Monadic Monadic Second Order Logic

Bartek Klin Univ. of Oxford

Mikołaj Bojańczyk

Julian Salamanca

Warsaw Univ.

Structure Meets Power Paris, 4 July 2022

Monads

 $\eta: \mathrm{Id} \Rightarrow T$

 $\mu: TT \Rightarrow T$

Monads

 $\eta: \mathrm{Id} \Rightarrow T$

 $\mu: TT \Rightarrow T$

Comonads

 $\epsilon: D \Rightarrow \mathrm{Id}$

 $\delta: D \Rightarrow DD$

	Kleisli	Eilenberg-Moore
$\begin{array}{l} Monads \\ \eta : \mathrm{Id} \Rightarrow T \\ \mu : TT \Rightarrow T \end{array}$		
Comonads $\epsilon: D \Rightarrow \mathrm{Id}$ $\delta: D \Rightarrow DD$		

	Kleisli	Eilenberg-Moore
$\begin{array}{l} Monads \\ \eta : \mathrm{Id} \Rightarrow T \\ \mu : TT \Rightarrow T \end{array}$	$X \rightarrow TY$ effect to produce	
Comonads $\epsilon: D \Rightarrow \mathrm{Id}$ $\delta: D \Rightarrow DD$		

Kleisli

Eilenberg-Moore

Monads

$$\eta: \mathrm{Id} \Rightarrow T$$

$$\mu: TT \Rightarrow T$$

 $X \to TY$

effect to produce $TX \to X$

structure to compose

Comonads

$$\epsilon: D \Rightarrow \mathrm{Id}$$

$$\delta: D \Rightarrow DD$$

Kleisli

Eilenberg-Moore

Monads

$$\eta: \mathrm{Id} \Rightarrow T$$

$$\mu: TT \Rightarrow T$$

$X \to TY$

effect to produce

$TX \to X$

structure to compose

Comonads

$$\epsilon: D \Rightarrow \mathrm{Id}$$

$$\delta: D \Rightarrow DD$$

$$DX \to Y$$

context to interpret

Kleisli

Eilenberg-Moore

Monads

$$\eta: \mathrm{Id} \Rightarrow T$$

$$\mu: TT \Rightarrow T$$

 $X \to TY$

effect to produce $TX \to X$

structure to compose

Comonads

$$\epsilon: D \Rightarrow \mathrm{Id}$$

$$\delta: D \Rightarrow DD$$

 $DX \to Y$

context to interpret $X \to DX$

behaviour to unfold

Kleisli

Eilenberg-Moore

Monads

 $\eta: \mathrm{Id} \Rightarrow T$

 $\mu: TT \Rightarrow T$

 $X \to TY$

effect to produce $TX \to X$

structure to compose

Comonads

 $\epsilon: D \Rightarrow \mathrm{Id}$

 $\delta: D \Rightarrow DD$

 $DX \to Y$

context to interpret $X \to DX$

behaviour to unfold

accepted by finite automata

defined by regular expressions

 $E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$

accepted by finite automata

defined by regular expressions

 $E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$

accepted by finite automata

defined by regular expressions

$$E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$$

recognized by finite monoids

$$\overleftarrow{h}(A) = L \qquad A \\
 & \cap \qquad \qquad \cap \\
 & \Sigma^* \longrightarrow M$$

MSO-definable

$$x < y \quad Q_a(x) \quad x \in X$$

$$x \in X$$

$$\phi \lor \psi$$

$$\neg \phi$$

$$\exists X.\phi$$

accepted by finite automata

defined by regular expressions

$$E ::= \epsilon \mid a \mid E + E \mid EE \mid E^*$$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} A \\
|\cap| |\cap| \\
\Sigma^* \longrightarrow M$$

$$x < y \quad Q_a(x) \quad x \in X$$

$$\phi \lor \psi \quad \neg \phi \quad \exists X. \phi$$

$$\neg \phi$$

$$\exists X.\phi$$

words as relational structures:

words as relational structures:

examples:

$$\forall x. Q_a(x) \Rightarrow \exists y. x < y \land Q_c(y)$$

words as relational structures:

examples:

$$\forall x. Q_a(x) \Rightarrow \exists y. x < y \land Q_c(y)$$

$$\exists X. (\forall x \; \exists y \; y \leq x \land y \in X) \land (\forall x \; \exists y \; y \geq x \land y \in X) \land (\forall x \; \forall y \; (x < y \land \neg (\exists z \; x < z < y)) \Rightarrow (x \in X \Leftrightarrow y \notin X)).$$

MSO-definable

$$Q_a(x)$$

$$x < y$$
 $Q_a(x)$ $x \in X$ $\phi \lor \psi$ $\neg \phi$ $\exists X.\phi$

$$\phi \vee \psi$$

$$\neg \phi$$

$$\exists X. \varsigma$$

$$\overleftarrow{h}(A) = L \qquad A \\
 & \cap \qquad \qquad \cap \\
 & \Sigma^* \longrightarrow M$$

MSO-definable

$$x < y$$
 $Q_a(x)$ $x \in X$ $\phi \lor \psi$ $\neg \phi$ $\exists X.\phi$

$$\phi \lor \psi \quad \neg \phi \quad \exists X. \phi$$

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

MSO-definable

$$x < y \qquad Q_a(x) \qquad x \in X$$
$$\phi \lor \psi \qquad \neg \phi \qquad \exists X. \phi$$

$$\phi \lor \psi \quad \neg \phi \quad \exists X.\phi$$

- quite easy for finite words or trees
- difficult (or open) for other structures
- structure-specific arguments

- relatively easy for all cases
- the arguments look generic

MSO-definable

$$Q_a(x)$$

$$x < y$$
 $Q_a(x)$ $x \in X$ $\phi \lor \psi$ $\neg \phi$ $\exists X.\phi$

$$\phi \vee \psi$$

$$\neg \phi$$

$$\exists X. \varsigma$$

$$\overleftarrow{h}(A) = L \qquad A \\
 & \cap \qquad \qquad \cap \\
 & \Sigma^* \longrightarrow M$$

MSO-definable

$$x < y$$
 $Q_a(x)$ $x \in X$ $\phi \lor \psi$ $\neg \phi$ $\exists X.\phi$

$$x \in X$$

$$\phi \vee \psi$$

$$\neg \phi$$

$$\exists X.\phi$$

recognized by finite monoids

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma o \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

$$\overleftarrow{h}(A) = L \qquad A$$

$$| \cap \qquad | \cap \qquad |$$

$$\Sigma^* \longrightarrow M$$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

$$\overleftarrow{h}(A) = L \qquad A \\
 & | \cap \qquad | \cap \\
 & \Sigma^* \longrightarrow M$$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

recognized by a finite monoid

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

• $0^*1^* \subseteq \{0,1\}^*$ recognized

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

- $0^*1^* \subseteq \{0,1\}^*$ recognized
- L_i rec. by $h_i: \Sigma^* \to M_i$ (for i=1,2) implies $L_1 \cap L_2$ rec. by $\langle h_1,h_2 \rangle: \Sigma^* \to M_1 \times M_2$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

- $0^*1^* \subseteq \{0,1\}^*$ recognized
- L_i rec. by $h_i: \Sigma^* \to M_i$ (for i=1,2) implies $L_1 \cap L_2$ rec. by $\langle h_1, h_2 \rangle : \Sigma^* \to M_1 \times M_2$ $\Sigma^* \setminus L_i$ rec. by h_i

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

- $0^*1^* \subseteq \{0,1\}^*$ recognized
- L_i rec. by $h_i: \Sigma^* \to M_i$ (for i=1,2) implies $L_1 \cap L_2$ rec. by $\langle h_1, h_2 \rangle : \Sigma^* \to M_1 \times M_2$ $\Sigma^* \setminus L_i$ rec. by h_i
- $\begin{array}{ll} \bullet \ L \ \operatorname{rec.\,by} \ h: \Gamma^* \to M \,, & g: \Sigma \to \Gamma^* \\ \operatorname{implies} \ \overleftarrow{g} \, (L) \ \operatorname{rec.\,by} \ h \circ \widehat{g} & \widehat{g}: \Sigma^* \to \Gamma^* \end{array}$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

$$\overleftarrow{h}(A) = L \qquad A \\
 & \cap \qquad \qquad \\
 & \Sigma^* \xrightarrow{h} M$$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

recognized by a finite monoid

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

• let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*\,$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} A \\
|\cap| \\
\Sigma^* \xrightarrow{h} M$$

- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma \to \Gamma$

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma o \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} A \\
|\cap| \\
\Sigma^* \xrightarrow{h} M$$

- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g: \Sigma \to \Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

The powerset construction

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

recognized by a finite monoid

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

• put $k:\Gamma^* \to \mathcal{P}M$ s.t. $k(c)=\{h(a) \mid g(a)=c\}$

The powerset construction

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma o\Gamma\,$

recognized by a finite monoid

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} A \\
|\cap| \\
\Sigma^* \xrightarrow{h} M$$

- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g:\Sigma\to\Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

• put $k:\Gamma^* o\mathcal{P}M$ s.t. $k(c)=\{h(a)\mid g(a)=c\}$ $B\subseteq\mathcal{P}M$ s.t. $B=\{S\mid S\cap A\neq\emptyset\}$

The powerset construction

least class closed under:

- $-0^*1^* \subseteq \{0,1\}^*$
- boolean combinations
- inv. images along $\,h:\Sigma \to \Gamma^*$
- dir. images along $\,h:\Sigma woheadrightarrow \,\Gamma\,$

recognized by a finite monoid

$$\frac{\overleftarrow{h}(A) = L}{|\cap|} \qquad A \\
|\cap| \qquad |\cap| \\
\Sigma^* \longrightarrow M$$

- let $L \subseteq \Sigma^*$ be recognized by $h: \Sigma^* \to M$
- take $g: \Sigma \to \Gamma$
- define a monoid on $\mathcal{P}M$:

$$S \cdot T = \{ s \cdot t \mid s \in S, t \in T \}$$

- put $k:\Gamma^*\to\mathcal{P}M$ s.t. $k(c)=\{h(a)\mid g(a)=c\}$ $B\subseteq\mathcal{P}M$ s.t. $B=\{S\mid S\cap A\neq\emptyset\}$
- then k and B recognize $g^*(L)$

Definable implies recognizable, for finite words

We have just shown:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

Definable implies recognizable, for finite words

We have just shown:

The class of languages recognized by finite monoids is closed under:

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

Does this work for other structures?

$$T:\mathbf{Set} o\mathbf{Set}$$

$$\eta: \mathrm{Id} \Rightarrow T$$

$$T: \mathbf{Set} \to \mathbf{Set}$$
 $\eta: \mathrm{Id} \Rightarrow T$ $\mu: TT \Rightarrow T$

$$T \xrightarrow{\eta T} TT \xleftarrow{T\eta} T$$

$$\downarrow \mu$$

$$T$$

$$TTT \xrightarrow{\mu T} TT$$

$$T\mu \downarrow \qquad \qquad \downarrow \mu$$

$$TT \xrightarrow{\mu} T$$

Monads

$$T: \mathbf{Set} \to \mathbf{Set}$$
 $\eta: \mathrm{Id} \Rightarrow T$ $\mu: TT \Rightarrow T$

$$\eta: \mathrm{Id} \Rightarrow T$$

$$\mu: TT \Rightarrow T$$

$$T \xrightarrow{\eta T} TT \xleftarrow{T\eta} T$$

$$TTT \xrightarrow{\mu T} TT$$

$$T\mu \downarrow \qquad \qquad \downarrow \mu$$

$$TT \xrightarrow{\mu T} T$$

Algebras: $a: TA \rightarrow A$

$$A \xrightarrow{\eta_A} TA \qquad TTA \xrightarrow{\mu_A} TA$$

$$\downarrow a \qquad \qquad \downarrow a$$

$$A \qquad TA \xrightarrow{a} A$$

Monads

$$T:\mathbf{Set} o\mathbf{Set}$$

$$\eta: \mathrm{Id} \Rightarrow T$$

$$T: \mathbf{Set} \to \mathbf{Set}$$
 $\eta: \mathrm{Id} \Rightarrow T$ $\mu: TT \Rightarrow T$

$$T \xrightarrow{\eta T} TT \xleftarrow{T\eta} T$$

$$\downarrow \mu$$

$$T$$

$$TTT \xrightarrow{\mu T} TT$$

$$T\mu \downarrow \qquad \qquad \downarrow \mu$$

$$TT \xrightarrow{\mu} T$$

Algebras: $a: TA \rightarrow A$

$A \xrightarrow{\eta_A} TA \xrightarrow{TTA \xrightarrow{\mu_A}} TA$ $\begin{vmatrix} a & Ta \\ A & TA - a \end{vmatrix} \rightarrow A$

homomorphisms:

$$TA \xrightarrow{Th} TB$$

$$\downarrow a \qquad \qquad \downarrow b$$

$$TA \xrightarrow{h} TB$$

Examples

I.The list monad

$$TX = X^* \qquad Tf(x_1 \cdots x_n) = f(x_1) \cdots f(x_n)$$

$$\eta_X(x) = x \qquad \mu_X(w_1 w_2 \cdots w_n) = w_1 w_2 \cdots w_n$$

algebras = monoids

Examples

I.The list monad

$$TX = X^* \qquad Tf(x_1 \cdots x_n) = f(x_1) \cdots f(x_n)$$

$$\eta_X(x) = x \qquad \mu_X(w_1 w_2 \cdots w_n) = w_1 w_2 \cdots w_n$$

algebras = monoids

2. The powerset monad

$$TX = \mathcal{P}X$$
 $Tf = \overrightarrow{f}$ $\eta_X(x) = \{x\}$ $\mu_X(\Phi) = \bigcup \Phi$

algebras = semilattices

Examples ctd.

```
3, 4, 5, ...: term monads
  For an equational presentation (\Sigma, E), put:
  TX = \Sigma -terms over X modulo the equations
  Tf

    variable substitution

          - variables as terms
   \eta
          - term flattening
   \mu
  algebras = (as expected)
```

$$TT\Sigma \xrightarrow{Th} TM$$

$$\mu_X \downarrow \qquad \qquad \downarrow m$$

$$T\Sigma \xrightarrow{h} \qquad \qquad \cup I$$

$$L \qquad A$$

$$TT\Sigma \xrightarrow{Th} TM$$

$$\mu_X \downarrow \qquad \qquad \downarrow^m$$

$$T\Sigma \xrightarrow{h} M$$

$$H(A) = L$$

$$A$$
finite

Fact: $\mu_X: TTX \to TX$ is always a T-algebra.

language recognized by h

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

$$L \subseteq T\Sigma$$

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

those of the form $Tf:T\Sigma \to T\Gamma$

- -boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

those of the form $Tf:T\Sigma \to T\Gamma$

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
 - direct images along (surjective) letter-to-letter homomorphisms.

- boolean combinations
- inverse images along homomorphisms,
- direct images along (surjective)
 letter-to-letter homomorphisms.

Counterexample

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

Counterexample

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

Counterexample

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

A language $L\subseteq T\Sigma$ corresponds to a language $L\subseteq \Sigma^*$ closed under ${\it W}$ (in the sense of (sub)word rewriting)

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

A language $L\subseteq T\Sigma$ corresponds to a language $L\subseteq \Sigma^*$ closed under ${\it W}$ (in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies $\ensuremath{\mathsf{W}}$

Let T be the list monad quotiented by:

$$x \cdot x \cdot x = x \cdot x$$

A language $L\subseteq T\Sigma$ corresponds to a language $L\subseteq \Sigma^*$ closed under ${\it W}$ (in the sense of (sub)word rewriting)

A T-algebra is a monoid that satisfies W

Fact: $L\subseteq T\Sigma$ is recognizable iff (the corresponding) $L\subseteq \Sigma^*$ is regular and closed under ${\bf W}$.

Counterexample ctd.

Counterexample ctd.

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subseteq\Sigma^*$$

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subseteq\Sigma^*$$

Fact: L is closed under W.

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subseteq\Sigma^*$$

Fact: L is closed under W.

So: L is T-recognizable.

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subseteq\Sigma^*$$

Fact: L is closed under W.

So: L is T-recognizable.

Put $\Gamma = \Delta \cup \{0\}$ and $h: \Sigma \to \Gamma$ s.t. h(1) = 0.

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subset\Sigma^*$$

Fact: L is closed under W.

So: L is T-recognizable.

Put $\Gamma = \Delta \cup \{0\}$ and $h: \Sigma \to \Gamma$ s.t. h(1) = 0.

Then $\overrightarrow{Th}(L)$ is the $\mbox{$\mbox{$\it W$}$-closure of } \Delta^*0\Delta^*0 \subseteq \Gamma^*$

For
$$\Delta=\{a,b,c\}$$
 and $\Sigma=\Delta\cup\{0,1\}$, let
$$L=\Delta^*0\Delta^*1\subseteq\Sigma^*$$

Fact: L is closed under W.

So: L is T-recognizable.

Put $\Gamma = \Delta \cup \{0\}$ and $h: \Sigma \to \Gamma$ s.t. h(1) = 0.

Then $\overrightarrow{Th}(L)$ is the $\mbox{$\mbox{$\it W$}$-closure of } \Delta^*0\Delta^*0 \subseteq \Gamma^*$

Fact: $\overrightarrow{Th}(L)$ is not regular, so not T-recognizable.

A sufficient condition

Def.: a monad T is weakly Cartesian

- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

Def.: a monad T is weakly Cartesian

- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

A sufficient condition

Def.: a monad T is weakly Cartesian

- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

weak pullback: $P \xrightarrow{h} X$ for all $x \in X$, $y \in Y$ s.t. f(x) = g(y) $\downarrow f$ there is $p \in P$ s.t. h(p) = x, k(p) = y

Def.: a monad T is weakly Cartesian

- if: T preserves weak pullbacks
 - all naturality squares for η and μ are weak pullbacks.

weak pullback:

for all
$$x\in X$$
 , $y\in Y$ s.t. $f(x)=g(y)$ there is $p\in P$ s.t. $h(p)=x$, $k(p)=y$

$$P \xrightarrow{h} X$$

$$\downarrow k \qquad \qquad \downarrow f$$

$$Y \xrightarrow{g} Z$$

E.g. for η :

"a non-unit element never becomes a unit element after a substitution"

$$X \xrightarrow{\eta_X} TX$$

$$f \downarrow \qquad \qquad \downarrow Tf$$

$$Y \xrightarrow{\eta_Y} TY$$

A sufficient condition

Fact: For weakly Cartesian monads, the powerset construction works.

Fact: For weakly Cartesian monads, the powerset construction works.

Examples:

- any monad presented by linear regular equations:

Fact: For weakly Cartesian monads, the powerset construction works.

Examples:

- any monad presented by linear regular equations:

- T presented by a binary operation with:

$$x \cdot (x \cdot y) = x \cdot y$$

Beyond powerset

T: one binary operation, modulo one equation

$$z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$$

Beyond powerset

 ${\cal T}$: one binary operation, modulo one equation

$$z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$$

- let $L \subseteq T\Sigma$ be recognized by $h: T\Sigma \to A$
- take $g:\Sigma \to \Gamma$

 ${\cal T}$: one binary operation, modulo one equation

$$z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$$

- let $L \subseteq T\Sigma$ be recognized by $h: T\Sigma \to A$
- take $g:\Sigma\to\Gamma$
- define a T-algebra on $(\mathcal{P}A)^2$:

$$(\alpha_L, \alpha_R) \cdot (\beta_L, \beta_R) = (\{a \cdot b \mid a \in \alpha_L, b \in \beta_R\},$$

$$\{a_1 \cdot (a_2 \cdot (\cdots (a_n \cdot b) \cdots)) \mid n \ge 1, a_i \in \alpha_L, b \in \beta_R\}),$$

 ${\cal T}$: one binary operation, modulo one equation

$$z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$$

- let $L \subseteq T\Sigma$ be recognized by $h: T\Sigma \to A$
- take $g:\Sigma \to \Gamma$
- define a T-algebra on $(\mathcal{P}A)^2$:

$$(\alpha_L, \alpha_R) \cdot (\beta_L, \beta_R) = (\{a \cdot b \mid a \in \alpha_L, b \in \beta_R\},$$

$$\{a_1 \cdot (a_2 \cdot (\cdots (a_n \cdot b) \cdots)) \mid n \ge 1, a_i \in \alpha_L, b \in \beta_R\}),$$

•

 ${\cal T}$: one binary operation, modulo one equation

$$z \cdot (x \cdot (x \cdot y)) = z \cdot (x \cdot y)$$

- let $L \subseteq T\Sigma$ be recognized by $h: T\Sigma \to A$
- take $g:\Sigma\to\Gamma$
- define a T-algebra on $(\mathcal{P}A)^2$:

$$(\alpha_L, \alpha_R) \cdot (\beta_L, \beta_R) = (\{a \cdot b \mid a \in \alpha_L, b \in \beta_R\},$$

$$\{a_1 \cdot (a_2 \cdot (\cdots (a_n \cdot b) \cdots)) \mid n \ge 1, a_i \in \alpha_L, b \in \beta_R\}),$$

•

A generalised powerset construction?

Sufficient condition II

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x,y,z) such that t(x,x,y)=y=t(y,x,x)

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x,y,z) such that t(x,x,y)=y=t(y,x,x)

Fact: Malcevian monads are MSO.

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x,y,z) such that

$$t(x, x, y) = y = t(y, x, x)$$

Fact: Malcevian monads are MSO.

Examples:

- groups
$$t(x, y, z) = xy^{-1}z$$

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x,y,z) such that

$$t(x, x, y) = y = t(y, x, x)$$

Fact: Malcevian monads are MSO.

Examples:

- groups $t(x, y, z) = xy^{-1}z$
- Boolean algebras

$$t(x, y, z) = (x \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$$

Def.: a monad is Malcevian if it admits (an eq. presentation with) a ternary term t(x,y,z) such that

$$t(x, x, y) = y = t(y, x, x)$$

Fact: Malcevian monads are MSO.

Examples:

- groups $t(x, y, z) = xy^{-1}z$
- Boolean algebras

$$t(x,y,z) = (x \land z) \lor (x \land \neg y \land \neg z) \lor (\neg x \land \neg y \land z)$$

- Heyting algebras

$$t(x,y,z) = ((x \to y) \to z) \land ((z \to y) \to z) \land (x \lor z)$$

I. Monoids with $x^3 = x^2$

I. Monoids with $x^3 = x^2$

2. The "marked words" monad:

$$TX = \{(\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w\}$$

- I. Monoids with $x^3 = x^2$
- 2. The "marked words" monad:

$$TX = \{(\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w\}$$

3. The "balanced associativity" monad: a binary operation with

$$x \cdot (y \cdot x) = (x \cdot y) \cdot x$$

- I. Monoids with $x^3 = x^2$
- 2. The "marked words" monad:

$$TX = \{(\beta, w) \mid \beta : X \to \mathbb{N}, \ w \in X^*, \ \beta \le w\}$$

3. The "balanced associativity" monad: a binary operation with

$$x \cdot (y \cdot x) = (x \cdot y) \cdot x$$

4. The "almost Mal'cevian" monad: a ternary operation with

$$o(x, x, y) = o(y, x, x)$$

The landscape of monads

