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The Recipe for Matrix Equations

1. Construct family F of labelled graphs
2. Define suitable operations
3. Prove that F is finitely generated under operations
4. Define representation and recover system of equations
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Labelled Graphs and Homomorphism Tensors
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Combinatorial and Algebraic Operations: Unlabelling and Sum-of-Entries
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Example: Trees

1. Construct family F of labelled graphs

▶ trees with one label at arbitrary vertex

2. Define suitable operations

▶ gluing, attaching edges

3. Prove that F is finitely generated under operations

▶ all trees are generated by these operations starting from a single vertex

4. Define representation and recover system of equations

▶ homomorphism tensor representation
▶ some linear algebra and representation theory developed in Grohe et al. (2022)
▶ Fractional Isomorphism
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Glue(ten) intolerance

Can the recipe be used to cook up systems of equations for other graph classes in a
generic fashion?

The ingredients labelling, operations, finite generation, and representation have to blend
together well.

⊙
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Modern Cuisine: New Recipes

Theorem (Abramsky et al. (2022))
For every “natural” graph class F there exists a comonad C on Graph such that

F ∈ F if and only if F has a C-coalgebra.

1. Construct family F of labelled graphs

▶ labelled C-coalgebras, i.e. morphisms (L, λ) → (A, α).

2. Define suitable operations

▶ finite colimits in the Eilenberg–Moore category of C, e.g. coproducts, pushouts

3. Prove that F is finitely generated under operations

▶ requires instance-specific arguments

4. Define representation and recover system of equations

▶ homomorphism tensor representation ⊗ label representation
▶ some linear algebra and representation theory. . .
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Conclusion

▶ Comonads on Graph provide new recipes for systems of equations capturing
homomorphism indistinguishability
▶ labelling, operations, and representations are governed by comonad
▶ finite generation yet requires instance-specific arguments

▶ This yields novel systems of equations characterising Ck ∩ Cq equivalence
▶ check out Rattan and Seppelt (2022) arXiv:2103.02972!
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Picture: “Bicycle race scene. A peloton of six cyclists crosses the finish line in front of a crowded
grandstand, observed by a referee.” (1895) by Calvert Lithographic Co., Detroit, Michigan,
Public Domain, via Wikimedia Commons.
https://commons.wikimedia.org/wiki/File:Bicycle_race_scene,_1895.jpg
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