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There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3 ))

How can we measure the complexity of a logical formula?
* type/allowed combinations of quantifiers
® number of variables

* nesting depth of quantifiers

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?
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For graphs G, H, the following are equivalent.
@ The logic """ distinguishes ¢ and H.
® The algorithm £-WL distinguishes & and /1.

[Cai, Fiirer, Immerman "92]
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Oldest (?) reference: The generation of a unique machine
description for chemical structures
[Morgan "65]

® [nitialisation: All vertices have their initial colours.

® Refinement: Recolour vertices depending on colours in their
neighbourhoods.

® Stop when colouring is stable.
The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore '82]
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1-WL

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

Fact

On paths of length n, 1-WL terminates after at most  iterations.
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If two graphs result in different colourings, then the graphs are
non-isomorphic.

N o/;\o
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Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.
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THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V'*.

It can be implemented to run in time O(n**!logn).
[Immerman, Lander "90]
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Facts

On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.
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ALGORITHMIC LOGICS
For graphs G, H, the following are equivalent.
@ The logic """ distinguishes ¢ and H.
® The algorithm £-WL distinguishes & and /1.
® Spoiler wins the (k + 1)-pebble game on G and H.

[Cai, Fiirer, Immerman "92]
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PEBBLE GAME FOR C”

X
/1

X
X

Are the pebbled subgraphs isomorphic? X

Thus, Spoiler wins.
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ALGORITHMIC LOGICS

For graphs G, H, the following are equivalent.
©® The logic C"! distinguishes ¢ and H.
® The algorithm £-WL distinguishes G and /1.
@® Spoiler wins the (k + 1)-pebble game on GG and .

[Cai, Fiirer, Immerman "92]

Nesting depth = Number of iterations = Rounds in game
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EIxHy(Red(x) A White(y) A E(x, y))

Graphs that are not distinguished by C" are C"-equivalent.

@ is identified by C* :<= Every C"-equivalent graph is
isomorphic to G.

C? identifies almost all graphs. [Babai, Erdés, Selkow ’80]
But it fails on very simple graphs! (C* =1-WL)
o/. N OA.

||
.\. /. OVO
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IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)
1-WL identifies G. <= The flip of G is a bouquet forest.

Bouquet: copies (77, v1), ..., (75, vs5) of a vertex-coloured
tree (7', v), connected via a 5-cycleon vy, ..., vs

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets

15
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16



WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

17



WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

WL-dimension

Graph class
lower bound upper bound

Trees 1 1

Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer "00]
Excluded minor H | Q(|V(H)|) f(H) [Grohe '10]
Planar graphs 2 14 3 [K., Ponomarenko, Schweitzer "17]
Treewidth & k2 | kt+2k [K., Neuen '19]
Genus g Q(9) 49+3 [Grohe, K. '19]
Clique width & Q(k) 3k+4 [Grohe, Neuen "19]
Rank width & Q(k) 3k+4 [Grohe, Neuen "19]
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(2] 2-conn. planar < arc-col. 3-conn. planar
® arc-coloured 3-connected planar case
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PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:

@ planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar  2-WL
® arc-coloured 3-connected planar case 3-WL

Major ingredient for @:

Theorem (K., Neuen 2019)
2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)
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In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.

We show: this implies that they get different colours w.r.t. 1-WL.
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BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)
Let G be a graph of treewidth at most k > 2. Then k-WL identifies G.

" o
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BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)
Let G be a graph of treewidth at most k > 2. Then k-WL identifies G.

/29

3
lﬁﬁ‘

Spoiler enforces a descent of a tree decomposition
of width at most & of G.

24



BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25



BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25



BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25



BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25



BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25



BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS




BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.



WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

WL-dimension

Graph class
lower bound upper bound

Trees 1 1

Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer “00]
Excluded minor H | Q(|V(H))) F(H) [Grohe '10]
Planar graphs 2 14 3 [K., Ponomarenko, Schweitzer "17]
Treewidth & k2 | k+2k [K., Neuen '19]
Genus g Q(9) 49 +3 [Grohe, K. '19]
Clique width & Q(k) 3k+4 [Grohe, Neuen "19]
Rank width & Q(k) 3k+4 [Grohe, Neuen "19]

26



CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

27



CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

27



CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.
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Theorem (Grohe, K. 2021)

There is a k € N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.
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WL-Complexity
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