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STRUCTURE IDENTIFICATION

Find a description of this molecule.

6∼=

There is 1 red atom with
1 adjacent white atom. Not here.

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)

2
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DESCRIPTIVE COMPLEXITY

3 7

6∼=

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

2 variables, counting quantifiers, FO ; C2-formula
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DESCRIPTIVE COMPLEXITY

There is 1 vertex with exactly 2 neighbours that both have exactly 3 neighbours.

∃x
(
∃=2y E(x, y) ∧ ∀y

(
E(x, y)→ ∃=3x E(y, x)

))

How can we measure the complexity of a logical formula?

• type/allowed combinations of quantifiers

• number of variables

• nesting depth of quantifiers

• . . .

The complexity of a defining formula is a measure for the inherent
complexity of the graphs.

But how do we get from descriptions to actual algorithms?
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ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

Nesting depth ≡ Number of iterations ≡ Rounds in game
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2 The algorithm k-WL distinguishes G and H .
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COLOUR REFINEMENT
Oldest (?) reference: The generation of a unique machine

description for chemical structures
[Morgan ’65]

1-WL

• Initialisation: All vertices have their initial colours.

• Refinement: Recolour vertices depending on colours in their
neighbourhoods.

• Stop when colouring is stable.

The induced partition respects orbits, so if two graphs result in
different colourings, then they are non-isomorphic.

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]
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COLOUR REFINEMENT

1-WL

• Refinement: v and w obtain different colours ⇐⇒ there is a colour c
such that v and w have different numbers of c-coloured neighbours

Fact
On paths of length n, 1-WL terminates after at most n

2 iterations.
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REGULAR GRAPHS

If two graphs result in different colourings, then the graphs are
non-isomorphic.

Facts
On every regular graph, 1-WL terminates after one iteration.

1-WL does not distinguish d-regular graphs of equal order.
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THE WL-ALGORITHM

The more powerful k-WL iteratively computes a colouring of V k.
It can be implemented to run in time O(nk+1 log n).

[Immerman, Lander ’90]

Facts
On strongly regular graph, 2-WL terminates after one iteration.

2-WL does not distinguish strongly regular graphs with equal
parameters.
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APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1




, b =




1
1
1
1
1
1
1




, c =




2
2
2
3
2
3
2
3
2
3
2
1
1
1
2
1
2
1
2
1
2




We combine A, b, c in a matrix

Ã =




3 –1 1 1
4

1
4

1
4

1
4 0 0 3 –2 1

2
1
2 1

–1 1 3 1
4

1
4

1
4

1
4 0 0 –2 3 1

2
1
2 1

1 3 –1 1
4

1
4

1
4

1
4 0 0 1

2
1
2

1
2

1
2 1

0 1
3

2
3 0 3

2 0 3
2 2 0 1 0 –1 0 1

1
3

1
3

1
3

3
2 0 3

2 0 2 0 0 1 0 –1 1
1
3

1
3

1
3 0 3

2 0 3
2 0 2 –1 0 1 0 1

2
3

1
3 0 3

2 0 3
2 0 0 2 0 –1 0 1 1

2 2 2 3
2

3
2

3
2

3
2 1 1 1

2
1
2

1
2

1
2 ∞




by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]
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We combine A, b, c in a matrix

Ã =



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

by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=



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

(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we
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• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]
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efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
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by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=


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(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we
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efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =


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We combine A, b, c in a matrix

Ã =


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by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=



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We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
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1
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1
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is indeed x is a minimal solution to (L).
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Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we
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efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =


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by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=




1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
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0 1
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


(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we
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efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,
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by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=



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
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
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=


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

(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we
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efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =



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
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We combine A, b, c in a matrix

Ã =



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1
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3
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


by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .

4

Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=



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(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
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,
1
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,
1
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1
2

,
1
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is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .

Image source: [Grohe et al. ’14]

10



APPLICATIONS

Via the WL-algorithm, the logic C has connections to many areas:

• Practical graph-isomorphism tests

• Linear programming

efficiently using colour refinement. The colour refinement procedure also yields the matrices that we need
to translate between the solution spaces of L and JLK. Then we solve JLK and translate the solution back to
a solution of L.

The potential of our method has been confirmed by our computational evaluation on a number of bench-
mark LPs with symmetries present. Actually, the time spent in total on solving the LPs — reducing an LP
and solving the reduced LP — is often an order of magnitude smaller than solving the original LP directly.
We have compared our method with a method of symmetry reduction for LPs due to Bödi, Grundhöfer and
Herr [4]; the experiments show that our method is substantially faster.

Example 1.1. We consider a linear program in standard form:

min ctx
subject to Ax = b, x ≥ 0,

(L)

where

A =


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by putting b, ct in the last column, row, respectively. The lines subdividing the matrix indicate the coarsest
equitable partition. As the core factor of Ã we obtain the matrix

[Ã] =




3 1 0 2 1
1 3 2 0 1

6 6 2 2 ∞


 .
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Again, the lines subdividing the matrix indicate the coarsest equitable partition. The core factor of [Ã],
which turns out to be the iterated core factor of Ã, is

JÃK = [[Ã]] =

(
4 2 1
12 4 ∞

)

This matrix corresponds to the LP

min (c′)tx′

subject to A′x′ = b′, x′ ≥ 0,
(L′)

where

A′ = (4 2), b′ = (1), c′ =

(
12
4

)
.

An optimal solution to (L′) is x′ = (0, 1
2 )t. To map x′ to a solution of the original LP (L), we multiply it with

the following matrix.

D :=
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0 0 0 1
0 0 0 1







1 0
1 0
0 1
0 1




=




1 0
1 0
1 0
1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1
0 1
0 1




(1.4)

We will see later where this matrix comes from. It can be checked that

x := Dx′ = (0, 0, 0, 0, 0, 0, 0,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)t

is indeed x is a minimal solution to (L).

Related Work

Using automorphisms to speed-up solving optimisation problems has attracted a lot of attention in the litera-
ture (e.g. [5, 6, 7, 10, 17, 22]). Most relevant for us is work focusing on integer and linear programming. For
ILPs, methods typically focus on pruning the search space to eliminate symmetric solutions, see e.g. [19]
for a survey). In linear programming, however, one takes advantage of convexity and projects the LP into the
fixed space of its symmetry group [5]. As we will see (in Section 7.2), our approach subsumes this method.
The second and third author (together with Ahmadi) observed that equitable partitions can compress LPs, as
they preserve message-passing computations within the log-barrier method [20]. The present paper builds
upon that observation, giving a rigorous theory of dimension reduction using colour-refinement, and con-
necting to existing symmetry approaches through the notion of fractional automorphisms. Moreover, we

5

• Graph kernels

• Graph neural networks

• Propositional proof complexity

• Homomorphism counting

• . . .
Image source: [Grohe et al. ’14]
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ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game
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PEBBLE GAME FOR Ck

Spoiler and Duplicator dispose of k pairs of pebbles.

1
Spoiler takes a pebble
and selects a vertex
set S in G or H .

2

Duplicator takes the
other pebble and selects
a set S′ of equal size
in the other graph.

3
Spoiler places his
pebble on a
vertex in S′.

4 Duplicator places her
pebble on a vertex in S.

1

2

3

4

G H
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ALGORITHMIC LOGICS

For graphs G, H , the following are equivalent.

1 The logic Ck+1 distinguishes G and H .

2 The algorithm k-WL distinguishes G and H .

3 Spoiler wins the (k + 1)-pebble game on G and H .
[Cai, Fürer, Immerman ’92]

Nesting depth ≡ Number of iterations ≡ Rounds in game
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IDENTIFICATION

6∼=

∃x∃y
(
Red(x) ∧White(y) ∧ E(x, y)

)
Graphs that are not distinguished by Ck are Ck-equivalent.

G is identified by Ck :⇐⇒ Every Ck-equivalent graph is
isomorphic to G.

C2 identifies almost all graphs. [Babai, Erdös, Selkow ’80]

But it fails on very simple graphs! (C2 ≡ 1-WL)
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IDENTIFICATION

Theorem (K., Schweitzer, Selman 2015)

1-WL identifies G. ⇐⇒ The flip of G is a bouquet forest.

Bouquet: copies (T1, v1), . . . , (T5, v5) of a vertex-coloured
tree (T, v), connected via a 5-cycle on v1, . . . , v5

Bouquet forest: disjoint union of vertex-coloured trees and
non-isomorphic bouquets
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WL-DIMENSION

1-WL has an O((m + n) log n)-implementation.
[Cardon & Crochemore ’82]

k-WL can be implemented to run in time O(nk+1 log n).
[Immerman, Lander ’90]

How powerful is k-WL for fixed k ≥ 2?

There is no k such that k-WL distinguishes every pair of
non-isomorphic graphs.

[Cai, Fürer, Immerman ’92]

; What if we restrict ourselves to certain graph classes?

Definition
A graph G has WL-dimension at most k if k-WL identifies G.
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WL-DIMENSION

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 14 [Grohe ’98; Redies ’14]

Treewidth k Ω(k) k + 2 [Grohe, Mariño ’99]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 14 [Grohe ’98; Redies ’14]

Treewidth k Ω(k) k + 2 [Grohe, Mariño ’99]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

17



WL-DIMENSION

Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

17



PLANAR GRAPHS

G is planar :⇐⇒ G can be embedded in the plane without any
edge crossings.

6∼=
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DECOMPOSITIONS

A decomposition of a connected graph into
2-connected components and cut vertices
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DECOMPOSITIONS

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar
3 arc-coloured 3-connected planar case
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PLANAR GRAPHS

Theorem (K., Ponomarenko, Schweitzer 2017)

Planar graphs have WL-dimension at most 3.

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 3-WL
3 arc-coloured 3-connected planar case 3-WL

Major ingredient for 2 :

Theorem (K., Neuen 2019)

2-WL detects 2-separators in graphs.

We show: 2-separators can be detected with 4-WL. (5 pebbles)
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DETECTING 2-SEPARATORS WITH 5 PEBBLES

Spoiler wins.
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DETECTING SEPARATORS

Thus, 2-separators can be detected with 5 pebbles. (4-WL)

Lemma (K., Ponomarenko, Schweitzer 2017)

2-Separators can be detected with 4 pebbles. (3-WL)

Lemma (K., Neuen 2019)

2-Separators can be detected with 3 pebbles. (2-WL)

Reduction scheme:
1 planar ≤ vertex-coloured 2-connected planar 2-WL
2 vertex-col. 2-conn. planar ≤ arc-col. 3-conn. planar 2-WL
3 arc-coloured 3-connected planar case 3-WL
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3-CONNECTED PLANAR GRAPHS

In Tutte’s Spring Embedding, no two vertices are mapped to the
same location.
We show: this implies that they get different colours w.r.t. 1-WL.
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BOUNDED-TREEWIDTH GRAPHS

Theorem (K., Neuen 2019)

Let G be a graph of treewidth at most k ≥ 2. Then k-WL identifies G.

Spoiler enforces a descent of a tree decomposition
of width at most k of G.
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BOUNDED-TREEWIDTH GRAPHS

Spoiler wins.

Image source: [Neuen]
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Definition
A graph G has WL-dimension at most k if k-WL identifies G.

Graph class
WL-dimension

lower bound upper bound

Trees 1 1
Interval graphs 2 2 [Evdokimov, Ponomarenko, Tinhofer ’00]

Excluded minor H Ω(|V (H)|) f(H) [Grohe ’10]

Planar graphs 2 ��14 3 [K., Ponomarenko, Schweitzer ’17]

Treewidth k ���Ω(k) k
2 − 2 ����k + 2 k [K., Neuen ’19]

Genus g Ω(g) 4g + 3 [Grohe, K. ’19]

Clique width k Ω(k) 3k + 4 [Grohe, Neuen ’19]

Rank width k Ω(k) 3k + 4 [Grohe, Neuen ’19]
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CONCLUSION

Decompositions can be very helpful to bound the logical and
algorithmic complexity of deciding isomorphism between graphs.

They can also be useful for bounding the number of WL-iterations.

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

Theorem (Grohe, K. 2021)

There is a k ∈ N such that k-WL identifies all planar n-vertex graphs in
O(log n) iterations.
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CONCLUSION

The WL-dimension to distinguish two graphs is at most the
dimension that distinguishes their decompositions into
3-connected components.

WL-Dimension of Planar Graphs

1 Reduction to 2-connected graphs 2-WL
2 Reduction to 3-connected graphs 3-WL
3 3-connected planar graphs 3-WL

• What is the exact WL-dimension of planar graphs?
• What about other graph classes?
• What other useful decompositions does C detect?

; ICALP-talk on Thursday
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WL-Complexity

1-WL

Graphs with
n�1 iterations

2-WL

First nontrivial
upper bound

Planar graphs

Logarithmic
upper bound

b1
1 b2

1 b2
2

b3
1 b3

2

b4
1

WL-Power

1-WL

Complete
characterisation

2-WL

Detects
2-separators

Planar graphs

WL-dim & 3
Euler genus

WL-dim & 4g+3

u1

u0

u2

u0
1


• Iteration number for
k-WL for k > 2?

• Iteration number for
other graph classes?

• . . .

PowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPowerPower
• Exact dimensions?
• Dimension for arbitrary

graphs?
• . . .


