On Games over Algebras

Glynn Winskel. SmP, 27 June 2021

Proposes integration of descriptive compexity with a general theory of games which supports resource.

General reason: to take advantage of a *resourceful* model based on concurrent games and strategies, developed and well tested in semantics; it supports the computational, logical, quantitative aspects, so resource as number of pebbles, degree of parallelism, probabilistic and quantum resource, ...

Specific issues: Oddities, probable limitations, in presenting strategies as coKleisli maps, homomorphisms $T(A) \rightarrow B$: bias to one-way games; composition of strategies = composition of coKleisli maps, is not obviously the usual composition of strategies!

In 2-party games read Player vs. Opponent as Process vs. Environment. Follow the paradigm of Conway, Joyal to achieve compositionality.

Assume operations on (2-party) games:

Dual game G^{\perp} - interchange the role of Player and Opponent; Counter-strategy = strategy for Opponent = strategy for Player in dual game.

Parallel composition of games G || H.

A strategy (for Player) from a game G to a game H =strategy in $G^{\perp} || H$. A strategy (for Player) from a game H to a game K =strategy in $H^{\perp} || K$.

Compose by letting them play against each other in the common game H.

 \rightsquigarrow a category with identity w.r.t. composition, the Copycat strategy in $G^{\perp} || G$, so from G to G ...

Event structures - of the simplest kind

An event structure comprises $(E, \leq, \#)$, consisting of a set of events E

- partially ordered by $\leqslant,$ the causal dependency relation, and
- a binary irreflexive symmetric relation, the conflict relation, which satisfy $\{e' \mid e' \leq e\}$ is finite and $e # e' \leq e'' \implies e # e''$.

Two events are concurrent when neither in conflict nor causally related.

(drawn immediate conflict, and causal dependency)

The configurations of an event structure E consist of those subsets $x \subseteq E$ which are Consistent: $\forall e, e' \in x. \neg (e \# e')$ and Down-closed: $\forall e, e'. e' \leq e \in x \implies e' \in x.$

Event-structure game w.r.t. a signature

A signature (Σ, C, V) comprises Σ a many-sorted relational signature including equality; a set C event-name constants; a set $V = \{\alpha, \beta, \gamma, \cdots\}$ of variables.

A
$$(\Sigma, C, V)$$
-game comprises an event structure $(E, \leq, \#)$
– its moves are the events E , with
a polarity function pol : $E \rightarrow \{+, -\}$ s.t. no immediate conflict $\boxplus \frown \Box$
a variable/constant assignment var : $E \rightarrow C \cup V$ s.t.
 $e \text{ co } e' \Rightarrow \text{ var}(e) \neq \text{ var}(e')$
a winning condition WC, an assertion in the free logic over (Σ, C, V) .

WC: $\mathbb{E}(\gamma) \rightarrow \exists \beta. \ P(\alpha, \beta) \land Q(\beta)$ Existence predicate involves latest occurrence of variable in a configuration

A good reference for free logic: Dana Scott, Identity and Existence. LNM 753, 1979

Games over an algebra

A game over an algebra (G, \mathcal{A}) comprises a (Σ, C, V) -game G, a Σ -algebra \mathcal{A} . It determines a (traditional) concurrent game expn (G, \mathcal{A}) in which each move with a variable \Box^{α} is expanded to its instances $\Box^{a_1} \frown \Box^{a_2} \frown \cdots$

A strategy σ in (G, \mathcal{A}) assigns values in \mathcal{A} to Player moves of the game G in answer to assignments of Opponent. Described as a map of event structures, it corresponds to a (traditional) concurrent strategy σ' in expn (G, \mathcal{A}) :

For a configuration x of S and a Σ -assertion φ , x $\models \varphi$ will mean latest assignments to variables in x make φ true. The strategy is winning means x \models WC for all +-maximal configs x of S.

Proposition. The events S of a strategy form a Σ -algebra: $R_S(s_1, \dots, s_n)$ iff $x \models R(var(\sigma(s_1)), \dots, var(\sigma(s_n)))$, for some configuration x of S with $s_1, \dots, s_n \in x$. **Corollary.** (G, \mathcal{A}) determines a canonical Σ -algebra, on events of $expn(G, \mathcal{A})$.

Constructions on games

Let G be a (Σ, C, V) -game. Its dual G^{\perp} is the (Σ, C, V) -game obtained by reversing polarities, i.e. the roles of Player and Opponent, with winning condition $\neg WC_G$.

Let G be a (Σ_G, C_G, V_G) -game. Let H be a (Σ_H, C_H, V_H) -game. Their parallel composition G || H is the $(\Sigma_G + \Sigma_H, C_G + C_H, V_G + V_H)$ -game comprising the parallel juxtaposition of event structures with winning condition $WC_G \vee WC_H$.

Let (G, \mathcal{A}) to (H, \mathcal{B}) be games over algebras. A winning strategy from (G, \mathcal{A}) to (H, \mathcal{B}) , $\sigma : (G, \mathcal{A}) \rightarrow (H, \mathcal{B})$, comprises a winning strategy in the game $(G^{\perp} || H, \mathcal{A} + \mathcal{B})$ - its winning condition is $WC_G \rightarrow WC_H$.

Theorem. Obtain a category Games of winning strategies between games over algebras: winning strategies compose with the copycat strategy as identity.

→ Reductions: a winning strategy $\sigma : (G, A) \to (H, B)$ reduces the problem of finding a winning strategy in (H, B) to finding a winning strategy in (G, A). A winning strategy in (G, A) is a winning strategy $(\emptyset, \emptyset) \to (G, A)$; its composition with σ is a winning strategy in (H, B).

Duplicator-Spoiler games deconstructed

Let G be a (Σ, C, V) -game with winning condition WC. Its Duplicator-Spoiler game is a $(\Sigma + \Sigma, C + C, V + V)$ -game with event structure:

A Duplicator-Spoiler strategy, for G, is a winning deterministic strategy

$$\sigma: (G, \mathcal{A}) \to (G, \mathcal{B})$$

with causal dependencies those of the Duplicator-Spoiler game. Duplicator-Spoiler strategies compose, with identity the copycat strategy.

 \rightsquigarrow Duplicator-Spoiler category $\mathcal{DS}(G)$, a subcategory of Games.

Example, Homomorphism games $\mathcal{DS}(H)$ where *H* is:

with winning condition $\bigwedge_{R\vec{\beta}} \mathbb{E}(c_{R\vec{\beta}}) \to R(\vec{\beta})$ where $\dot{\vec{\beta}}$ is a tuple of variables.

Example, Ehrenfeucht-Fraïssé games $\mathcal{DS}(EF)$ where EF is:

Obtain pebbled versions by restricting variable sets.

Obtain pebbled versions by restricting variable sets.

An adjunction

Let G be a (Σ, C, V) -game. G is one-way if

$$\operatorname{var}(e) \in V \implies \operatorname{pol}(e) = +,$$

for all moves e. H is a one-way game, EF is not.

Proposition. Let G be a one-way (Σ, C, V) -game with existential positive winning condition (which can include $(\mathbb{E}(\stackrel{c}{\models}^{c}) \rightarrow \phi)$, where ϕ is exist. positive). There is a functor $R(G) : \Sigma$ -Alg $\rightarrow DS(G)$.

Proposition. The functor R(H) has left adjoint expn : $\frac{expn(H, A) \rightarrow B}{(H, A) \rightarrow}(H, B)$

The pebbling comonad arises from the adjunction: $T_k(\mathcal{A}) \cong expn(H, \mathcal{A})$, where k is the size of the set of variables V_H ; coKleisli $(T_k) \cong \mathcal{DS}(H)$.

There should be analogous adjunctions for "two-way" games involving algebras and pairs of homomorphisms $\mathcal{A} \rightleftharpoons \mathcal{B}$