Wei-Lin Wu

University of California Santa Cruz, USA

ICALP Structure Meets Power Workshop

July 04, 2022

Joint work with Phokion G. Kolaitis

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from *G* to *H*: A function $h : V(G) \to V(H)$ such that for all $u, v \in V(G)$: if $(u, v) \in E(G)$, then $(h(u), h(v)) \in E(H)$.

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from *G* to *H*: A function $h : V(G) \to V(H)$ such that for all $u, v \in V(G)$: if $(u, v) \in E(G)$, then $(h(u), h(v)) \in E(H)$.

2. hom(G, H): **number** of homomorphisms from G to H.

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from *G* to *H*: A function $h : V(G) \to V(H)$ such that for all $u, v \in V(G)$: if $(u, v) \in E(G)$, then $(h(u), h(v)) \in E(H)$.

2. hom(G, H): **number** of homomorphisms from G to H.

E.g., hom(G, H) = 4 for the graphs G and H below:

Let \mathcal{C} be a **class** of (isomorphism types of) graphs.

Let \mathcal{C} be a **class** of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. *C* admits a *k*-non-adaptive left algorithm ($k \ge 1$) if there are *k* fixed graphs F_1, F_2, \ldots, F_k such that for every *G*, $G \in C$ iff $(n_1, n_2, \ldots, n_k) \in X$

where

• $X \subseteq \mathbb{N}^k$ is decidable (\mathbb{N} : non-negative integers), and

n₁ := hom(F₁, G), n₂ := hom(F₂, G), ..., n_k := hom(F_k, G) are left homomorphism counts as queries made to the input G.

Let \mathcal{C} be a **class** of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. *C* admits a *k*-non-adaptive left algorithm ($k \ge 1$) if there are *k* fixed graphs F_1, F_2, \ldots, F_k such that for every *G*, $G \in C$ iff $(n_1, n_2, \ldots, n_k) \in X$

where

- X ⊆ N^k is decidable (N: non-negative integers), and
 n₁ := hom(F₁, G), n₂ := hom(F₂, G), ..., n_k := hom(F_k, G) are left homomorphism counts as queries made to the input G.
- C admits a *k*-adaptive left algorithm (k ≥ 1) if the same holds except that F_i = F_i(n₁,..., n_{i-1}) is a function of n₁,..., n_{i-1} for 2 ≤ i ≤ k.

Let \mathcal{C} be a **class** of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. *C* admits a *k*-non-adaptive left algorithm ($k \ge 1$) if there are *k* fixed graphs F_1, F_2, \ldots, F_k such that for every *G*, $G \in C$ iff $(n_1, n_2, \ldots, n_k) \in X$

where

- X ⊆ N^k is decidable (N: non-negative integers), and
 n₁ := hom(F₁, G), n₂ := hom(F₂, G), ..., n_k := hom(F_k, G) are left homomorphism counts as queries made to the input G.
- C admits a *k*-adaptive left algorithm (k ≥ 1) if the same holds except that F_i = F_i(n₁,..., n_{i-1}) is a function of n₁,..., n_{i-1} for 2 ≤ i ≤ k.
- 3. "C admits a k-(non-)adaptive right algorithm" is analogous.

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):

The following classes admit a non-adaptive left algorithm (for some $k \ge 1$):

1. class of graphs definable by a Boolean combination of universal first-order sentences

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):

The following classes admit a non-adaptive left algorithm (for some $k \ge 1$):

- 1. class of graphs definable by a Boolean combination of universal first-order sentences
- 2. class of 3-regular (or any *m*-regular) graphs

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):

The following classes admit a non-adaptive left algorithm (for some $k \ge 1$):

- 1. class of graphs definable by a Boolean combination of universal first-order sentences
- 2. class of 3-regular (or any *m*-regular) graphs

but not the class of graphs containing an isolated node.

A constraint satisfaction problem with template *H* is the decision problem: Given *G*, is hom(G, H) > 0?

A constraint satisfaction problem with template *H* is the decision problem: Given *G*, is hom(G, H) > 0?

Fact:

 $CSP(H) := \{G \mid hom(G, H) > 0\}$ admits a trivial non-adaptive right algorithm (k = 1): Take $F_1 = H$ and $X = \{n \in \mathbb{N} \mid n > 0\}$.

A constraint satisfaction problem with template *H* is the decision problem: Given *G*, is hom(G, H) > 0?

Fact:

 $CSP(H) := \{G \mid hom(G, H) > 0\}$ admits a trivial non-adaptive right algorithm (k = 1): Take $F_1 = H$ and $X = \{n \in \mathbb{N} \mid n > 0\}$.

Theorem (Kolaitis-W. 2022):

For every *H*, the class CSP(H) admits a *k*-non-adaptive left algorithm for some $k \ge 1$ iff *H* contains no edge.

A constraint satisfaction problem with template *H* is the decision problem: Given *G*, is hom(G, H) > 0?

Fact:

 $CSP(H) := \{G \mid hom(G, H) > 0\}$ admits a trivial non-adaptive right algorithm (k = 1): Take $F_1 = H$ and $X = \{n \in \mathbb{N} \mid n > 0\}$.

Theorem (Kolaitis-W. 2022):

For every *H*, the class CSP(H) admits a *k*-non-adaptive left algorithm for some $k \ge 1$ iff *H* contains no edge.

► Trivial when *H* contains no edge: *k* = 1, take *F*₁ = *K*₂ (single-edge graph) and *X* = {0}. (hom(*K*₂, *G*) = 2 × |*E*(*G*)|.)

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H,

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is 2-colorable}\}.$

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H,

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected.

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H, C_n : cycle of size n, \oplus : disjoint union.

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd n > 0 and take $G_0 = C_{2n}, G_1 = C_n \oplus C_n$.

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H, C_n : cycle of size n, \oplus : disjoint union.

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd n > 0 and take $G_0 = C_{2n}, G_1 = C_n \oplus C_n$.

Case 2: $\chi(H) \ge 3$. Let n > the tree-width of every $F \in \mathcal{F}$.

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H, C_n : cycle of size n, \oplus : disjoint union.

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd n > 0 and take $G_0 = C_{2n}, G_1 = C_n \oplus C_n$.

 C^n : first-order counting logic with at most *n* variables.

Case 2: $\chi(H) \ge 3$. Let n > the tree-width of every $F \in \mathcal{F}$. Then there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ such that, successively:

 G_0, G_1 satisfy same C^{*n*}-sentences (Atserias-Kolaitis-W. 2021),

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H, C_n : cycle of size n, \oplus : disjoint union.

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd n > 0 and take $G_0 = C_{2n}, G_1 = C_n \oplus C_n$.

 C^n : first-order counting logic with at most *n* variables.

Case 2: $\chi(H) \ge 3$. Let n > the tree-width of every $F \in \mathcal{F}$. Then there are $G_0 \in \text{CSP}(H), G_1 \notin \text{CSP}(H)$ such that, successively:

 G_0, G_1 satisfy same C^{*n*}-sentences (Atserias-Kolaitis-W. 2021), $\Leftrightarrow \quad hom(F, G_0) = hom(F, G_1)$ for *F* of tree-width < n (Dvořák 2010),

Let *H* contain an edge. Show that for every finite class \mathcal{F} of graphs, there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ with $\text{hom}(F, G_0) = \text{hom}(F, G_1)$ for $F \in \mathcal{F}$.

 $\chi(H)$: chrom. num. of H, C_n : cycle of size n, \oplus : disjoint union.

Case 1: $\chi(H) = 2$. Then $CSP(H) = \{G \mid G \text{ is } 2\text{-colorable}\}$. Suffices to consider \mathcal{F} whose graphs are connected. Choose large enough odd n > 0 and take $G_0 = C_{2n}, G_1 = C_n \oplus C_n$.

 C^n : first-order counting logic with at most *n* variables.

Case 2: $\chi(H) \ge 3$. Let n > the tree-width of every $F \in \mathcal{F}$. Then there are $G_0 \in \text{CSP}(H)$, $G_1 \notin \text{CSP}(H)$ such that, successively:

 G_0, G_1 satisfy same Cⁿ-sentences (Atserias-Kolaitis-W. 2021),

 \Leftrightarrow hom $(F, G_0) =$ hom (F, G_1) for F of tree-width < n (Dvořák 2010),

 \Rightarrow hom $(F, G_0) =$ hom (F, G_1) for $F \in \mathcal{F}$.

≅: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):

For n > 0, two graphs $F_1 = F_1(n)$, $F_2 = F_2(n)$ can be constructed such that for all G, H of size n:

 $G \cong H$ iff hom(F, G) = hom(F, H) for $F \in \{F_1, F_2\}$.

≅: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):

For n > 0, two graphs $F_1 = F_1(n)$, $F_2 = F_2(n)$ can be constructed such that for all G, H of size n:

 $G \cong H$ iff hom(F, G) = hom(F, H) for $F \in \{F_1, F_2\}$.

Proof based on theorem by Lovász (1967):

 $G \cong H$ iff hom(F, G) = hom(F, H) for all F.

Sufficient to consider all F of size $\leq \min\{|V(G)|, |V(H)|\}$.

≅: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):

For n > 0, two graphs $F_1 = F_1(n)$, $F_2 = F_2(n)$ can be constructed such that for all *G*, *H* of size *n*:

 $G \cong H$ iff hom(F, G) = hom(F, H) for $F \in \{F_1, F_2\}$.

Proof based on theorem by Lovász (1967):

 $G \cong H$ iff hom(F, G) = hom(F, H) for all F.

Sufficient to consider all F of size $\leq \min \{|V(G)|, |V(H)|\}$.

Corollary:

Three adaptive left queries $hom(I_1, \cdot), hom(F_1, \cdot), hom(F_2, \cdot)$ suffice to determine, for all *G* and *H*, whether $G \cong H$.

≅: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):

For n > 0, two graphs $F_1 = F_1(n)$, $F_2 = F_2(n)$ can be constructed such that for all *G*, *H* of size *n*:

 $G \cong H$ iff hom(F, G) = hom(F, H) for $F \in \{F_1, F_2\}$.

Proof based on theorem by Lovász (1967):

 $G \cong H$ iff hom(F, G) = hom(F, H) for all F.

Sufficient to consider all F of size $\leq \min \{|V(G)|, |V(H)|\}$.

Corollary:

Three adaptive left queries $hom(I_1, \cdot), hom(F_1, \cdot), hom(F_2, \cdot)$ suffice to determine, for all *G* and *H*, whether $G \cong H$.

• $hom(I_1, G) = |V(G)|$ (I_1 : single-node graph)

≅: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):

For n > 0, two graphs $F_1 = F_1(n)$, $F_2 = F_2(n)$ can be constructed such that for all *G*, *H* of size *n*:

 $G \cong H$ iff hom(F, G) = hom(F, H) for $F \in \{F_1, F_2\}$.

Proof based on theorem by Lovász (1967):

 $G \cong H$ iff hom(F, G) = hom(F, H) for all F.

Sufficient to consider all F of size $\leq \min \{|V(G)|, |V(H)|\}$.

Corollary:

Three adaptive left queries $hom(I_1, \cdot), hom(F_1, \cdot), hom(F_2, \cdot)$ suffice to determine, for all *G* and *H*, whether $G \cong H$.

- $hom(I_1, G) = |V(G)|$ (I₁: single-node graph)
- Optimal in number of queries made when only left homomorphism counts are allowed.

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any *k*-adaptive right algorithm ($k \ge 1$).

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any *k*-adaptive right algorithm ($k \ge 1$).

Proof implies that no fixed number of adaptive right queries suffice to determine, for all G and H, whether G ≅ H.

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any *k*-adaptive right algorithm ($k \ge 1$).

▶ Proof implies that no fixed number of adaptive right queries suffice to determine, for all *G* and *H*, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):

For n > 0, a single graph $F_0 = F_0(n)$ can be constructed such that for G, H of size n:

$$G \cong H$$
 iff $hom(G, F_0) = hom(H, F_0)$.

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any *k*-adaptive right algorithm ($k \ge 1$).

▶ Proof implies that no fixed number of adaptive right queries suffice to determine, for all *G* and *H*, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):

For n > 0, a single graph $F_0 = F_0(n)$ can be constructed such that for G, H of size n:

$$G \cong H$$
 iff $hom(G, F_0) = hom(H, F_0)$.

Corollary:

One left hom(I_1 , ·) and one adaptive right query hom(·, F_0) suffice to determine, for all G and H, whether $G \cong H$.

Chen et al. (2022) showed that the class of graphs containing a triangle does not admit any *k*-adaptive right algorithm ($k \ge 1$).

▶ Proof implies that no fixed number of adaptive right queries suffice to determine, for all *G* and *H*, whether $G \cong H$.

Theorem (Kolaitis-W. 2022):

For n > 0, a single graph $F_0 = F_0(n)$ can be constructed such that for G, H of size n:

$$G \cong H$$
 iff $hom(G, F_0) = hom(H, F_0)$.

Corollary:

One left hom(I_1 , ·) and one adaptive right query hom(·, F_0) suffice to determine, for all G and H, whether $G \cong H$.

 Optimal in number of queries made when both left and right homomorphism counts are allowed.

Proof based on theorem by Chaudhuri and Vardi (1993): $G \cong H$ iff hom(G, F) = hom(H, F) for all F.

Sufficient to consider all F of size $\leq \min\{|V(G)|, |V(H)|\}$.

Proof based on theorem by Chaudhuri and Vardi (1993): $G \cong H$ iff hom(G, F) = hom(H, F) for all F.

Sufficient to consider all F of size $\leq \min\{|V(G)|, |V(H)|\}$.

Let A_1, \ldots, A_s enumerate all graphs of size $\leq n$.

Proof based on theorem by Chaudhuri and Vardi (1993): $G \cong H$ iff hom(G, F) = hom(H, F) for all F.

Sufficient to consider all F of size $\leq \min \{ |V(G)|, |V(H)| \}$.

Let A_1, \ldots, A_s enumerate all graphs of size $\leq n$.

Goal:

Given n > 0, construct a graph $F_0(n)$ such that for every *G* of size *n*, hom(*G*, $F_0(n)$) gives information of all hom(*G*, A_j).

Proof based on theorem by Chaudhuri and Vardi (1993): $G \cong H$ iff hom(G, F) = hom(H, F) for all F.

Sufficient to consider all F of size $\leq \min \{ |V(G)|, |V(H)| \}$.

Let A_1, \ldots, A_s enumerate all graphs of size $\leq n$.

Goal:

Given n > 0, construct a graph $F_0(n)$ such that for every *G* of size *n*, hom(*G*, $F_0(n)$) gives information of all hom(*G*, A_j).

Observation:

Given (large) D > 0, every sequence (a_0, \ldots, a_{k-1}) of fixed length k with $0 \le a_0, \ldots, a_{k-1} < D$ is encoded by the unique integer $a_0 \times D^0 + \cdots + a_{k-1} \times D^{k-1}$.

Proof based on theorem by Chaudhuri and Vardi (1993): $G \cong H$ iff hom(G, F) = hom(H, F) for all F.

Sufficient to consider all F of size $\leq \min \{ |V(G)|, |V(H)| \}$.

Let A_1, \ldots, A_s enumerate all graphs of size $\leq n$.

Goal:

Given n > 0, construct a graph $F_0(n)$ such that for every *G* of size *n*, hom(*G*, $F_0(n)$) gives information of all hom(*G*, A_i).

Observation:

Given (large) D > 0, every sequence (a_0, \ldots, a_{k-1}) of fixed length k with $0 \le a_0, \ldots, a_{k-1} < D$ is encoded by the unique integer $a_0 \times D^0 + \cdots + a_{k-1} \times D^{k-1}$.

► Make D-ary representation of hom(G, F₀(n)) contain all hom(G, A_j) as certain digits.

Take $F_0(n) := \bigoplus_{j=1}^{s} (D^{e_j} \text{ disjoint copies of } A_j)$ for suitable positive integers e_1, \ldots, e_s, D . (\oplus : disjoint union)

Take $F_0(n) := \bigoplus_{j=1}^{s} (D^{e_j} \text{ disjoint copies of } A_j)$ for suitable positive integers e_1, \ldots, e_s, D . (\oplus : disjoint union)

By additivity and multiplicativity of hom(\cdot , \cdot), for arbitrary graph *G* of size *n* with connected components G_1, \ldots, G_r , we have

Take $F_0(n) := \bigoplus_{j=1}^{s} (D^{e_j} \text{ disjoint copies of } A_j)$ for suitable positive integers e_1, \ldots, e_s, D . (\oplus : disjoint union)

By additivity and multiplicativity of hom(\cdot , \cdot), for arbitrary graph *G* of size *n* with connected components G_1, \ldots, G_r , we have

$$\hom(G, F_0) = \sum_{e \in \mathcal{E}_{\leq n}^+} \left(\sum_{\substack{1 \leq j_1, \dots, j_r \leq s \\ e_{j_1} + \dots + e_{j_r} = e}} \prod_{k=1}^r \hom(G_k, A_{j_k}) \right) \times D^e.$$

Take $F_0(n) := \bigoplus_{j=1}^{s} (D^{e_j} \text{ disjoint copies of } A_j)$ for suitable positive integers e_1, \ldots, e_s, D . (\oplus : disjoint union)

By additivity and multiplicativity of hom(\cdot , \cdot), for arbitrary graph *G* of size *n* with connected components G_1, \ldots, G_r , we have

$$\hom(G, F_0) = \sum_{e \in \mathcal{E}_{\leq n}^+} \left(\sum_{\substack{1 \leq j_1, \dots, j_r \leq s \\ e_{j_1} + \dots + e_{j_r} = e}} \prod_{k=1}^r \hom(G_k, A_{j_k}) \right) \times D^e.$$

Desiderata:

1. R.H.S. of above identity is *D*-ary representation of $hom(G, F_0)$

Take $F_0(n) := \bigoplus_{j=1}^{s} (D^{e_j} \text{ disjoint copies of } A_j)$ for suitable positive integers e_1, \ldots, e_s, D . (\oplus : disjoint union)

By additivity and multiplicativity of hom(\cdot , \cdot), for arbitrary graph *G* of size *n* with connected components G_1, \ldots, G_r , we have

$$\hom(G, F_0) = \sum_{e \in \mathcal{E}_{\leq n}^+} \left(\sum_{\substack{1 \leq j_1, \dots, j_r \leq s \\ e_{j_1} + \dots + e_{j_r} = e}} \prod_{k=1}^r \hom(G_k, A_{j_k}) \right) \times D^e.$$

Desiderata:

- 1. R.H.S. of above identity is *D*-ary representation of $hom(G, F_0)$
- 2. D^{re_j} -digit of *D*-ary representation of hom(*G*, *F*₀) is hom(*G*, *A_j*) for all $1 \le j \le s$.

Future Directions

Investigate the expressive power of query algorithms in the variant settings below:

Investigate the expressive power of query algorithms in the variant settings below:

1. Undirected graphs replaced by **directed graphs** (or **relational structures** in general)

Investigate the expressive power of query algorithms in the variant settings below:

- 1. Undirected graphs replaced by **directed graphs** (or **relational structures** in general)
- 2. Homomorphism counts hom(*G*, *H*) replaced by their sign sgn(hom(*G*, *H*))

Investigate the expressive power of query algorithms in the variant settings below:

- 1. Undirected graphs replaced by **directed graphs** (or **relational structures** in general)
- 2. Homomorphism counts hom(*G*, *H*) replaced by their sign sgn(hom(*G*, *H*))
- 3. Allowing the number of queries to depend on input graph G