
Query Algorithms Based on Homomorphism
Counts

Wei-Lin Wu
University of California Santa Cruz, USA

ICALP Structure Meets Power Workshop
July 04, 2022

Joint work with Phokion G. Kolaitis

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H: A function h : V (G)→ V (H) such
that for all u, v ∈ V (G):

if (u, v) ∈ E(G), then (h(u),h(v)) ∈ E(H).

2. hom(G,H): number of homomorphisms from G to H.

E.g., hom(G,H) = 4 for the graphs G and H below:

a1

a2

b1

b2 b3

G H

2 / 11

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H: A function h : V (G)→ V (H) such
that for all u, v ∈ V (G):

if (u, v) ∈ E(G), then (h(u),h(v)) ∈ E(H).

2. hom(G,H): number of homomorphisms from G to H.

E.g., hom(G,H) = 4 for the graphs G and H below:

a1

a2

b1

b2 b3

G H

2 / 11

Homomorphism Counts

Let G and H be two graphs (finite, undirected and simple).

1. Homomorphism from G to H: A function h : V (G)→ V (H) such
that for all u, v ∈ V (G):

if (u, v) ∈ E(G), then (h(u),h(v)) ∈ E(H).

2. hom(G,H): number of homomorphisms from G to H.

E.g., hom(G,H) = 4 for the graphs G and H below:

a1

a2

b1

b2 b3

G H

2 / 11

Query Algorithms Based on Homomorphism Counts

Let C be a class of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. C admits a k -non-adaptive left algorithm (k ≥ 1) if there are k fixed
graphs F1,F2, . . . ,Fk such that for every G,

G ∈ C iff (n1,n2, . . . ,nk) ∈ X
where

I X ⊆ Nk is decidable (N: non-negative integers), and
I n1 := hom(F1,G),n2 := hom(F2,G), . . . ,nk := hom(Fk ,G) are

left homomorphism counts as queries made to the input G.

2. C admits a k -adaptive left algorithm (k ≥ 1) if the same holds
except that Fi = Fi(n1, . . . ,ni−1) is a function of n1, . . . ,ni−1 for
2 ≤ i ≤ k .

3. “C admits a k -(non-)adaptive right algorithm” is analogous.

3 / 11

Query Algorithms Based on Homomorphism Counts

Let C be a class of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. C admits a k -non-adaptive left algorithm (k ≥ 1) if there are k fixed
graphs F1,F2, . . . ,Fk such that for every G,

G ∈ C iff (n1,n2, . . . ,nk) ∈ X
where

I X ⊆ Nk is decidable (N: non-negative integers), and
I n1 := hom(F1,G),n2 := hom(F2,G), . . . ,nk := hom(Fk ,G) are

left homomorphism counts as queries made to the input G.

2. C admits a k -adaptive left algorithm (k ≥ 1) if the same holds
except that Fi = Fi(n1, . . . ,ni−1) is a function of n1, . . . ,ni−1 for
2 ≤ i ≤ k .

3. “C admits a k -(non-)adaptive right algorithm” is analogous.

3 / 11

Query Algorithms Based on Homomorphism Counts

Let C be a class of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. C admits a k -non-adaptive left algorithm (k ≥ 1) if there are k fixed
graphs F1,F2, . . . ,Fk such that for every G,

G ∈ C iff (n1,n2, . . . ,nk) ∈ X
where

I X ⊆ Nk is decidable (N: non-negative integers), and
I n1 := hom(F1,G),n2 := hom(F2,G), . . . ,nk := hom(Fk ,G) are

left homomorphism counts as queries made to the input G.

2. C admits a k -adaptive left algorithm (k ≥ 1) if the same holds
except that Fi = Fi(n1, . . . ,ni−1) is a function of n1, . . . ,ni−1 for
2 ≤ i ≤ k .

3. “C admits a k -(non-)adaptive right algorithm” is analogous.

3 / 11

Query Algorithms Based on Homomorphism Counts

Let C be a class of (isomorphism types of) graphs.

Chen, Flum, Liu and Xun (2022) introduced the notions below:

1. C admits a k -non-adaptive left algorithm (k ≥ 1) if there are k fixed
graphs F1,F2, . . . ,Fk such that for every G,

G ∈ C iff (n1,n2, . . . ,nk) ∈ X
where

I X ⊆ Nk is decidable (N: non-negative integers), and
I n1 := hom(F1,G),n2 := hom(F2,G), . . . ,nk := hom(Fk ,G) are

left homomorphism counts as queries made to the input G.

2. C admits a k -adaptive left algorithm (k ≥ 1) if the same holds
except that Fi = Fi(n1, . . . ,ni−1) is a function of n1, . . . ,ni−1 for
2 ≤ i ≤ k .

3. “C admits a k -(non-)adaptive right algorithm” is analogous.

3 / 11

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some
k ≥ 1):

1. class of graphs definable by a Boolean combination of universal
first-order sentences

2. class of 3-regular (or any m-regular) graphs

but not the class of graphs containing an isolated node.

4 / 11

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some
k ≥ 1):

1. class of graphs definable by a Boolean combination of universal
first-order sentences

2. class of 3-regular (or any m-regular) graphs

but not the class of graphs containing an isolated node.

4 / 11

Non-Adaptive Left Algorithms

Theorem (Chen-Flum-Liu-Xun 2022):
The following classes admit a non-adaptive left algorithm (for some
k ≥ 1):

1. class of graphs definable by a Boolean combination of universal
first-order sentences

2. class of 3-regular (or any m-regular) graphs

but not the class of graphs containing an isolated node.

4 / 11

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision
problem: Given G, is hom(G,H) > 0?

Fact:
CSP(H) := {G | hom(G,H) > 0} admits a trivial non-adaptive right
algorithm (k = 1): Take F1 = H and X = {n ∈ N | n > 0}.

Theorem (Kolaitis-W. 2022):
For every H, the class CSP(H) admits a k -non-adaptive left algorithm
for some k ≥ 1 iff H contains no edge.

I Trivial when H contains no edge: k = 1, take F1 = K2 (single-edge
graph) and X = {0}. (hom(K2,G) = 2× |E(G)|.)

5 / 11

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision
problem: Given G, is hom(G,H) > 0?

Fact:
CSP(H) := {G | hom(G,H) > 0} admits a trivial non-adaptive right
algorithm (k = 1): Take F1 = H and X = {n ∈ N | n > 0}.

Theorem (Kolaitis-W. 2022):
For every H, the class CSP(H) admits a k -non-adaptive left algorithm
for some k ≥ 1 iff H contains no edge.

I Trivial when H contains no edge: k = 1, take F1 = K2 (single-edge
graph) and X = {0}. (hom(K2,G) = 2× |E(G)|.)

5 / 11

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision
problem: Given G, is hom(G,H) > 0?

Fact:
CSP(H) := {G | hom(G,H) > 0} admits a trivial non-adaptive right
algorithm (k = 1): Take F1 = H and X = {n ∈ N | n > 0}.

Theorem (Kolaitis-W. 2022):
For every H, the class CSP(H) admits a k -non-adaptive left algorithm
for some k ≥ 1 iff H contains no edge.

I Trivial when H contains no edge: k = 1, take F1 = K2 (single-edge
graph) and X = {0}. (hom(K2,G) = 2× |E(G)|.)

5 / 11

CSPs and Non-Adaptive Query Algorithms

A constraint satisfaction problem with template H is the decision
problem: Given G, is hom(G,H) > 0?

Fact:
CSP(H) := {G | hom(G,H) > 0} admits a trivial non-adaptive right
algorithm (k = 1): Take F1 = H and X = {n ∈ N | n > 0}.

Theorem (Kolaitis-W. 2022):
For every H, the class CSP(H) admits a k -non-adaptive left algorithm
for some k ≥ 1 iff H contains no edge.

I Trivial when H contains no edge: k = 1, take F1 = K2 (single-edge
graph) and X = {0}. (hom(K2,G) = 2× |E(G)|.)

5 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H,

Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}.

Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H,

Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected.

Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F .

Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),

⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),
⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),

⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Proof of the Theorem

Let H contain an edge. Show that for every finite class F of graphs,
there are G0 ∈ CSP(H),G1 /∈ CSP(H) with hom(F ,G0) = hom(F ,G1)
for F ∈ F .

χ(H): chrom. num. of H, Cn: cycle of size n, ⊕: disjoint union.

Case 1: χ(H) = 2. Then CSP(H) = {G | G is 2-colorable}. Suffices to
consider F whose graphs are connected. Choose large enough odd
n > 0 and take G0 = C2n,G1 = Cn ⊕ Cn.

Cn: first-order counting logic with at most n variables.

Case 2: χ(H) ≥ 3. Let n > the tree-width of every F ∈ F . Then there
are G0 ∈ CSP(H),G1 /∈ CSP(H) such that, successively:

G0,G1 satisfy same Cn-sentences (Atserias-Kolaitis-W. 2021),
⇔ hom(F ,G0) = hom(F ,G1) for F of tree-width < n (Dvořák 2010),
⇒ hom(F ,G0) = hom(F ,G1) for F ∈ F .

6 / 11

Isomorphism and Adaptive Query Algorithms
∼=: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):
For n > 0, two graphs F1 = F1(n),F2 = F2(n) can be constructed
such that for all G,H of size n:

G ∼= H iff hom(F ,G) = hom(F ,H) for F ∈ {F1,F2}.

Proof based on theorem by Lovász (1967):
G ∼= H iff hom(F ,G) = hom(F ,H) for all F .

I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Corollary:
Three adaptive left queries hom(I1, ·), hom(F1, ·), hom(F2, ·) suffice to
determine, for all G and H, whether G ∼= H.

I hom(I1,G) = |V (G)| (I1: single-node graph)
I Optimal in number of queries made when only left homomorphism

counts are allowed.

7 / 11

Isomorphism and Adaptive Query Algorithms
∼=: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):
For n > 0, two graphs F1 = F1(n),F2 = F2(n) can be constructed
such that for all G,H of size n:

G ∼= H iff hom(F ,G) = hom(F ,H) for F ∈ {F1,F2}.

Proof based on theorem by Lovász (1967):
G ∼= H iff hom(F ,G) = hom(F ,H) for all F .

I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Corollary:
Three adaptive left queries hom(I1, ·), hom(F1, ·), hom(F2, ·) suffice to
determine, for all G and H, whether G ∼= H.

I hom(I1,G) = |V (G)| (I1: single-node graph)
I Optimal in number of queries made when only left homomorphism

counts are allowed.

7 / 11

Isomorphism and Adaptive Query Algorithms
∼=: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):
For n > 0, two graphs F1 = F1(n),F2 = F2(n) can be constructed
such that for all G,H of size n:

G ∼= H iff hom(F ,G) = hom(F ,H) for F ∈ {F1,F2}.

Proof based on theorem by Lovász (1967):
G ∼= H iff hom(F ,G) = hom(F ,H) for all F .

I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Corollary:
Three adaptive left queries hom(I1, ·), hom(F1, ·), hom(F2, ·) suffice to
determine, for all G and H, whether G ∼= H.

I hom(I1,G) = |V (G)| (I1: single-node graph)
I Optimal in number of queries made when only left homomorphism

counts are allowed.

7 / 11

Isomorphism and Adaptive Query Algorithms
∼=: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):
For n > 0, two graphs F1 = F1(n),F2 = F2(n) can be constructed
such that for all G,H of size n:

G ∼= H iff hom(F ,G) = hom(F ,H) for F ∈ {F1,F2}.

Proof based on theorem by Lovász (1967):
G ∼= H iff hom(F ,G) = hom(F ,H) for all F .

I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Corollary:
Three adaptive left queries hom(I1, ·), hom(F1, ·), hom(F2, ·) suffice to
determine, for all G and H, whether G ∼= H.

I hom(I1,G) = |V (G)| (I1: single-node graph)

I Optimal in number of queries made when only left homomorphism
counts are allowed.

7 / 11

Isomorphism and Adaptive Query Algorithms
∼=: isomorphic

Theorem (Chen-Flum-Liu-Xun 2022):
For n > 0, two graphs F1 = F1(n),F2 = F2(n) can be constructed
such that for all G,H of size n:

G ∼= H iff hom(F ,G) = hom(F ,H) for F ∈ {F1,F2}.

Proof based on theorem by Lovász (1967):
G ∼= H iff hom(F ,G) = hom(F ,H) for all F .

I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Corollary:
Three adaptive left queries hom(I1, ·), hom(F1, ·), hom(F2, ·) suffice to
determine, for all G and H, whether G ∼= H.

I hom(I1,G) = |V (G)| (I1: single-node graph)
I Optimal in number of queries made when only left homomorphism

counts are allowed.

7 / 11

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a
triangle does not admit any k -adaptive right algorithm (k ≥ 1).

I Proof implies that no fixed number of adaptive right queries suffice to
determine, for all G and H, whether G ∼= H.

Theorem (Kolaitis-W. 2022):
For n > 0, a single graph F0 = F0(n) can be constructed such that for
G,H of size n:

G ∼= H iff hom(G,F0) = hom(H,F0).

Corollary:
One left hom(I1, ·) and one adaptive right query hom(·,F0) suffice to
determine, for all G and H, whether G ∼= H.

I Optimal in number of queries made when both left and right
homomorphism counts are allowed.

8 / 11

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a
triangle does not admit any k -adaptive right algorithm (k ≥ 1).

I Proof implies that no fixed number of adaptive right queries suffice to
determine, for all G and H, whether G ∼= H.

Theorem (Kolaitis-W. 2022):
For n > 0, a single graph F0 = F0(n) can be constructed such that for
G,H of size n:

G ∼= H iff hom(G,F0) = hom(H,F0).

Corollary:
One left hom(I1, ·) and one adaptive right query hom(·,F0) suffice to
determine, for all G and H, whether G ∼= H.

I Optimal in number of queries made when both left and right
homomorphism counts are allowed.

8 / 11

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a
triangle does not admit any k -adaptive right algorithm (k ≥ 1).

I Proof implies that no fixed number of adaptive right queries suffice to
determine, for all G and H, whether G ∼= H.

Theorem (Kolaitis-W. 2022):
For n > 0, a single graph F0 = F0(n) can be constructed such that for
G,H of size n:

G ∼= H iff hom(G,F0) = hom(H,F0).

Corollary:
One left hom(I1, ·) and one adaptive right query hom(·,F0) suffice to
determine, for all G and H, whether G ∼= H.

I Optimal in number of queries made when both left and right
homomorphism counts are allowed.

8 / 11

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a
triangle does not admit any k -adaptive right algorithm (k ≥ 1).

I Proof implies that no fixed number of adaptive right queries suffice to
determine, for all G and H, whether G ∼= H.

Theorem (Kolaitis-W. 2022):
For n > 0, a single graph F0 = F0(n) can be constructed such that for
G,H of size n:

G ∼= H iff hom(G,F0) = hom(H,F0).

Corollary:
One left hom(I1, ·) and one adaptive right query hom(·,F0) suffice to
determine, for all G and H, whether G ∼= H.

I Optimal in number of queries made when both left and right
homomorphism counts are allowed.

8 / 11

Isomorphism and Adaptive Query Algorithms

Chen et al. (2022) showed that the class of graphs containing a
triangle does not admit any k -adaptive right algorithm (k ≥ 1).

I Proof implies that no fixed number of adaptive right queries suffice to
determine, for all G and H, whether G ∼= H.

Theorem (Kolaitis-W. 2022):
For n > 0, a single graph F0 = F0(n) can be constructed such that for
G,H of size n:

G ∼= H iff hom(G,F0) = hom(H,F0).

Corollary:
One left hom(I1, ·) and one adaptive right query hom(·,F0) suffice to
determine, for all G and H, whether G ∼= H.

I Optimal in number of queries made when both left and right
homomorphism counts are allowed.

8 / 11

Proof of the Theorem
Proof based on theorem by Chaudhuri and Vardi (1993):

G ∼= H iff hom(G,F) = hom(H,F) for all F .
I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Let A1, . . . ,As enumerate all graphs of size ≤ n.

Goal:
Given n > 0, construct a graph F0(n) such that for every G of size n,
hom(G,F0(n)) gives information of all hom(G,Aj).

Observation:
Given (large) D > 0, every sequence (a0, . . . ,ak−1) of fixed length k
with 0 ≤ a0, . . . ,ak−1 < D is encoded by the unique integer
a0 × D0 + · · ·+ ak−1 × Dk−1.

I Make D-ary representation of hom(G,F0(n)) contain all hom(G,Aj) as
certain digits.

9 / 11

Proof of the Theorem
Proof based on theorem by Chaudhuri and Vardi (1993):

G ∼= H iff hom(G,F) = hom(H,F) for all F .
I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Let A1, . . . ,As enumerate all graphs of size ≤ n.

Goal:
Given n > 0, construct a graph F0(n) such that for every G of size n,
hom(G,F0(n)) gives information of all hom(G,Aj).

Observation:
Given (large) D > 0, every sequence (a0, . . . ,ak−1) of fixed length k
with 0 ≤ a0, . . . ,ak−1 < D is encoded by the unique integer
a0 × D0 + · · ·+ ak−1 × Dk−1.

I Make D-ary representation of hom(G,F0(n)) contain all hom(G,Aj) as
certain digits.

9 / 11

Proof of the Theorem
Proof based on theorem by Chaudhuri and Vardi (1993):

G ∼= H iff hom(G,F) = hom(H,F) for all F .
I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Let A1, . . . ,As enumerate all graphs of size ≤ n.

Goal:
Given n > 0, construct a graph F0(n) such that for every G of size n,
hom(G,F0(n)) gives information of all hom(G,Aj).

Observation:
Given (large) D > 0, every sequence (a0, . . . ,ak−1) of fixed length k
with 0 ≤ a0, . . . ,ak−1 < D is encoded by the unique integer
a0 × D0 + · · ·+ ak−1 × Dk−1.

I Make D-ary representation of hom(G,F0(n)) contain all hom(G,Aj) as
certain digits.

9 / 11

Proof of the Theorem
Proof based on theorem by Chaudhuri and Vardi (1993):

G ∼= H iff hom(G,F) = hom(H,F) for all F .
I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Let A1, . . . ,As enumerate all graphs of size ≤ n.

Goal:
Given n > 0, construct a graph F0(n) such that for every G of size n,
hom(G,F0(n)) gives information of all hom(G,Aj).

Observation:
Given (large) D > 0, every sequence (a0, . . . ,ak−1) of fixed length k
with 0 ≤ a0, . . . ,ak−1 < D is encoded by the unique integer
a0 × D0 + · · ·+ ak−1 × Dk−1.

I Make D-ary representation of hom(G,F0(n)) contain all hom(G,Aj) as
certain digits.

9 / 11

Proof of the Theorem
Proof based on theorem by Chaudhuri and Vardi (1993):

G ∼= H iff hom(G,F) = hom(H,F) for all F .
I Sufficient to consider all F of size ≤ min {|V (G)|, |V (H)|}.

Let A1, . . . ,As enumerate all graphs of size ≤ n.

Goal:
Given n > 0, construct a graph F0(n) such that for every G of size n,
hom(G,F0(n)) gives information of all hom(G,Aj).

Observation:
Given (large) D > 0, every sequence (a0, . . . ,ak−1) of fixed length k
with 0 ≤ a0, . . . ,ak−1 < D is encoded by the unique integer
a0 × D0 + · · ·+ ak−1 × Dk−1.

I Make D-ary representation of hom(G,F0(n)) contain all hom(G,Aj) as
certain digits.

9 / 11

Proof of the Theorem
Take F0(n) :=

s⊕
j=1

(Dej disjoint copies of Aj) for suitable positive

integers e1, . . . ,es,D. (⊕: disjoint union)

By additivity and multiplicativity of hom(·, ·), for arbitrary graph G of
size n with connected components G1, . . . ,Gr , we have

hom(G,F0) =
∑

e∈E+≤n

 ∑
1≤j1,...,jr ≤s
ej1

+···+ejr =e

r∏
k=1

hom(Gk ,Ajk)

× De.

I E+≤n: integers that are sums of at most n (not necessarily distinct)
integers from {e1, . . . , es}.

Desiderata:
1. R.H.S. of above identity is D-ary representation of hom(G,F0)

2. Drej -digit of D-ary representation of hom(G,F0) is hom(G,Aj) for all
1 ≤ j ≤ s.

10 / 11

Proof of the Theorem
Take F0(n) :=

s⊕
j=1

(Dej disjoint copies of Aj) for suitable positive

integers e1, . . . ,es,D. (⊕: disjoint union)

By additivity and multiplicativity of hom(·, ·), for arbitrary graph G of
size n with connected components G1, . . . ,Gr , we have

hom(G,F0) =
∑

e∈E+≤n

 ∑
1≤j1,...,jr ≤s
ej1

+···+ejr =e

r∏
k=1

hom(Gk ,Ajk)

× De.

I E+≤n: integers that are sums of at most n (not necessarily distinct)
integers from {e1, . . . , es}.

Desiderata:
1. R.H.S. of above identity is D-ary representation of hom(G,F0)

2. Drej -digit of D-ary representation of hom(G,F0) is hom(G,Aj) for all
1 ≤ j ≤ s.

10 / 11

Proof of the Theorem
Take F0(n) :=

s⊕
j=1

(Dej disjoint copies of Aj) for suitable positive

integers e1, . . . ,es,D. (⊕: disjoint union)

By additivity and multiplicativity of hom(·, ·), for arbitrary graph G of
size n with connected components G1, . . . ,Gr , we have

hom(G,F0) =
∑

e∈E+≤n

 ∑
1≤j1,...,jr ≤s
ej1

+···+ejr =e

r∏
k=1

hom(Gk ,Ajk)

× De.

I E+≤n: integers that are sums of at most n (not necessarily distinct)
integers from {e1, . . . , es}.

Desiderata:
1. R.H.S. of above identity is D-ary representation of hom(G,F0)

2. Drej -digit of D-ary representation of hom(G,F0) is hom(G,Aj) for all
1 ≤ j ≤ s.

10 / 11

Proof of the Theorem
Take F0(n) :=

s⊕
j=1

(Dej disjoint copies of Aj) for suitable positive

integers e1, . . . ,es,D. (⊕: disjoint union)

By additivity and multiplicativity of hom(·, ·), for arbitrary graph G of
size n with connected components G1, . . . ,Gr , we have

hom(G,F0) =
∑

e∈E+≤n

 ∑
1≤j1,...,jr ≤s
ej1

+···+ejr =e

r∏
k=1

hom(Gk ,Ajk)

× De.

I E+≤n: integers that are sums of at most n (not necessarily distinct)
integers from {e1, . . . , es}.

Desiderata:
1. R.H.S. of above identity is D-ary representation of hom(G,F0)

2. Drej -digit of D-ary representation of hom(G,F0) is hom(G,Aj) for all
1 ≤ j ≤ s.

10 / 11

Proof of the Theorem
Take F0(n) :=

s⊕
j=1

(Dej disjoint copies of Aj) for suitable positive

integers e1, . . . ,es,D. (⊕: disjoint union)

By additivity and multiplicativity of hom(·, ·), for arbitrary graph G of
size n with connected components G1, . . . ,Gr , we have

hom(G,F0) =
∑

e∈E+≤n

 ∑
1≤j1,...,jr ≤s
ej1

+···+ejr =e

r∏
k=1

hom(Gk ,Ajk)

× De.

I E+≤n: integers that are sums of at most n (not necessarily distinct)
integers from {e1, . . . , es}.

Desiderata:
1. R.H.S. of above identity is D-ary representation of hom(G,F0)

2. Drej -digit of D-ary representation of hom(G,F0) is hom(G,Aj) for all
1 ≤ j ≤ s.

10 / 11

Future Directions

Investigate the expressive power of query algorithms in the variant
settings below:

1. Undirected graphs replaced by directed graphs (or relational
structures in general)

2. Homomorphism counts hom(G,H) replaced by their sign
sgn(hom(G,H))

3. Allowing the number of queries to depend on input graph G

11 / 11

Future Directions

Investigate the expressive power of query algorithms in the variant
settings below:

1. Undirected graphs replaced by directed graphs (or relational
structures in general)

2. Homomorphism counts hom(G,H) replaced by their sign
sgn(hom(G,H))

3. Allowing the number of queries to depend on input graph G

11 / 11

Future Directions

Investigate the expressive power of query algorithms in the variant
settings below:

1. Undirected graphs replaced by directed graphs (or relational
structures in general)

2. Homomorphism counts hom(G,H) replaced by their sign
sgn(hom(G,H))

3. Allowing the number of queries to depend on input graph G

11 / 11

Future Directions

Investigate the expressive power of query algorithms in the variant
settings below:

1. Undirected graphs replaced by directed graphs (or relational
structures in general)

2. Homomorphism counts hom(G,H) replaced by their sign
sgn(hom(G,H))

3. Allowing the number of queries to depend on input graph G

11 / 11

