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 words as relational structures:

a ¢ b ¢ a ¢c b a ¢ a c

VAN

Qa QC
Qb

* examples:
Vr.Qq(x) = Jy.x <y A Q.(y)

AX. (Ve dJyy<xAye X) A
Ve dyy>zAhyeX)A
VM Vy (r<yA-(Fzax<z<y))=>(rxeXcygX)).
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Definable implies recognizable, for finite words

" least class closed under:
- 0*1* C {(), 1}*
- boolean combinations
- inv.images along h : > — I'*

&; dir.images along f: 2 — 1" )

[ recognized by a finite monoid
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recognized by a finite monoid

- boolean combinations h(A)= L A
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« 0"1* € {0,1}" recognized
» Lirec.by h; : X" — M, (fori=1,2)
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|. The list monad
TX =X* Tf(x1--2n) = flx1) - fzn)

Y N N

nX(ZU):ZC /LX(wlw2---wn):fw1 Wo -+ Wy

algebras = monoids

2. The powerset monad
TX = PX Tf=f
nx(x) = {x} px (@) =@

algebras = semilattices



3,4,5, ... : term monads

For an equational presentation (2, F) , put:

T'X = Y -terms over X modulo the equations

T'f - variable substitution
n - variables as terms
(L - term flattening

algebras = (as expected)
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Let T be the list monad quotiented by:
T T T=T X W

A language L. C 1> corresponds to
a language L C X closed under W

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies \W

Fact: L C T'>. is recognizable iff
(the corresponding) L C > is

regular and closed under W.



Counterexample ctd.
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For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

So: L is I'-recognizable.

PutI'=AuU{O}and h: X — T s.t. h(1)=0.

Then ﬁ(L) is the W -closure of A"0A™0 C I'™”

Fact: ﬁ(L) is not regular, so not T'-recognizable.



Def.:a monad 1’ is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.



Def.:a monad 1’ is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.



Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

weak pullback: p_r.ox
foralleXgEYstf ): y) . 1
thereis p € Pst. h(p) =z, k(p) =y ;




Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

weak pullback: p_r.ox

foraIIxEX,yEYs.t.ff):g(y) . f

thereis p € Pst. h(p) =z, k(p) =y v M
g
E.g.for n: x "Xy
“a non-unit element never becomes fl le
a unit element after a substitution”

Y —=1TY
ny
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Fact: For weakly Cartesian monads,
the powerset construction works.

Examples:

- any monad presented by linear regular equations:
- (y-z)=(x-y) 2

moy:yoa’/‘
T T =2 ) 4
r-rTl=e K

- I' presented by a binary operation with:
:I/‘ . (:I/’ . y) — :IJ . y
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1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

* let L C T be recognized by h:7> — A
etake g : 22 — 1

» define a T-algebra on (PA)*:

(ar,ar) (Br,Br) = ({a-bla€ap,be Br},
{ai-(as-(---(an-b)--)) | n>1,a, EOzL,bEﬁR}),
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Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,x)
Fact: Malcevian monads are MSO.

Examples:

- groups  t(z,y,2) =zy 'z

- Boolean algebras

t(x,y,2) = (x Az) V(e A=y A-z)V (-2 A-yA2)
- Heyting algebras

Hz,y,2) = ((z = y) 2 2) A((z =2 y) = 2) A2V 2)
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|.Monoids with z° = 22

2. The “marked words’ monad:

TX = {(B,w)|B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-r)=(r-y) o

4.The “almost Mal’cevian” monad:
a ternary operation with

olz,x,y) = oy, x, )



The landscape of monads

NX < xX* MSO monads 3 = g2

breserve finiteness

Mal’cevian weakly Cartesian

(:Cy):v = a:(y:z:) 0(% €T, y) — O(y,az,x)
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