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What is a graph width?

• a function Graphs → N, i.e. every graph is assigned a unique natural number


• this number can say interesting things about a graph


• tree width 


• how hard do you have to squint for the graph to look like a tree?


• rank width


• how much information do you need to describe the connectivity of the 
graph?



The next 700 graph widths

• tree width, branch width, rank width, twin width, clique width, …


• broccoli width 

• come up with bespoke technique of broccoli decomposing a graph


• impress your colleagues by specifying it in an impressively complicated way


• assign a cost to the each part of a broccoli decomposition


• the cost of a broccoli decomposition = max of the cost of its parts 


• broccoli width of a graph G = min of costs of broccoli decompositions of G



Why should structure people care?

• Widths can actually be super powerful things


• families of graphs of bounded tree width allow for the development of efficient 
algorithms, which is very useful e.g. in verification (Courcelle)


• other widths, like rank width, seem like good candidates for something like 
“Kolmogorov complexity” of graphs 


• e.g. discrete graphs and cliques have rank width of 0 and 1 respectively 


• The seemingly ad hoc definitions of decompositions must therefore correspond to 
canonical algebras of “open” graphs


• So what are these algebras?



• monoidal category = algebra where one can


• compose = glue things


• tensor = stack things


• fix a prop OGrph of open graphs, where the scalar morphisms 0->0 are graphs


• there are several different possibilities for OGrph, specifying one amounts to 
choosing an algebra 

Monoidal categories as algebras of graphs
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diverse contributions. Blume et. al. [7], similarly to our work, use (the category of) cospans
of graphs as a formal setting to study graph decompositions: indeed, a major insight of
loc. cit. is that tree decompositions are tree-shaped diagrams in the cospan category, and
the original graph is reconstructed as a colimit of such a diagram. Our approach is more
general, however, emphasising the relevance of the algebra of monoidal categories, of which
cospan categories are just one family of examples. Abramsky et. al. [23] give a coalgebraic
characterization of tree width of relational structures (and graphs in particular). Bumpus
and Kocsis [12] also generalise tree width to the categorical setting, although their approach
is technically far removed from ours: they generalise tree width to be a functor satisfying
some properties, relying on characterisation of tree width in terms of Halin’s S-functions [30].
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Figure 3 String diagrammatic notation.

Preliminaries. We use string diagrams [33, 44]:
sequential and parallel composition of f and g is
drawn as in Figure 3, left and middle, respectively.
Much of the bureaucracy, e.g. the interchange
law (f ;g)i(f ¨ ;g¨) = (fif

¨);(gig
¨), disappears

(Figure 3, right). Props [35, 34] are important examples of monoidal categories. They are
symmetric strict monoidal, with natural numbers as objects, and addition as monoidal
product on objects. Roughly speaking, morphisms can be thought of as processes, and the
objects (natural numbers) keep track of the number of inputs or outputs of a process.

2 Monoidal widths

In this section we introduce the central original concepts of the paper: monoidal width and
two variations called monoidal tree width and monoidal path width. Each has a notion of
decomposition: given a morphism f , a decomposition is a tree with internal nodes labelled
with operations { ; ,i} of monoidal categories, and leaves labelled with atomic morphisms.
Evaluating a valid decomposition yields f . But, in general, f can be decomposed in di�erent
ways. The width is the cost of the “cheapest” decomposition. The basic idea of “paying a
price” for performing an operation is captured by the following:

Z Definition 1. Let C be a monoidal category and let A be a set of morphisms in C, which we

shall refer to as atomic. A weight function for (C,A) is a function w⇥A< {i}<Obj(C) � N
such that: (i) w(X i Y ) = w(X) + w(Y ), and (ii) w(i) = 0.

If C is a prop then typically we let w(1)  1. We do not assume anything about the structure
of atomic morphisms in A; they merely do not necessarily need to be decomposed further.

We shall consider three kinds of decomposition of morphisms in monoidal categories. In
the first kind, monoidal decomposition, sequential composition and monoidal product can
be used without restriction. Monoidal decompositions, when instantiated in the category of
cospans of graphs, correspond to branch decompositions, as shown in Section 4.4.

Z Definition 2 (Monoidal decomposition). Let C be a monoidal category and A be a set of

morphisms. The set Df of monoidal decompositions of f ⇥A � B in C is defined recursively:

Df ⇥⇥= (f) if f " A
∂ (d1, i, d2) if d1 " Df1 , d2 " Df2 and f =C f1 i f2∂ (d1, ;X , d2) if d1 " Df1⇥A�X , d2 " Df2⇥X�B and f =C f1 ; f2

Z Example 3. Let f ⇥ 1 � 2 and g⇥ 2 � 1 be morphisms in a prop such that w(f) = w(g) = 2.
The diagram in Figure 4, left, represents the monoidal decomposition of f ; (f if) ; (gi g) ; g

given by (f, ;2, (((f, ;2, g), i, (f, ;2, g)), ;2, g)).
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Claim
(all?) reasonable notions of width arise from an underlying monoidal category of open graphs

• start with an OGrph


• a decomposition of G is a syntactic expression in ; and ⊗ that evaluates to G


• define monoidal width


• compositions along m cost m


• tensor products cost 0


• “atoms” cost something reasonable, like number of vertices


• price a decomposition according to its most expensive operation


• monoidal width = the price of cheapest decomposition

XX:2 Monoidal Width: Unifying Tree Width, Path Width and Branch Width
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Figure 2 This morphism can be de-
composed in two di�erent ways: (fif ¨);(g i g¨) = (f ; g)i (f ¨ ; g¨). The left one
is more costly as we need to synchron-
ize the two processes on the common
boundary when composing them.

Consider the interchange law, illustrated in Figure 2.
If, as is usually the case, the boxes represent some
kind of processes, then composing along a common
boundary involves synchronisation, coordination or
resource sharing. Then to compute the composite
system e�ciently, it is usually a good idea to minimise
the size of the boundary along which one composes.
An example is compositional reachability checking
in Petri nets of Rathke et. al. [38]: calculating the
sequential composition is exponential in the size of the

boundary. On the other hand, the monoidal product is usually cheap since—as indicated by
the wiring in the string diagrams—there is no information sharing between the components.
In other words, the right hand side of Figure 2 is a more e�cient way to compute: performance
does not respect the middle-four interchange law of monoidal categories!

Our main contribution is to borrow the ideas behind graph widths to make this idea
precise, and to measure the complexity of morphisms in monoidal categories. We introduce
the concept of monoidal width and two variants.

General approaches have the potential to be of wider use. For example, the various notions
of graph decompositions, while clearly similar [37, 18], are quite concrete and dependent on
the underlying graph model. For example, tree width is traditionally defined for undirected
graphs, and the seemingly mild generalisation to directed graphs has already resulted in
several works [32, 6, 31, 43]. A more general approach helps to clarify the research landscape
and inform appropriate instantiations for specific models of interest. Second, the optimal

decomposition itself is a valuable piece of data that is discarded when talking about width
as a mere number. As mentioned previously, decompositions in the literature are defined
specifically for individual graph models and while they carry the intuition of obtaining
composite graphs from simpler components, an explicit algebra of composition is often
missing. With category theory in the picture, we shift the focus from a number to formal,
executable expressions that describe optimal decompositions.

Contributions. We introduce monoidal width, following the idea of the cost of decom-
posing a morphism into compositions and monoidal products of chosen atomic morphisms.
Monoidal width, and restricted versions of it, are instantiated to the category of cospans
of graphs to recover the usual notions of branch width, tree width and path width. These
results build a bridge between the algebraic and the combinatorial approaches to graphs.

Structure of the paper. In Section 2 we define monoidal width and its versions
restricted to tree and path shapes. The definitions (as in [39, 40, 41]) of tree width, path width
and branch width are recalled in Section 3 and given alternative recursive characterisations.
We show, in Section 4, that these correspond to branch width, tree width and path width,
respectively, when instantiated in the category of cospans of graphs, introduced in Section 4.1.

Related work. The work of Pudlák, Rödl and Savickỳ [37] addresses the complexity of
graphs in a syntactical way: the authors define the complexity of a graph to be the minimum
number of operations needed to define a graph. Bauderon and Courcelle [4] follow a similar
idea and define a language to construct graphs from given generators. In particular, the cost
of a decomposition is measured by counting shared names, which is clearly closely related
to penalising sequential composition as in monoidal width. Nevertheless, these approaches
are specific to particular, concrete notions of graphs, whereas our work concerns the more
general algebraic framework of monoidal categories.

Abstract approaches to width have received some attention recently, with a number of



First OGrph = Csp(UGraph)

• An undirected graph G=(V, E, ends) where ends : E -> P2(v)


• UGraph = category with undirected graphs as objects, their homomorphisms as 
arrows


• not difficult to verify that UGraph has colimits


• Csp(UGraph) cospans m -> G <- n where m, n are finite discrete graphs with m, n 
vertices, respectively


• composition is by pushout 


• open graphs are glued along common vertices


• tensor product is coproduct



Second OGrph = “Bialgebra + cups + vertices”

• We call this Gph 


• open graphs are glued along edges
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This allows us to decompose n = gn,0 cutting along at most n+1 wires. In particular, mwd( n) 
n+1.

The following result is a technical generalisation of the argument presented in Example 2.8.
Lemma 2.9 ([20]). Let X be a symmetric monoidal category with coherent copying. Suppose that A
contains X for X 2CX, and X ,Y and X for X 2Obj(X). Let X :=X1⌦ · · ·⌦Xn, f : Y ⌦X⌦Z !W
and let d 2 D f . Let g( f ) := ( Y ⌦ X ⌦ Z) ; ( Y⌦X ⌦ X ,Z) ; ( f ⌦ X).

g( f ) := f

Y

X

Z

W

X
There is a decomposition C (d) of g( f ) s.t. wd(C (d))max{wd(d),w(Y )+w(Z)+(n+1) ·maxi=1,...,nw(Xi)}.

3 Monoidal width in matrices

= = =

= = =

= = = =

Figure 4: Bialgebra axioms

Given the ubiquity of matrix algebra, matrices are an obvious case study. Theorem 3.12 shows that
the monoidal width of a matrix is, up to 1, the maximum of the ranks of its blocks.

Consider the monoidal category MatN of matrices with entries in the natural numbers. The objects
are natural numbers and morphisms from n to m are m by n matrices. Composition is the usual product
of matrices and the monoidal product is the biproduct: A⌦B := (A 0

0 B). Let us examine matrix decom-
positions enabled by this algebra. A matrix A can be written as a monoidal product A = A1 ⌦A2 iff the
matrix has blocks A1 and A2, i.e. A =

⇣
A1 0
0 A2

⌘
. On the other hand, a composition is related to the rank.

= Mat(N)

10 Monoidal Width: Capturing Rank Width

Proof. See Appendix B.

Before proving the lower bound for recursive rank width, we need a technical lemma that relates the
width of a graph with that of its subgraphs.

Lemma 4.11. Let T be a recursive rank decomposition of G = ([G] ,B). Let T 0 be a subtree of T and

G0 := l (T 0) with G0 = ([G0] ,B0). The adjacency matrix of G can be written as [G] =

✓
GL CL C
0 G0 CR
0 0 GR

◆�
and

its boundary as B =

✓
AL
A0
AR

◆
. Then, rank(B0) = rank(A0 |C>

L |CR).

Proof. See Appendix B.

Proposition 4.12. Let T be a recursive rank decomposition of G = ([G] ,B) with G 2 MatN(k,k) and
B 2MatN(k,n). Then, there is a rank decomposition I †(T ) of G such that wd(I †(T )) wd(T ).

Proof. See Appendix B.

From Proposition 4.12 and Proposition 4.10 we conclude the following result.

Theorem 4.13. Let G = ([G] ,B). Then, rwd(G) rrwd(G) rwd(G)+ rank(B).

5 Monoidal width and rank width

This section contains our main results. We prove that monoidal width in the prop of graphs Grph [12]
corresponds to rank width, up to a constant multiplicative factor of 2.

We start by introducing the algebra of graphs with boundaries and its diagrammatic syntax [19]. A
graph with boundaries is a graph together with two matrices L and R that record the connectivity of the
vertices with the left and right boundary, a matrix P that records the passing wires from the left boundary
to the right one and a matrix F that records the wires from the right boundary to itself.

Definition 5.1 ([19]). A graph with boundaries g : n!m is defined as g= ([G] ,L,R,P, [F ]), where [G] is
the adjacency matrix of a graph on k vertices, with G 2MatN(k,k); L 2MatN(k,n), R 2MatN(k,m), P 2
MatN(m,n) and F 2 MatN(m,m) recording connectivity information as explained above. Graphs with
boundaries are taken up to an equivalence making the order of the vertices immaterial. Let g,g0 : n ! m
on k vertices, with g = ([G] ,L,R,P, [F ]) and g0 = ([G0] ,L0,R0,P, [F ]). The graphs g and g0 are considered
equal iff there is a permutation matrix s 2MatN(k,k) such that g0 = (

⇥
sGs>⇤ ,sL,sR,P, [F ]).

Graphs with boundaries can be composed sequentially and in parallel [19], forming a symmetric
monoidal category BGraph. The prop Grph provides a convenient syntax for graphs with boundaries. It
is obtained by adding a cup and a vertex generators to the prop of matrices Bialg (Figure 4).

Definition 5.2 ([12]). The prop of graphs Grph is obtained by adding to Bialg the generators [ : 0 ! 2
and v : 1 ! 0 with the equations below.

and such that = and = .

These equations mean, in particular, that the cup transposes matrices (Figure 5, left) and that we can
express the equivalence relation of adjacency matrices: G ⇠ H iff G+G> = H +H> (Figure 5, right).
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+ algebra of adjacency matrices
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Main results (so far)

• tree width ~ monoidal width in Csp(UGraph)


• we actually show that monoidal width ~ branch width, but it is known that branch width ~ 
tree width  


• rank width ~ monoidal width in Grph 


• ~ = within a constant factor


• All these are simple to state, but pretty hard work to prove = peer review kryptonite



So what?

• For power people


• a general theory of decomposition and a unified approach can help


• what are the natural notions of width for other kinds of graphs (e.g. tree width for directed 
graphs?)


• For structure people 


• cool new algebras to discover


• For everyone


• notion of monoidal with makes sense in other settings (e.g. Petri nets, matrices, affine relations, …) 
and often seems relevant


• decompositions as elements of a data structure 
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