How to Compose Shortest Paths

Jade Master
jade.master@strath.ac.uk

Structure Meets Power 2022

Supported by the Leverhulme Foundation

Table of contents

1. Problem Statement
2. A Solution
3. Conclusion

Problem Statement

Suppose that G and H are weighted graphs

$$
\begin{aligned}
& G: X \times X \rightarrow[0, \infty] \\
& H: Y \times Y \rightarrow[0, \infty]
\end{aligned}
$$

sharing a subset of vertices

Pushforwards and Discrete Graphs

Given a function $f: X \rightarrow Y$ we may pushforward G along f to get

$$
\begin{gathered}
f_{*}(G): Y \times Y \rightarrow[0, \infty] \\
f_{*}(G)\left(y, y^{\prime}\right)=\min _{\left(x, x^{\prime}\right) \in f^{-1}\left(y, y^{\prime}\right)} G\left(x, x^{\prime}\right)
\end{gathered}
$$

For a set X, there is a weighted graph

$$
L X: X \times X \rightarrow[0, \infty]
$$

given by

$$
\operatorname{LX}(i, j)=\infty
$$

for all i and j.

Proposition: In the category $[0, \infty]$ Graph the pushout is given by

$$
G+_{L K} H(x, y)=\min \left\{i_{*}(G)(x, y), j_{*}(H)(x, y)\right\}
$$

Proposition: In the category $[0, \infty]$ Graph the pushout is given by

$$
G+_{\iota k} H(x, y)=\min \left\{i_{*}(G)(x, y), j_{*}(H)(x, y)\right\}
$$

Moral: To compose two graphs, we first extend them to the shared domain and then take pointwise minimum.

Shortest Paths

G is thought of as a matrix with the $G(i, j)$ as entries. These graphs may be multiplied as

$$
G \cdot H(i, j)=\min _{k \in X}\{G(i, k)+H(k, j)\}
$$

or added as

$$
G+H(i, j)=\min \{G(i, j), H(i, j)\}
$$

Proposition: All pairs shortest paths in G are found as

$$
F(G)=\sum_{n \geq 0} G^{n}
$$

with operations as above.

Shortest Paths

G is thought of as a matrix with the $G(i, j)$ as entries. These graphs may be multiplied as

$$
G \cdot H(i, j)=\min _{k \in X}\{G(i, k)+H(k, j)\}
$$

or added as

$$
G+H(i, j)=\min \{G(i, j), H(i, j)\}
$$

Proposition: All pairs shortest paths in G are found as

$$
F(G)=\sum_{n \geq 0} G^{n}
$$

with operations as above.
Intuition: G^{n} records the shortest paths of length n.

Problem Statement!

The composition problem for F asks: given $F(G)$ and $F(H)$ as inputs, find $F(G+\iota k H)$.

A Solution

Theorem:

$$
\begin{gathered}
F(G+L(K) H)= \\
\sum_{n \leq|K|} \underbrace{F(G) F(H) F(G) \ldots}_{n \text { times }}+\underbrace{F(H) F(G) F(H) \ldots}_{n \text { times }}
\end{gathered}
$$

where $\mathbf{F}(\mathrm{G})$ and $\mathbf{F}(\mathrm{H})$ are the pushforwards $i_{*}(F(G))$ and $j_{*}(F(H))$ to the domain $X+{ }_{K} Y$.

Theorem:

$$
\begin{gathered}
F(G+L(K) H)= \\
\sum_{n \leq|K|} \underbrace{F(G) F(H) F(G) \ldots}_{n \text { times }}+\underbrace{F(H) F(G) F(H) \ldots}_{n \text { times }}
\end{gathered}
$$

where $\mathbf{F}(\mathbf{G})$ and $\mathbf{F}(\mathrm{H})$ are the pushforwards $i_{*}(F(G))$ and $j_{*}(F(H))$ to the domain $X+{ }_{K} Y$.

Proof Idea: Each term of the sum accounts for zig-zags of length n.

Composition Symbols

Let

$$
F(G)=\left[\begin{array}{ccc}
G G & G K & 0 \\
K G & K K_{G} & 0 \\
0 & 0 & 0
\end{array}\right] F(H)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & K K_{H} & K H \\
0 & H K & H H
\end{array}\right]
$$

Plugging these matrices into the theorem when $|K|=k$ give the composition symbols, Symbol($i, j, k)$, as entries of the result.

$$
\text { Symbol }(4,1,3)=G K \cdot K H+G K \cdot K K_{H} \cdot K K_{G} \cdot K H
$$

Composition Symbols

Let

$$
F(G)=\left[\begin{array}{ccc}
G G & G K & 0 \\
K G & K K_{G} & 0 \\
0 & 0 & 0
\end{array}\right] F(H)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & K K_{H} & K H \\
0 & H K & H H
\end{array}\right]
$$

Plugging these matrices into the theorem when $|K|=k$ give the composition symbols, Symbol($i, j, k)$, as entries of the result.

$$
\text { Symbol }(4,1,3)=G K \cdot K H+G K \cdot K K_{H} \cdot K K_{G} \cdot K H
$$

And these symbols keep track of the possible zig-zags between components.

An Algorithm

Suppose that a and b are vertices of $G+_{L(K)} H$ and suppose that we have already found $F(G)$ and $F(H)$. To find the shortest path from a to b:

1. pushoforward and break up $F(G)$ and $F(H)$ into blocks as shown above.
2. Determine whether a and b live in G, H, or K and look up the appropriate composition symbol Symbol($(, j, k)$.
3. Plug the blocks from before into this composition symbol with a row vector for the first term and a column vector for the last term. The result is the shortest path from a to b.

Results

Speed-up is most dramatic for small boundary and large component graphs.
2000 nodes each, boundary size: 5, 50 samples, compositional algorithm: 0.1602 ± 0.0169. Djikstra's algorithm: 39.7804 ± 3.3561, compositional Algorithm Precompilation: 93.0590.

Conclusion

This should generalize! F is actually parameterized by semirings. For each semiring Q which is a quantale, there is an adjunction

whose left adjoint is given by

$$
F_{Q}(G)=\sum_{n \geq 0} G^{n}
$$

with matrix operations valued in Q .
$F_{Q}(G)$ finds the solution to the algebraic path problem on G.

poset	plus	multiplication	solution of path problem
$([0, \infty], \geq)$	inf	+	shortest paths in a weighted graph
$([0, \infty], \leq)$	sup	inf	maximum capacity in the tunnel problem
$([0,1], \leq)$	sup	\times	most likely paths in a Markov process
$\{T, F\}$	OR	AND	transitive closure of a directed graph
$\left(\mathcal{P}\left(\Sigma^{*}\right), \subseteq\right)$	\bigcup	concatenation	decidable language of a NFA

I hope to generalize the compositional algorithm to all of these problems as well.

Thank you for listening!

