Monadic
Monadic Second Order Logic

Bartek Klin
Univ. of Oxford

Mikotaj Bojanczyk Julian Salamanca
Warsaw Univ.

Structure Meets Power
Paris, 4 July 2022

Structure meets structure

SmP, 04/07/22

Structure meets structure

Monads
n:ld=1T
w:TT =T

SmP, 04/07/22

Monads
n:Id="1T
u:TT =T

Comonads

e: D= 1d
0: D= DD

Eilenberg-Moore

Monads
n:Id="1T {}
w:TT =T |

Comonads :
ec: D= 1d
0: D= DD

Eilenberg-Moore

Monads
n:Id="1T
w:TT =T 31

Comonads : |
e: D =1d *
0: D= DD

Eilenberg-Moore

|
|
§ |
[
e e -
= == -

Monads X —=1TY | T'X — X
n:1d=1T | effect structure
w:1T'=1T | toproduce | tocompose

Comonads | Fﬂ
e: D=1d
0:D = DD

Structure meets structure

Kleisli ~ Eilenberg-Moore

X —=TY TX — X

Monads . |
n:1d=1T ‘ effect structure
pw:TT=T | toproduce | tocompose

|
I
1
I
== = e e ST = —— _ —_ _ __— ————— e e - - - _ E—
|
|
|
|

Comonads \ DX =Y
ec: D =1d | context
0:D= DD | tointerpret

SmP, 04/07/22

Structure meets structure

Kleisli |
| - - _—

| t
Monads | X —= 1Y |
n:ld=T ‘ effect
por D=0 | to produce 1
Comonads DX =Y
ec: D= 1d context
0: D= DD to interpret

SmP, 04/07/22

Eilenberg-Moore

TX — X

structure
to compose

X - DX

behaviour
to unfold

Structure meets structure

Kleisli ~ Eilenberg-Moore

Monads A = 1Y

n:ld=T | effect
pw:TT =T | to produce

- = — s e = == — —— — — = —_— =

Comonads \ DX —-Y j X = DX
e D= 1d * context behaviour
0:D= DD | tointerpret | to unfold

SmP, 04/07/22

Power meets power

/ - - - o \‘*; /
accepted by finite automata | / defined by
‘ regular expressions

SmP, 04/07/22

Power meets power

/

SmP, 04/07/22

defined by
regular expressions

/ defined by
regular expressions

Power meets power

7

S o R . P
accepted by finite automata | / defined by
‘ regular expressions

SmP, 04/07/22

 words as relational structures:

a ¢ b ¢ a ¢ b a c¢ a

 words as relational structures:

a ¢ b ¢ a ¢ b a

C

a

VAN

 words as relational structures:

a ¢ b ¢ a ¢ b a

C

a

C

Qa

VAN

 words as relational structures:

a ¢ b ¢ a ¢ b a

C

a

C

Qa

VAN

Qb

 words as relational structures:

a ¢ b ¢ a ¢ b a

C

a

C

Qa

VAN

Qb

oF

 words as relational structures:

a ¢ b ¢ a ¢ b a

* examples:

Vr.Qq(x) = Jy.x <y A Q.(y)

C

a

C

Qa

VAN

Qb

oF

 words as relational structures:

a ¢ b ¢ a ¢c b a ¢ a c

VAN

Qa QC
Qb

* examples:
Vr.Qq(x) = Jy.x <y A Q.(y)

AX. (Ve dJyy<xAye X) A
Ve dyy>zAhyeX)A
VM Vy (r<yA-(Fzax<z<y))=>(rxeXcygX)).

Our focus

=

4 | JMSO;deﬁ nable

/ recognized by finite monoids |

— L A
I 1M

r<y Quz) ze€X
oVY e dX.¢

SmP, 04/07/22

MSO-definable recognized by finite monoids

%
{Ij<y QQ(ZU) CEEX h(A): L A
1N I
SVe =6 X oM

- quite easy for finite words or trees

- difficult (or open) for other structures
- structure-specific arguments

MSO-definable recognized by finite monoids

{Ij<y QQ(ZU) CEEX h(A): L A
gL 1N I
SVe =6 X oM

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

- relatively easy for all cases

- the arguments look generic

Our focus

=

4 | JMSO;deﬁ nable

/ recognized by finite monoids |

— L A
I 1M

r<y Quz) ze€X
oVY e dX.¢

SmP, 04/07/22

Our focus

ran

4 MSb;deﬁ nable

[recognized by finite monoids |

— L A
I I

r<y Q.z) zeX
OVY —¢ IX.¢

" least class closed under:
-0*1* C {0,1}
- boolean combinations
- inv.images along h : > — I'*
K dir.images along h : 2 — I /

= ——

SmP, 04/07/22

/" least class closed under:
-0*1* C {0,1}*

- boolean combinations
- inv.images along h : > — I'*
K; dir.images along h : 2 — I

| recognized by finite monoids |

Definable implies recognizable, for finite words

" least class closed under:
- 0*1* C {(), 1}*
- boolean combinations
- inv.images along h : > — I'*

&; dir.images along f: 2 — 1")

[recognized by a finite monoid

(A = L A

I I

SmP, 04/07/22

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

« 0"1* € {0,1}" recognized

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

« 0"1* € {0,1}" recognized
» Lirec.by h; : X" — M, (fori=1,2)
implies L1 N Ly rec.by (hi,ha) : X — M; X Mo

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

« 0"1* € {0,1}" recognized
» Lirec.by h; : X" — M, (fori=1,2)
implies L1 N Ly rec.by (hi,ha) : X — M; X Mo
Z* \L@ I'ecC. b)’ hz

least class closed under:

- 0*1* C {0,1}*

recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'” v a M
- dir.images along h : > — T’ 2" — M

« 0"1* € {0,1}" recognized
» Lirec.by h; : X" — M, (fori=1,2)
implies L1 N Ly rec.by (hi,ha) : X — M; X Mo
>*\ L; rec.by h;
* L rec.by h: 1™ — M, g:x—1I"
implies ‘7 (L) rec. by hog g:x" —1"

The powerset construction

" least class closed under:
- 0*1* C {O, 1}*
- boolean combinations
~ -inv.imagesalong h: > — I'" |
K; dir.images along 7 : 2 — 1")

[recognized by a finite monoid

SmP, 04/07/22

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

* let L C ¥" be recognized by h : X" — M

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

* let L C ¥" be recognized by h : X" — M
ctake g : X — I

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

* let L C ¥" be recognized by h : X" — M
ctake g : X — I

* define 2 monoid on PM :
S-T={s-t|seSteT}

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'™ v 1 M
- dir.images along h : > — T’ 2" — M

* let L C ¥" be recognized by h : X" — M
ctake g : X — I

* define a monoid on PM :
S-T={s-t|seSteT}
eput k: 1™ = PM s.t. k(c) ={h(a) | gla) = c}

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'” v a M
- dir.images along h : > — T’ 2" — M

* let L C X" be recognized by h : X" — M
ctake g : X — I
* define a monoid on P M :
S-T={s-t|seSteT}
eput k: 1™ = PM s.t. k(c) ={h(a) | gla) = c}
BCPMst. B={S|SNAG#(}

least class closed under: recognized by a finite monoid

- boolean combinations h(A)= L A
- inv.images along h : X — I'” I M
- dir.images along h : > — T’ 2" — M

* let L C ¥" be recognized by h : X" — M
ctake g : X — I

* define a monoid on P M :
S-T={s-t|seSteT}
eput k: 1™ = PM s.t. k(c) ={h(a) | gla) = c}
BCPMst. B={S|SNAG#(}

» then k and B recognize g* (L)

We have just shown:

The class of languages
recognized by finite monoids
is closed under:
- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

We have just shown:

The class of languages
recognized by finite monoids
is closed under:
- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

Does this work for other structures?

T : Set — Set n:ld="1T w11l =T

T T 77T L 7T

T < T
\ ,LL/ Tu o

T 1T >

1 > 17" < 1 11T > T'T
\J/M/ T 2
1 1T > T

Algebras: a: TA — A

Ao TA TTAEA.TA

A TA > A

a

T : Set — Set n:ld="1T w11l =T

1 1T > 17T

T T
> 1" <

/
N\

T 1T LL>T
Algebras: a: TA — A homomorphisms:
A—">TA TTAEESTA TA—"~TB

\ o 7l E | I

a

|. The list monad
TX =X* Tf(x1--2n) = flx1) - fzn)

A~~~ —~

nX(ZU):ZC /LX(wlw2---wn):fw1 Wo -+ Wy

algebras = monoids

|. The list monad
TX =X* Tf(x1--2n) = flx1) - fzn)

Y N N

nX(ZU):ZC /LX(wlw2---wn):fw1 Wo -+ Wy

algebras = monoids

2. The powerset monad
TX = PX Tf=f
nx(x) = {x} px (@) =@

algebras = semilattices

3,4,5, ... : term monads

For an equational presentation (2, F) , put:

T'X = Y -terms over X modulo the equations

T'f - variable substitution
n - variables as terms
(L - term flattening

algebras = (as expected)

Fact: ux : IT'I'’X — T'X is always a T'-algebra.

Fact: ux : IT'I'’X — T'X is always a T'-algebra.

17175, > "M
M X m
Y Y
1> > M

U U

L A

Fact: ux : IT'I'’X — T'X is always a T'-algebra.

IMD> > T'M
M X m
Y Y :
T - M finite
h
U U

L A

Fact: ux : IT'I'’X — T'X is always a T'-algebra.

IMD> > T'M
M X m
Y Y :
T - M finite
h
U U

Fact: ux : IT'I'’X — T'X is always a T'-algebra.

7T M TV
X m
Y Y :
T - M finite
h
. Ul Ul
h(A) =L A

language recognized by h

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

L CTX

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.;

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.;

those of the form 1'f : 1> — TT

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

those of the form 1'f : 1> — TT

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,

- direct images along (surjective)
letter-to-letter homomorphisms.

The class of languages
recognized by finite algebras
is closed under:

- boolean combinations
- inverse images along homomorphisms,
¥ - direct images along (surjective)
letter-to-letter homomorphisms.

Let T be the list monad quotiented by:
T T -T=2T X

Let T be the list monad quotiented by:
T T T=T X W

Let T be the list monad quotiented by:
T T T=T X W

A language L. C 1> corresponds to
a language L C X closed under W

(in the sense of (sub)word rewriting)

Let T be the list monad quotiented by:
T T T=T X W

A language L. C 1> corresponds to
a language L C X closed under W

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies \W

Let T be the list monad quotiented by:
T T T=T X W

A language L. C 1> corresponds to
a language L C X closed under W

(in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies \W

Fact: L C T'>. is recognizable iff
(the corresponding) L C > is

regular and closed under W.

Counterexample ctd.

SmP, 04/07/22

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

So: L is I'-recognizable.

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

So: L is I'-recognizable.

PutI'=AuU{O}and h: X — T s.t. h(1)=0.

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

So: L is I'-recognizable.

PutI'=AuU{O}and h: X — T s.t. h(1)=0.

Then ﬁ(L) is the W -closure of A"0A™0 C I'™”

For A ={a,b,c} and ¥ = AU{0, 1}, let
L =A"0A"1 C X~

Fact: L is closed under W.

So: L is I'-recognizable.

PutI'=AuU{O}and h: X — T s.t. h(1)=0.

Then ﬁ(L) is the W -closure of A"0A™0 C I'™”

Fact: ﬁ(L) is not regular, so not T'-recognizable.

Def.:a monad 1’ is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

Def.:a monad 1’ is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

weak pullback: p_r.ox
foralleXgEYstf): y) . 1
thereis p € Pst. h(p) =z, k(p) =y ;

Def.:a monad 1 is
if: - 1" preserves weak pullbacks

- all naturality squares for n and p
are weak pullbacks.

weak pullback: p_r.ox

foraIIxEX,yEYs.t.ff):g(y) . f

thereis p € Pst. h(p) =z, k(p) =y v M
g
E.g.for n: x "Xy
“a non-unit element never becomes fl le
a unit element after a substitution”

Y —=1TY
ny

Fact: For weakly Cartesian monads,
the powerset construction works.

Fact: For weakly Cartesian monads,
the powerset construction works.

Examples:

- any monad presented by linear regular equations:
- (y-z)=(x-y) 2
r-Yy=y-T
r-T=2 x

x-x_lze

Fact: For weakly Cartesian monads,
the powerset construction works.

Examples:

- any monad presented by linear regular equations:
- (y-z)=(x-y) 2

moy:yoa’/‘
T T =2) 4
r-rTl=e K

- I' presented by a binary operation with:
:I/‘ . (:I/’ . y) — :IJ . y

1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

* let L C T be recognized by h:7> — A
etake g : 22 — 1

1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

* let L C T be recognized by h:7> — A
etake g : 22 — 1

» define a T-algebra on (PA)*:

(OzL,OéR) ' (ﬁL,ﬁR) — ({ab ’ a € ar,be 6}{},
{ai-(as-(---(an-b)--)) | n>1,a, EOzL,bGﬁR}),

1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

* let L C T be recognized by h:7> — A
etake g : 22 — 1

» define a T-algebra on (PA)*:

(OzL,OéR) ' (ﬁL,ﬁR) — ({ab ’ a € ar,be 6}{},
{ai-(as-(---(an-b)--)) | n>1,a, EOzL,bGﬁR}),

1" :one binary operation, modulo one equation
(- (r-y)) =2 (2-y)

* let L C T be recognized by h:7> — A
etake g : 22 — 1

» define a T-algebra on (PA)*:

(ar,ar) (Br,Br) = ({a-bla€ap,be Br},
{ai-(as-(---(an-b)--)) | n>1,a, EOzL,bEﬁR}),

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,x)

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,x)
Fact: Malcevian monads are MSO.

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,r,y) =y =t(y,)
Fact: Malcevian monads are MSO.
Examples:

- groups t(z,y,2) =zy 'z

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,r,y) =y =t(y,)
Fact: Malcevian monads are MSO.
Examples:
1

- groups t(z,y,2) =Yy 2

- Boolean algebras
t(x,y,2) = (x Az) V(e A=y A-z)V (-2 A-yA2)

Def.:a monad is
if it admits (an eq. presentation with)

a ternary term t(x,y, z) such that
t(z,z,y) =y =t(y,z,x)
Fact: Malcevian monads are MSO.

Examples:

- groups t(z,y,2) =zy 'z

- Boolean algebras

t(x,y,2) = (x Az) V(e A=y A-z)V (-2 A-yA2)
- Heyting algebras

Hz,y,2) = ((z = y) 2 2) A((z =2 y) = 2) A2V 2)

|.Monoids with z° = 22

|.Monoids with z° = 22

2. The “marked words” monad:

TX = {(B,w)|B:X =N, we X*, 8<w)

|.Monoids with z° = 22

2. The “marked words’ monad:

TX = {(B,w)|B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-r)=(r-y) o

|.Monoids with z° = 22

2. The “marked words’ monad:

TX = {(B,w)|B:X =N, we X*, 8<w)

3.The “balanced associativity” monad:
a binary operation with

r-(y-r)=(r-y) o

4.The “almost Mal’cevian” monad:
a ternary operation with

olz,x,y) = oy, x,)

The landscape of monads

NX < xX* MSO monads 3 = g2

breserve finiteness

Mal’cevian weakly Cartesian

(:Cy):v = a:(y:z:) 0(% €T, y) — O(y,az,x)

SmP, 04/07/22

