: integers that are sums of at most n (not necessarily distinct) integers from $\left\{e_{1}, \ldots, e_{s}\right\}$.

Proof of the Theorem

Take $\quad F_{0}(n):=\bigoplus_{j=1}^{s}\left(D^{e_{j}}\right.$ disjoint copies of $\left.A_{j}\right) \quad$ for suitable positive integers $e_{1}, \ldots, e_{s}, D . \quad$ (\oplus : disjoint union)

By additivity and multiplicativity of hom (\cdot, \cdot), for arbitrary graph G of size n with connected components G_{1}, \ldots, G_{r}, we have

$$
\operatorname{hom}\left(G, F_{0}\right)=\sum_{e \in \mathcal{E}^{+} \leq n}\left(\sum_{\substack{1 \leq i_{i}, \ldots, j j_{i} \leq \leq \\ e_{j}+\ldots+e_{j}=e}} \prod_{k=1}^{r} \operatorname{hom}\left(G_{k}, A_{j_{k}}\right)\right) \times D^{e} .
$$

- $\mathcal{E}_{\leq n}^{+}$: integers that are sums of at most n (not necessarily distinct) integers from $\left\{e_{1}, \ldots, e_{s}\right\}$.

Desiderata:

1. R.H.S. of above identity is D-ary representation of hom $\left(G, F_{0}\right)$

Proof of the Theorem

Take $\quad F_{0}(n):=\bigoplus_{j=1}^{s}\left(D^{e_{j}}\right.$ disjoint copies of $\left.A_{j}\right) \quad$ for suitable positive integers $e_{1}, \ldots, e_{s}, D . \quad$ (\oplus : disjoint union)

By additivity and multiplicativity of hom (\cdot, \cdot), for arbitrary graph G of size n with connected components G_{1}, \ldots, G_{r}, we have

$$
\operatorname{hom}\left(G, F_{0}\right)=\sum_{e \in \mathcal{E}^{+} \leq n}\left(\sum_{\substack{1 \leq i_{i}, \ldots, j_{i} \leq \leq \leq \\ e_{j}+\ldots+e_{j}=e}} \prod_{k=1}^{r} \operatorname{hom}\left(G_{k}, A_{j_{k}}\right)\right) \times D^{e} .
$$

- $\mathcal{E}_{\leq n}^{+}$: integers that are sums of at most n (not necessarily distinct) integers from $\left\{e_{1}, \ldots, e_{s}\right\}$.

Desiderata:

1. R.H.S. of above identity is D-ary representation of hom $\left(G, F_{0}\right)$
2. $D^{r_{j}}$-digit of D-ary representation of hom $\left(G, F_{0}\right)$ is hom $\left(G, A_{j}\right)$ for all $1 \leq j \leq s$.

Future Directions

Investigate the expressive power of query algorithms in the variant settings below:

Future Directions

Investigate the expressive power of query algorithms in the variant settings below:

1. Undirected graphs replaced by directed graphs (or relational structures in general)

Future Directions

Investigate the expressive power of query algorithms in the variant settings below:

1. Undirected graphs replaced by directed graphs (or relational structures in general)
2. Homomorphism counts hom (G, H) replaced by their sign $\operatorname{sgn}(\operatorname{hom}(G, H))$

Future Directions

Investigate the expressive power of query algorithms in the variant settings below:

1. Undirected graphs replaced by directed graphs (or relational structures in general)
2. Homomorphism counts hom (G, H) replaced by their sign $\operatorname{sgn}(\operatorname{hom}(G, H))$
3. Allowing the number of queries to depend on input graph G
