Monoidal Width

joint work with Elena Di Lavore

Pawel Sobocinski, Tallinn University of Technology, Estonia Structure meets Power 2022, Paris, 4 July 2022

What is a graph width?

- a function Graphs $\rightarrow \mathbf{N}$, i.e. every graph is assigned a unique natural number
- this number can say interesting things about a graph
- tree width
- how hard do you have to squint for the graph to look like a tree?
- rank width
- how much information do you need to describe the connectivity of the graph?

The next 700 graph widths

- tree width, branch width, rank width, twin width, clique width, ...
- broccoli width
- come up with bespoke technique of broccoli decomposing a graph
- impress your colleagues by specifying it in an impressively complicated way
- assign a cost to the each part of a broccoli decomposition
- the cost of a broccoli decomposition = max of the cost of its parts
- broccoli width of a graph $G=\min$ of costs of broccoli decompositions of G

Why should structure people care?

- Widths can actually be super powerful things
- families of graphs of bounded tree width allow for the development of efficient algorithms, which is very useful e.g. in verification (Courcelle)
- other widths, like rank width, seem like good candidates for something like "Kolmogorov complexity" of graphs
- e.g. discrete graphs and cliques have rank width of 0 and 1 respectively
- The seemingly ad hoc definitions of decompositions must therefore correspond to canonical algebras of "open" graphs
- So what are these algebras?

Monoidal categories as algebras of graphs

- monoidal category = algebra where one can
- compose = glue things

- tensor = stack things

- fix a prop OGrph of open graphs, where the scalar morphisms $0->0$ are graphs
- there are several different possibilities for OGrph, specifying one amounts to choosing an algebra

Claim

(all?) reasonable notions of width arise from an underlying monoidal category of open graphs

- start with an OGrph
- a decomposition of G is a syntactic expression in ; and \otimes that evaluates to G
- define monoidal width
- compositions along m cost m
- tensor products cost 0

- "atoms" cost something reasonable, like number of vertices
- price a decomposition according to its most expensive operation
- monoidal width = the price of cheapest decomposition

First OGrph = Csp(UGraph)

- An undirected graph $G=\left(V, E\right.$, ends) where ends : $\mathrm{E}->\boldsymbol{P}_{2}(\mathrm{v})$
- UGraph = category with undirected graphs as objects, their homomorphisms as arrows
- not difficult to verify that UGraph has colimits
- Csp(UGraph) cospans $m->G<-n$ where m, n are finite discrete graphs with m, n vertices, respectively
- composition is by pushout
- open graphs are glued along common vertices
- tensor product is coproduct

Second OGrph = "Bialgebra + cups + vertices"

$\longrightarrow-\bigcirc \quad+$ vertices

- We call this Gph
- open graphs are glued along edges

Main results (so far)

- tree width ~ monoidal width in Csp(UGraph)
- we actually show that monoidal width ~ branch width, but it is known that branch width ~ tree width
- rank width ~ monoidal width in Grph
- ~ = within a constant factor
- All these are simple to state, but pretty hard work to prove = peer review kryptonite

So what?

- For power people
- a general theory of decomposition and a unified approach can help
- what are the natural notions of width for other kinds of graphs (e.g. tree width for directed graphs?)
- For structure people
- cool new algebras to discover
- For everyone
- notion of monoidal with makes sense in other settings (e.g. Petri nets, matrices, affine relations, ...) and often seems relevant
- decompositions as elements of a data structure

Bibliography

- Elena Di Lavore and PS. Monoidal Width: Unifying Tree Width, Path Width and Branch Width, arXiv:2202.07582
- Elena Di Lavore and PS. Monoidal Width: Capturing Rank Width, arXiv:2205.08916, to appear in proceedings of ACT 2022

