
Graph Decompositions via Counting Logics

Sandra Kiefer

Structure Meets Power
Paris, France
July 4, 2022

STRUCTURE IDENTIFICATION

Find a description of this molecule.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

6∼=

There is 1 red atom with
1 adjacent white atom.

Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3

7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(

∃=2y E(x, y) ∧ ∀y
(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y)

∧ ∀y
(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)

→ ∃=3x E(y, x)
))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula

3

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))
How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

4

ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

Nesting depth ≡ Number of iterations ≡ Rounds in game

5

ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game

5

COLOUR REFINEMENT
Oldest (?) reference: The generation of a unique machine

description for chemical structures
[Morgan ’65]

1-WL

• Initialisation: All vertices have their initial colours.

• Refinement: Recolour vertices depending on colours in their
neighbourhoods.

• Stop when colouring is stable.

The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

6

COLOUR REFINEMENT
Oldest (?) reference: The generation of a unique machine

description for chemical structures
[Morgan ’65]

1-WL

• Initialisation: All vertices have their initial colours.

• Refinement: Recolour vertices depending on colours in their
neighbourhoods.

• Stop when colouring is stable.

The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

6

COLOUR REFINEMENT
Oldest (?) reference: The generation of a unique machine

description for chemical structures
[Morgan ’65]

1-WL

• Initialisation: All vertices have their initial colours.

• Refinement: Recolour vertices depending on colours in their
neighbourhoods.

• Stop when colouring is stable.

The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

6

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.

7

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.

8

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.

8

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.

8

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.

8

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

9

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2)t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]

10

ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game

11

ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

3 Spoiler wins the (k + 1)-pebble game on G and H .
[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game

11

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

Are the pebbled subgraphs isomorphic? 3
12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

Are the pebbled subgraphs isomorphic? 7
12

PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H

Are the pebbled subgraphs isomorphic? 7
Thus, Spoiler wins.

12

ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

3 Spoiler wins the (k + 1)-pebble game on G and H .
[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game

13

IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)
Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)

14

IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)

14

IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)
Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)

14

IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)
Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)

14

IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)
Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)

14

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)

1-WL identifies G. ⇐⇒ The flip of G is a bouquet forest.

Bouquet: copies (T1, v1), . . . , (T5, v5) of a vertex-coloured
tree (T, v), connected via a 5-cycle on v1, . . . , v5

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets

15

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)

1-WL identifies G. ⇐⇒ The flip of G is a bouquet forest.

Bouquet: copies (T1, v1), . . . , (T5, v5) of a vertex-coloured
tree (T, v), connected via a 5-cycle on v1, . . . , v5

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets

15

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)

1-WL identifies G. ⇐⇒ The flip of G is a bouquet forest.

Bouquet: copies (T1, v1), . . . , (T5, v5) of a vertex-coloured
tree (T, v), connected via a 5-cycle on v1, . . . , v5

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets

15

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 14 [Grohe ’98; Redies ’14]

Treewidth k Ω(k) k + 2 [Grohe, Mariño ’99]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 14 [Grohe ’98; Redies ’14]

Treewidth k Ω(k) k + 2 [Grohe, Mariño ’99]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

17

WL-DIMENSION

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

17

PLANAR GRAPHS

G is planar :⇐⇒ G can be embedded in the plane without any
edge crossings.

6∼=

18

PLANAR GRAPHS

G is planar :⇐⇒ G can be embedded in the plane without any
edge crossings.

6∼=

18

DECOMPOSITIONS

A decomposition of a connected graph into
2-connected components and cut vertices

19

DECOMPOSITIONS

A decomposition of a connected graph into
2-connected components and cut vertices

19

DECOMPOSITIONS

19

DECOMPOSITIONS

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar
3 arc-coloured 3-connected planar case

19

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 3-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 3-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.
21

DETECTING SEPARATORS

Thus, 2-separators can be detected with 5 pebbles. (4-WL)

Lemma (K., Ponomarenko, Schweitzer 2017)

2-Separators can be detected with 4 pebbles. (3-WL)

Lemma (K., Neuen 2019)

2-Separators can be detected with 3 pebbles. (2-WL)

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL

22

DETECTING SEPARATORS

Thus, 2-separators can be detected with 5 pebbles. (4-WL)

Lemma (K., Ponomarenko, Schweitzer 2017)

2-Separators can be detected with 4 pebbles. (3-WL)

Lemma (K., Neuen 2019)

2-Separators can be detected with 3 pebbles. (2-WL)

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL

22

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.

23

BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)

Let G be a graph of treewidth at most k ≥ 2. Then k-WL identifies G.

Spoiler enforces a descent of a tree decomposition
of width at most k of G.

24

BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)

Let G be a graph of treewidth at most k ≥ 2. Then k-WL identifies G.

Spoiler enforces a descent of a tree decomposition
of width at most k of G.

24

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]

25

WL-DIMENSION

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

26

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Theorem (Grohe, K. 2021)

There is a k ∈ N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.

27

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Theorem (Grohe, K. 2021)

There is a k ∈ N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.

27

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Theorem (Grohe, K. 2021)

There is a k ∈ N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.

27

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 3-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 3-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 2-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 2-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 2-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday

28

WL-Complexity

1-WL

Graphs with
n�1 iterations

2-WL

First nontrivial
upper bound

Planar graphs

Logarithmic
upper bound

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

WL-Power

1-WL

Complete
characterisation

2-WL

Detects
2-separators

Planar graphs

WL-dim & 3
Euler genus

WL-dim & 4g+3

u1

u0

u2

u0
1

Complexity
• Iteration number for
k-WL for k > 2?

• Iteration number for
other graph classes?

• . . .

Power
• Exact dimensions?
• Dimension for arbitrary

graphs?
• . . .

