Graph Decompositions via Counting Logics

Sandra Kiefer

(o

a MAX PLANCK INSTITUTE
O LOR SOFTWARE SYSTEMS

Structure Meets Power
Paris, France
July 4, 2022

STRUCTURE IDENTIFICATION

Find a description of this molecule.

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

There is 1 red atom with
1 adjacent white atom.

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

There is 1 red atom with
1 adjacent white atom.

Not here.

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

There is 1 red atom with
1 adjacent white atom.

Not here.

STRUCTURE IDENTIFICATION

Find a description of the difference between these molecules.

There is 1 red atom with
1 adjacent white atom.

Not here.

23y (Red(z) A White(y) A E(z,y))

DESCRIPTIVE COMPLEXITY

<>~ 7 I

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

<>~ 7 I

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

O

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

v

AL tf'
(O #

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

v X

AL tf'
O #

There is 1 vertex with that have

DESCRIPTIVE COMPLEXITY

v X

<>~ 7

There is 1 vertex with exactly 2 neighbours that both have cxactly 3 neighbours.

T

DESCRIPTIVE COMPLEXITY

v X

<>~ 7

There is 1 vertex with exactly 2 neighbours that both have cxactly 3 neighbours.

Jx (El 2y E(x,y)

DESCRIPTIVE COMPLEXITY

v X

<>~ 7

There is 1 vertex with exactly 2 neighbours that both have cxactly 3 neighbours.

Jz (372,1/ E(z,y) AVy (E(z,y)

DESCRIPTIVE COMPLEXITY

v X

<>~ 7

There is 1 vertex with exactly 2 neighbours that both have cxactly 3 neighbours.

Jz (372,1/ E(x,y) AVy (E(z,y) — 372 E(y, .'1{)))

DESCRIPTIVE COMPLEXITY

v X

There is 1 vertex with that have

(3 Ay (E(z,y) — 3))

2 variables, counting quantifiers, FO ~> C’-formula

DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have cxactly 3 neighbours.

Jx (3:2y BE(z,y) AVy (B(z,y) = 372 E(y, 1)))

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?

* type/allowed combinations of quantifiers

DESCRIPTIVE COMPLEXITY
There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?
¢ type/allowed combinations of quantifiers

e number of variables

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?
* type/allowed combinations of quantifiers
® number of variables

* nesting depth of quantifiers

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?
* type/allowed combinations of quantifiers
® number of variables

* nesting depth of quantifiers

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz (El AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?
* type/allowed combinations of quantifiers
® number of variables
* nesting depth of quantifiers

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

DESCRIPTIVE COMPLEXITY

There is 1 vertex with that have
Jz <E| AVy (E(z,y) — 3))

How can we measure the complexity of a logical formula?
* type/allowed combinations of quantifiers
® number of variables

* nesting depth of quantifiers

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?

ALGORITHMIC LOGICS

ALGORITHMIC LOGICS

For graphs G, H, the following are equivalent.
@ The logic """ distinguishes ¢ and H.
® The algorithm £-WL distinguishes & and /1.

[Cai, Fiirer, Immerman "92]

COLOUR REFINEMENT

Oldest (?) reference: The generation of a unique machine
description for chemical structures
[Morgan "65]

COLOUR REFINEMENT

Oldest (?) reference: The generation of a unique machine
description for chemical structures
[Morgan "65]

® [nitialisation: All vertices have their initial colours.

® Refinement: Recolour vertices depending on colours in their
neighbourhoods.

® Stop when colouring is stable.

COLOUR REFINEMENT

Oldest (?) reference: The generation of a unique machine
description for chemical structures
[Morgan "65]

® [nitialisation: All vertices have their initial colours.

® Refinement: Recolour vertices depending on colours in their
neighbourhoods.

® Stop when colouring is stable.
The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore '82]

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

COLOUR REFINEMENT

1-WL

® Refinement: v and w obtain different colours <= there is a colour ¢
such that v and w have different numbers of c-coloured neighbours

Fact

On paths of length n, 1-WL terminates after at most iterations.

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

N Z

N N

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

On every regular graph, 1-WL terminates after one iteration.

REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

N o/;\o

] =

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V'*.
It can be implemented to run in time O(n**!logn).

[Immerman, Lander "90]

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V'*.
It can be implemented to run in time O(n**!logn).

[Immerman, Lander "90]

Ce
Ce
Ce
Ce
Ce
Ce
Ce

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V'*.
It can be implemented to run in time O(n**!logn).

[Immerman, Lander "90]

C
C
C
C
C
C
C

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V.
It can be implemented to run in time O(n***logn).

[Immerman, Lander "90]

e .

° ® ®
@) @) O

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V.
It can be implemented to run in time O(n***logn).

[Immerman, Lander "90]

® ®
@) @) O

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V.

It can be implemented to run in time O(n***logn).
[Immerman, Lander "90]

® ®
@) @) O

Facts

On strongly regular graph, 2-WL terminates after one iteration.

THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V'*.

It can be implemented to run in time O(n**!logn).
[Immerman, Lander "90]

R e S

® ® ®
@) @) O

Facts

On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

. . 1 1 1 1 11
° 310 1|y L ooz 2 L 1]
Linear programming C I) 73

TR T T I S S O T - I
s ok b ddfoold 3 b
io| 0 2lo 3 0 3[20[1 0 -1 0f1
1 L1303 o0/20/0 1 0 -1]1
1 Llo 3 0 3lo2l-1 0o 1 0f1
2 03 03 0ojo2fo -1 0 1]1
22 2[5 30} T 1w
w=-win=(" 2!
12 4 o~

Image source: [Grohe et al. "14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

. . 1 1 1 1 11
° 3 -1 1L b1 lig o3 2 L 1
Linear programming O i 2 2 ; 0ol 3 2 z |

103 —1|L L L1y ol L L 1)y

24%4-’31 2 2 32 2
~ | o ZTo 30 320[1 0 -1 o1
® Graph kernels Sl T b3 030200 1 0
1 Llo 3 0 3lo2l-1 0o 1 0f1
2 03 03 0/02/0 -1 0 1]1
22 2[5 30} T 1w

w=-win=(" 2!

12 4 o~

Image source: [Grohe et al. "14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests
o T; : 3o 1|y b tools 2 L L
Linear programming U A I 1 P A A A
13 gy opogloo)d 5 b 3
- 0 2lo 3 0 3[20[1 0 -1 0f1
® Graph kernels Al i 13020200 1 0 -1
1 o3 0 3fo2]-1 0 1 0]1
2 013 03 0/02/0 -1 0 1]1
¢ Graph neural networks 22 20333 3|0 0]3 5 5 3
(4 21
Al =[[A]] =
[A] = [1A1N (12400)

Image source: [Grohe et al. "14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

o T : 3410 1|4 b ooz 2 5 L
Linear programming U A I 1 P A A A
13 g g g gjo0]y 3§ gt
~_| o 2103 0 3201 0 -1 0f1
® Graph kernels Al i 13020200 1 0 -1
1 o3 0 3fo2]-1 0 1 0]1
2 013 03 0/02/0 -1 0 1]1
¢ Graph neural networks 22 20333 3|0 0]3 5 5 3

Ap=wan=(* 2!

® Propositional proof complexity 12 4

Image source: [Grohe et al. "14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

o T : 3410 1|4 b ooz 2 5 L
Linear programming U A I 1 P A A A
13 g g g gjo0]y 3§ gt
~_| o 2103 0 3201 0 -1 0f1
® Graph kernels Al i 13020200 1 0 -1
1 o3 0 3fo2]-1 0 1 0]1
2 013 03 0/02/0 -1 0 1]1
¢ Graph neural networks 22 20333 3|0 0]3 5 5 3

Ap=wan=(* 2!

® Propositional proof complexity 12 4

* Homomorphism counting

Image source: [Grohe et al. "14]

10

APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

® Practical graph-isomorphism tests

o T : 3410 1|4 b ooz 2 5 L
Linear programming U A I 1 P A A A
13 g g g gjo0]y 3§ gt
~_| o 2103 0 3201 0 -1 0f1
® Graph kernels Al i 13020200 1 0 -1
1 o3 0 3fo2]-1 0 1 0]1
2 013 03 0/02/0 -1 0 1]1
¢ Graph neural networks 22 20333 3|0 0]3 5 5 3

Ap=wan=(* 2!

® Propositional proof complexity 12 4

* Homomorphism counting

Image source: [Grohe et al. "14]

10

ALGORITHMIC LOGICS

For graphs G, H, the following are equivalent.
@ The logic """ distinguishes ¢ and H.
® The algorithm £-WL distinguishes & and /1.

[Cai, Fiirer, Immerman "92]

11

ALGORITHMIC LOGICS
For graphs G, H, the following are equivalent.
@ The logic """ distinguishes ¢ and H.
® The algorithm £-WL distinguishes & and /1.
® Spoiler wins the (k + 1)-pebble game on G and H.

[Cai, Fiirer, Immerman "92]

11

PEBBLE GAME FOR C"
Spoiler and Duplicator dispose of k pairs of pebbles.

X
/]

X
X

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Spoiler takes a pebble
and selects a vertex
set Sin G or H.

G

/]

o
2

12

PEBBLE GAME FOR C"
Spoiler and Duplicator dispose of k pairs of pebbles.

Duplicator takes the m @

other pebble and selects
a set S’ of equal size G H

in the other graph. I I E

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Spoiler places his
pebble on a

vertex in S’.

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Duplicator places her
pebble on a vertex in S.

12

PEBBLE GAME FOR C"
Spoiler and Duplicator dispose of k pairs of pebbles.

X
/1

X
X

Are the pebbled subgraphs isomorphic? v

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Spoiler takes a pebble
and selects a vertex
set Sin G or H.

G

/1

o
2

12

PEBBLE GAME FOR C"
Spoiler and Duplicator dispose of k pairs of pebbles.

Duplicator takes the E E

other pebble and selects
a set S’ of equal size G H

in the other graph. l i E

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Spoiler places his
pebble on a

vertex in S’.

12

PEBBLE GAME FOR C”

Spoiler and Duplicator dispose of k pairs of pebbles.

Duplicator places her
pebble on a vertex in S.

12

PEBBLE GAME FOR C”

X
/1

X
X

Are the pebbled subgraphs isomorphic? X

12

PEBBLE GAME FOR C”

X
/1

X
X

Are the pebbled subgraphs isomorphic? X

Thus, Spoiler wins.

12

ALGORITHMIC LOGICS

For graphs G, H, the following are equivalent.
©® The logic C"! distinguishes ¢ and H.
® The algorithm £-WL distinguishes G and /1.
@® Spoiler wins the (k + 1)-pebble game on GG and .

[Cai, Fiirer, Immerman "92]

Nesting depth = Number of iterations = Rounds in game

13

IDENTIFICATION

14

IDENTIFICATION

33y (Red(z) A White(y) A E(z,y))

14

IDENTIFICATION

ETS @ &

o

33y (Red(z) A White(y) A E(z,y))

Graphs that are not distinguished by C" are C"-equivalent.

14

IDENTIFICATION

.
Z LT
(= R 9

EIxHy(Red(x) A White(y) A E(x, y))

Graphs that are not distinguished by C" are C"-equivalent.

@ is identified by C* :<= Every C"-equivalent graph is
isomorphic to G.

14

IDENTIFICATION

(& &)

EIxHy(Red(x) A White(y) A E(x, y))

Graphs that are not distinguished by C" are C"-equivalent.

@ is identified by C* :<= Every C"-equivalent graph is
isomorphic to G.

C? identifies almost all graphs. [Babai, Erdés, Selkow ’80]
But it fails on very simple graphs! (C* =1-WL)
o/. N OA.

||
.\. /. OVO

14

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)

1-WL identifies G. <= The flip of G is a bouquet forest.

15

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)
1-WL identifies G. <= The flip of G is a bouquet forest.

Bouquet:

copies (77, v1), ..., (75, vs5) of a vertex-coloured
tree (7', v), connected via a 5-cycleon vy, ..., vs

15

IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)
1-WL identifies G. <= The flip of G is a bouquet forest.

Bouquet: copies (77, v1), ..., (75, vs5) of a vertex-coloured
tree (7', v), connected via a 5-cycleon vy, ..., vs

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets

15

WL-DIMENSION
1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore "82]

k-WL can be implemented to run in time O (n**!logn).
[Immerman, Lander "90]

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore "82]

k-WL can be implemented to run in time O (n**!logn).
[Immerman, Lander "90]

How powerful is k-WL for fixed k& > 2?

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore "82]

k-WL can be implemented to run in time O (n**!logn).
[Immerman, Lander "90]

How powerful is k-WL for fixed k& > 2?

There is no k such that £-WL distinguishes every pair of
non-isomorphic graphs.
[Cai, Fiirer, Immerman "92]

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore "82]

k-WL can be implemented to run in time O (n**!logn).
[Immerman, Lander "90]

How powerful is k-WL for fixed k& > 2?

There is no k such that £-WL distinguishes every pair of
non-isomorphic graphs.
[Cai, Fiirer, Immerman "92]

~> What if we restrict ourselves to certain graph classes?

16

WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore "82]

k-WL can be implemented to run in time O (n**!logn).
[Immerman, Lander "90]

How powerful is k-WL for fixed k& > 2?

There is no k such that £-WL distinguishes every pair of
non-isomorphic graphs.
[Cai, Fiirer, Immerman "92]

~> What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

16

WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

17

WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

WL-dimension

Graph class
lower bound upper bound

Trees 1 1

Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer "00]
Excluded minor H | Q(|V(H)|) f(H) [Grohe '10]
Planar graphs 2 14 3 [K., Ponomarenko, Schweitzer "17]
Treewidth & k2 | kt+2k [K., Neuen '19]
Genus g Q(9) 49+3 [Grohe, K. '19]
Clique width & Q(k) 3k+4 [Grohe, Neuen "19]
Rank width & Q(k) 3k+4 [Grohe, Neuen "19]

17

PLANAR GRAPHS

G is planar <= G can be embedded in the plane without any
edge crossings.

X — A

18

PLANAR GRAPHS

G is planar <= G can be embedded in the plane without any
edge crossings.

M A

18

DECOMPOSITIONS

g =

A decomposition of a connected graph into
2-connected components and cut vertices

AV

19

DECOMPOSITIONS

A decomposition of a connected graph into
2-connected components and cut vertices

19

DECOMPOSITIONS

19

DECOMPOSITIONS

%

Reduction scheme:
@ planar < 2-connected planar
(2] 2-conn. planar < arc-col. 3-conn. planar
® arc-coloured 3-connected planar case
19

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:

® planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar 3-WL
® arc-coloured 3-connected planar case 3-WL

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:

@ planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar 2-WL
® arc-coloured 3-connected planar case 3-WL

20

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:

@ planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar 2-WL
® arc-coloured 3-connected planar case 3-WL

Major ingredient for @:

Theorem (K., Neuen 2019)
2-WL detects 2-separators in graphs.

PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:

@ planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar 2-WL
® arc-coloured 3-connected planar case 3-WL

Major ingredient for @:

Theorem (K., Neuen 2019)
2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)

20

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

21

DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.
21

DETECTING SEPARATORS
Thus, 2-separators can be detected with 5 pebbles. (4-WL)

Lemma (K., Ponomarenko, Schweitzer 2017)

2-Separators can be detected with 4 pebbles. (3-WL)

Lemma (K., Neuen 2019)
2-Separators can be detected with 3 pebbles. (2-WL)

DETECTING SEPARATORS
Thus, 2-separators can be detected with 5 pebbles. (4-WL)

Lemma (K., Ponomarenko, Schweitzer 2017)

2-Separators can be detected with 4 pebbles. (3-WL)

Lemma (K., Neuen 2019)
2-Separators can be detected with 3 pebbles. (2-WL)

Reduction scheme:
® planar < 2-connected planar 2-WL
(2] 2-conn. planar < arc-col. 3-conn. planar 2-WL

® arc-coloured 3-connected planar case 3-WL

3-CONNECTED PLANAR GRAPHS

3-CONNECTED PLANAR GRAPHS

3-CONNECTED PLANAR GRAPHS

3-CONNECTED PLANAR GRAPHS

23

3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.

We show: this implies that they get different colours w.r.t. 1-WL.

23

3-CONNECTED PLANAR GRAPHS

/

p=

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.

We show: this implies that they get different colours w.r.t. 1-WL.

23

BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)
Let G be a graph of treewidth at most k > 2. Then k-WL identifies G.

" o

Q&

24

BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)
Let G be a graph of treewidth at most k > 2. Then k-WL identifies G.

/29

3
lﬁﬁ‘

Spoiler enforces a descent of a tree decomposition
of width at most & of G.

24

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

Image source: [Neuen]

25

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

WL-DIMENSION

A graph G has WL-dimension at most k if k-WL identifies G.

WL-dimension

Graph class
lower bound upper bound

Trees 1 1

Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer “00]
Excluded minor H | Q(|V(H))) F(H) [Grohe '10]
Planar graphs 2 14 3 [K., Ponomarenko, Schweitzer "17]
Treewidth & k2 | k+2k [K., Neuen '19]
Genus g Q(9) 49 +3 [Grohe, K. '19]
Clique width & Q(k) 3k+4 [Grohe, Neuen "19]
Rank width & Q(k) 3k+4 [Grohe, Neuen "19]

26

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

27

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

27

CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

2 1 p2
b} b; b b3 b3 b

o VL

e isa

Theorem (Grohe, K. 2021)

There is a k € N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.
27

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

® Reduction to 2-connected graphs 2-WL
® Reduction to 3-connected graphs 3-WL
® 3-connected planar graphs 3-WL

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

® Reduction to 2-connected graphs 2-WL
® Reduction to 3-connected graphs 2-WL
® 3-connected planar graphs 3-WL

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

® Reduction to 2-connected graphs 2-WL
® Reduction to 3-connected graphs 2-WL
® 3-connected planar graphs 3-WL

® What is the exact WL-dimension of planar graphs?
® What about other graph classes?
* What other useful decompositions does C detect?

28

CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

® Reduction to 2-connected graphs 2-WL
® Reduction to 3-connected graphs 2-WL
® 3-connected planar graphs 3-WL

® What is the exact WL-dimension of planar graphs?
® What about other graph classes?
* What other useful decompositions does C detect?

~» ICALP-talk on Thursday @

28

WL-Complexity

N\ 2 S
A s \ M‘l
1-WL 2-WL Planar graphs
Graphs with First nontrivial Logarithmic
n—1 iterations upper bound upper bound

@g% £)2)
BONEE 0

1-WL 2-WL Planar graphs Euler genus

Complete Detects WL-dim < 3 WL-dim < 4¢+3
characterisation 2-separators

