Parsing as a lifting problem

and the

Chomsky-Schützenberger Representation Theorem

Paul-André Melliès

Noam Zeilberger

based on a paper to be presented at MFPS 2022 preliminary version: hal-03702762 (your comments are welcome!)

Structure Meets Power 2022 \pm Paris \pm 3 July 2022

A functorial view of type systems

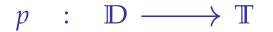
(cf. M&Z, "Functors are Type Refinement Systems", POPL 2015)

Manifesto.

The standard interpretation of type systems as categories

collapses the distinction between **terms**, **typing judgments**, and **typing derivations**

and is therefore inadequate for understanding what type systems do mathematically. Instead, type systems are better modelled as functors



- ▶ from a category **D** whose maps are **typing derivations**
- \triangleright to a category T whose maps are the **terms** of those derivations.

A functorial view of type systems

Consider the free cartesian closed category

 \mathbb{D} = freecc($\mathfrak{o}, \mathfrak{p}, \mathfrak{q}$)

generated by atoms o, p, q with the cartesian closed functor

 $p : \mathbb{D} \longrightarrow \mathbb{T}$

which maps \mathbb{D} to the syntactic cartesian closed category \mathbb{T}

- ▷ whose objects are the natural numbers $m, n \in \mathbb{N}$,
- ▷ whose maps $m \rightarrow n$ are the families M_1, \dots, M_m of pure λ -terms

 $x_1, x_2, \cdots, x_m \vdash M_k \quad 1 \le k \le n$

with free variables among the *m* variables x_1, \ldots, x_m .

Typing as a lifting problem

Suppose given a pure
$$\lambda$$
-term

defining a map $M: \underbrace{1+\dots+1}_{m} \to 1$ in the syntactic category \mathbb{T} .

A typing judgment in the usual sense

 $x_1:\sigma_1, x_2:\sigma_2, \dots, x_m:\sigma_m \vdash M:\tau$

is the same thing as a triple (R, M, S) with two objects of the category \mathbb{D}

$$R = \sigma_1, \sigma_2, \dots, \sigma_m \qquad \qquad S = \tau$$

indicating the **types** of the variables and of the term M, and thus:

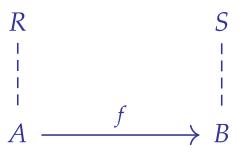
$$p(R) = 1 + \dots + 1$$
 and $p(S) = 1$.

Typing as a lifting problem

More generally, suppose given a term of the form

with **intrinsic types** *A* and *B*.

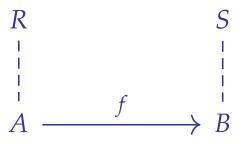
Definition. A typing judgment is a triple (R, f, S) of the form:



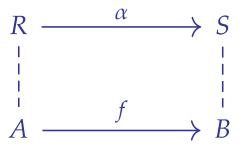
where *R* and *S* are **extrinsic types** in \mathbb{D} of the term $f : A \to B$ in \mathbb{T} .

Typing as a lifting problem

Given a typing judgment of the form



a **typing derivation** is a map $\alpha : R \to S$ in the category \mathbb{D}



whose image $p(\alpha)$ is equal to the term $f : A \to B$ in the category \mathbb{T} .

Interestingly, the very same pattern appears in automata theory.

Suppose given an alphabet Σ .

Every non-deterministic finite state automaton induces a category Q

- ▶ whose objects are the **states of the automaton**
- ▶ whose maps are the **runs (= transition paths) of the automaton**

freely generated by the transition graph of the automaton.

The automaton on the alphabet Σ induces a **labelling functor**

 $p : \mathbb{Q} \longrightarrow \mathbb{B}_{\Sigma}$

where \mathbb{B}_{Σ} is the category with a unique object $\ast\,$ and one map

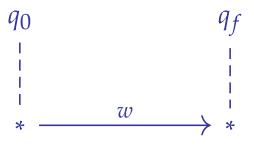
 $\mathcal{W} : * \longrightarrow *$

for each finite word w on the alphabet Σ .

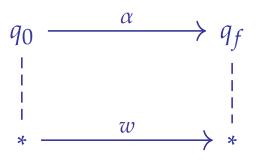
Basic idea: The functor *p* transports each transition of the automaton

to the underlying letter $a \in \Sigma$ of the alphabet.

Given a word recognition problem of the form



a **run of the automaton** is a map $\alpha : q_0 \rightarrow q_f$ in the category \mathbb{Q}



whose image $p(\alpha)$ is equal to the word $w : * \to *$ in the category \mathbb{B}_{Σ} .

Two key properties of NDFAs

Consider a functor $p : \mathbb{D} \to \mathbb{T}$ of categories.

▷ The functor *p* is **finitary** if the fibers $p^{-1}(A)$ and $p^{-1}(w)$ are finite for every object *A* and every arrow *w* in the category **T**.

▷ The functor *p* is **ULF** (unique lifting of factorization, Lawvere & Meni) if

for any arrow α of \mathbb{D} , if $p(\alpha) = uv$ for some pairs of arrows u and v of \mathbb{T} , there exists a unique pair of arrows β and γ in \mathbb{D} such that $\alpha = \beta \gamma, p(\beta) = u, p(\gamma) = v.$

Basic observation.

A functor $p : \mathbb{Q} \to \mathbb{B}_{\Sigma}$ is the underlying bare automaton of a NDFA with alphabet Σ iff it is both finitary and ULF.

Definition

A NDFA over a category is a tuple

$$M = (\mathbb{C}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{C}, q_0, q_f)$$

consisting of

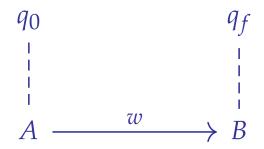
- ▷ a category C whose maps are called **arrows**
- ▷ a category Q whose maps are called **runs**
- ▷ a finitary ULF functor $p : \mathbb{Q} \to \mathbb{C}$ transporting runs into arrows,
- ▷ a pair q_0, q_f of objects of \mathbb{Q} .

Definition

The **regular language of arrows** *L*_{*M*} recognized by the automaton

$$M = (\mathbb{C}, \mathbb{Q}, p : \mathbb{Q} \to \mathbb{C}, q_0, q_f)$$

is the subset of arrows in the category C

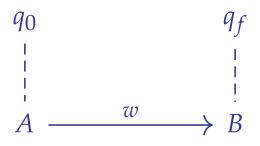


which can be lifted along *p* to a run $\alpha : q_0 \rightarrow q_f$ in the category \mathbb{Q} .

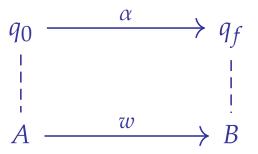
In other words, an arrow of the category ${\mathbb C}$

 $w : A \longrightarrow B$

is an element of L_M precisely when the lifting problem



can be resolved by a run $\alpha : q_0 \rightarrow q_f$ of the automaton in Q:



Context-free grammars

Reminder: A context-free grammar is a tuple

 $G = (\Sigma, N, S, P)$

consisting of

- \triangleright a finite set Σ of terminal symbols
- \triangleright a finite set *N* of non-terminal symbols
- ▷ a distinguished element $S \in N$ called the start symbol
- ▷ a finite set of production rules

 $R \longrightarrow \sigma$

where $R \in N$ and $\sigma \in (N \cup \Sigma)^*$.

The operad of spliced words

Key observation: any production rule can be factored as

 $R \longrightarrow w_0 R_1 w_1 R_2 \dots R_n w_n$

where $w_0, w_1, \ldots, w_n \in \Sigma^*$ and $R_1, \ldots, R_n \in N$.

If we forget the non-terminals, the remaining sequence of words

 $w_0 - w_1 - \ldots - w_n$

can be seen as an *n*-ary operation of the **operad of spliced words** $W[\Sigma]$.

The operad of spliced words

Composition in this operad is performed by "splicing into the gaps".

Typically, the binary operation

super-fragili-cious

may be composed with a word and a unary operation:

super-fragili-cious o (cali,stic-lido)

in order to obtain the unary operation

supercalifragilistic-lidocious

Let \mathbb{C} be a category. The operad $\mathbb{W}[\mathbb{C}]$ is defined as follows:

- ▷ its colors are pairs (A, B) of objects of \mathbb{C}
- ▷ its *n*-ary operations

$$(A_1, B_1), \ldots, (A_n, B_n) \longrightarrow (A, B)$$

are sequences of n + 1 arrows in \mathbb{C} separated by n gaps

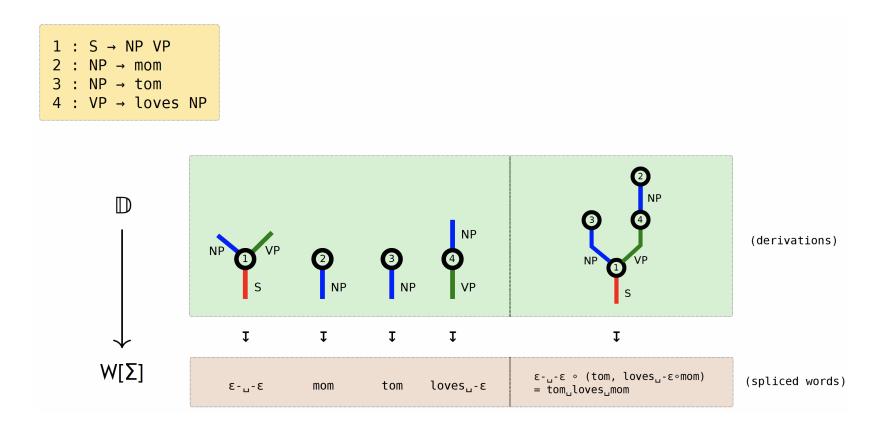
 $w_0 - w_1 - \ldots - w_n$

where each arrow must have type

$$w_i : B_i \longrightarrow A_{i+1}$$

under the convention that $B_0 = A$ and that $A_{n+1} = B$.

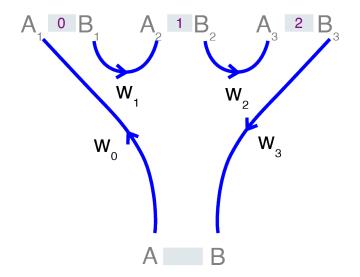
Context free grammars as functors of operads



The ternary operation

 $w_0 - w_1 - w_2 - w_3 : (A_1, B_1), (A_2, B_2), (A_3, B_3) \longrightarrow (A, B)$

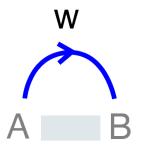
is depicted as follows:



The constant operation

w:(A,B)

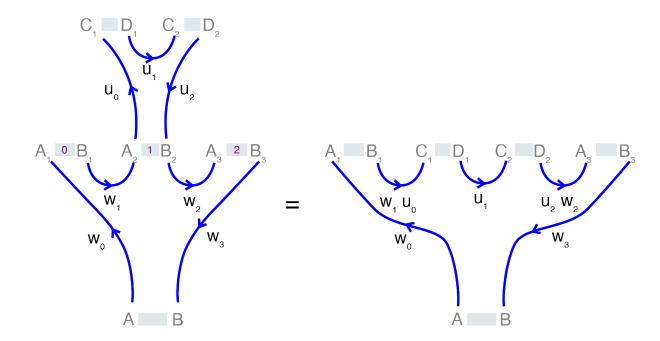
is an arrow $w : A \to B$ of the category \mathbb{C} depicted as follows:



The partial composition

 $w_0 - w_1 - w_2 - w_3 \circ_1 u_0 - u_1 - u_2$

is defined using the composition in the category \mathbb{C} , as follows:



Context-free grammar of arrows

Definition.

A context-free grammar of arrows is a tuple

 $G=(\mathbb{C}\,,\,\mathbb{S}\,,\,S\,,\,\varphi\,)$

consisting of

- \triangleright a category \mathbb{C}
- \triangleright a finite species **S** equipped with a distinguished color S
- a functor of operads

 $p : Free \mathbb{S} \longrightarrow \mathbb{W}[\mathbb{C}]$

Parsing as a lifting problem

The context-free language of arrows

 L_G

generated by the grammar

 $G = (\mathbb{C}, \mathbb{S}, S, \varphi)$

is the subset of arrows in \mathbb{C} which, seen as constants of $\mathbb{W}[\mathbb{C}]$, are in the image of constants of color *S* in the operad *Free* **S**.

Key idea:

The constants of color *S* in the operad *Free* \$ are the **parsing trees** of the context-free grammar *G* generated by the start symbol *S*.

The splicing functor

The operad of spliced arrows construction defines a functor

W[-] : Cat \longrightarrow Operad

which happens (not described here) to have a left adjoint

 $\mathbb{C}[-]$: Operad \longrightarrow Cat

which turns an operad into its contour category.

Context-free languages \cap regular languages

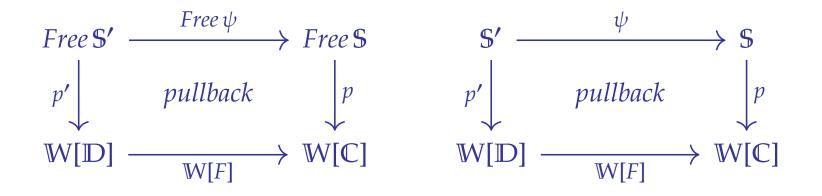
Given a functor of operads describing a context-free grammar

 $p : Free \mathbb{S} \longrightarrow \mathbb{W}[\mathbb{C}]$

and a ULF functor of categories

Proposition.

The pullback of p along W[F] can be computed as a pullback of species



Context-free languages \cap regular languages

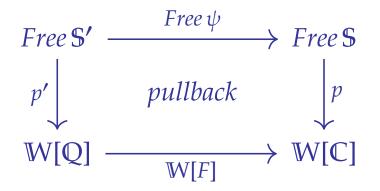
Given a functor of operads describing a context-free grammar

 $p : Free \mathbb{S} \longrightarrow \mathbb{W}[\mathbb{C}]$

and a NFDA described by a finitary ULF functor

 $F \quad : \quad \mathbb{Q} \longrightarrow \mathbb{C}$

Fact. The language of arrows in **C** of the context-free grammar



is the intersection of the context-free and of the regular language in \mathbb{C} .

The representation theorem

This talk only provides a brief 15 minutes introduction to the topic.

If you want to know more, you are welcome to look at our preliminary paper

hal-03702762

You may also listen to **Noam's recent talk** at the Topos Institute!

or take part to the MFPS 38 conference which will take place

Monday, Tuesday, Wednesday 11, 12, 13 July

simultaneously in Ithaca and Paris.