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The setting

Let σ be a finite relational vocabulary, we can define a category of
σ-structures Σ:

Objects are A = (A, {RA}R∈σ) where RA ⊆ Ar for r -ary relation
symbol R.

Morphisms f : A → B are relation preserving set functions f : A→ B

RA(a1, . . . , ar )⇒ RB(f (a1), . . . , f (ar ))

Embeddings f : A� B are injective morphisms that reflect relations:

RA(a1, . . . , ar )⇐ RB(f (a1), . . . , f (ar ))

Set of homomorphisms HomΣ(A,B)

Subcategory of finite σ-structures Σf
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Lovász-type results

A,B be finite σ-structures. Vk(#) and QRn(#) are k-variable logic and
logic up to quantifier rank ≤ n with counting quantifiers, i.e. ∃≤ixφ(x)

Theorem ([Lovász, 1967])

A ∼= B ⇐⇒ |Hom(C,A)| = |Hom(C,B)| ∀ finite C

Theorem ([Dvǒrák, 2009])

A ≡Vk (#) B ⇐⇒ |Hom(C,A)| = |Hom(C,B)| ∀ finite C w/ tw(C) < k

Theorem ([Grohe, 2020])

A ≡QRn(#) B ⇐⇒ |Hom(C,A)| = |Hom(C,B)| ∀ finite C w/ td(C) ≤ n
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No-go without counting

Proposition ([Atserias et al., 2021])

There is no class of graphs F such that either of these hold:

A ≡Vk
B ⇐⇒ |Hom(F ,A)| = |Hom(F ,B)| ∀F ∈ F

A ≡Vk
B ⇐⇒ |Hom(A,F )| = |Hom(B,F )| ∀F ∈ F

Proposition ([Atserias et al., 2021])

There is no class of graphs F such that either of these hold:

A ≡QRn B ⇐⇒ |Hom(F ,A)| = |Hom(F ,B)| ∀F ∈ F
A ≡QRn B ⇐⇒ |Hom(A,F )| = |Hom(B,F )| ∀F ∈ F
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Solution using bisimulation

Instead of bijection between Hom sets, a “bisimulation” between Hom sets:

A ≡Lk B ⇔
SC

Hom(C,A) Hom(C,B)

F G

for all finite C w/ parameter ≤ k and ∃SC and F ,G (with some conditions)

Motivated by the framework of Spoiler-Duplicator game comonads
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Spoiler-Duplicator games

Ehrenfeucht-Fräıssè game

In every round i , of the n-round game EFn(A,B):

Spoiler chooses an element ai ∈ A or bi ∈ B
Duplicator responds with bi ∈ B or ai ∈ A

Duplicator wins round i if γi = {(aj , bj) | j ≤ i} is a partial
isomorphism

If Duplicator has a winning response to every Spoiler move,
Duplicator has a winning strategy.

Theorem ([Ehrenfeucht, 1961, Fräıssé, 1954])

Duplicator has a winning strategy in EFn(A,B) iff A ≡QRn B
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Variants of EF game

One sided variant ∃+EFn(A,B):

Spoiler only plays in A, Duplicator responds in B
Winning condition: weakened form partial isomorphism to partial
homomorphism

Captures preservation in ∃+QRn,

AV∃+QRn B ⇔ A � φ⇒ B � φ for φ ∈ ∃+QRn

Bijection variant #EFn(A,B)

Duplicator chooses a bijection f : A→ B

Spoiler chooses ai ∈ A or bi ∈ B
Duplicator responds f (ai ) ∈ B or f −1(bi ) ∈ A
Captures equivalence in QRn(#): A ≡QRn(#) B
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Spoiler-Duplicator games

Immerman’s k-pebble game

Spoiler and Duplicator each have k pebbles. On each round:

Spoiler places his pebble p ∈ k on ai ∈ A or bi ∈ B
Duplicator places her corresponding pebble p ∈ k on bi ∈ B or ai ∈ A

Duplicator wins the round if the relation of all pebbled elements
γ = {(a, b) | p ∈ k w/ p pebbling a ∈ A, b ∈ B } is a partial
isomorphism

Theorem ([Immerman, 1982])

Duplicator has a winning strategy in Pebk(A,B) iff A ≡Vk B

One sided variant ∃Pebk(A,B): AV∃+Vk B (preservation ∃+)

Bijection variant #Pebk(A,B): A ≡Vk (#) B
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Ehrenfeucht-Fräıssè comonad

Comonad on Σ is a triple (En, ε, ()∗)

Given a σ-structure A, we can create σ-structure on the set of Spoiler
moves EnA in ∃+EFn(A, ·), i.e. non-empty sequences of elements in A of
length ≤ n

Let εA : EnA → A return the last move of the play [a1, . . . , am] 7→ am.

REnA(s1, . . . , sr )⇔ si v sj or sj v si for i , j ∈ [r]

and RA(εA(s1), . . . , εA(sr ))

For f : EnA → B define f ∗ : EnA → EnB recursively:

f ∗(s[a]) = f ∗(s)[f (a)]
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EF comonad to game

Functions f : EnA→ B are Duplicator’s strategies in ∃+EFn(A,B)

Chose relations so that σ-morphisms f : EnA → B are Duplicator’s
winning strategies.

Coextension f ∗ : EnA → EnB models history preservation of the game

Theorem ([Abramsky and S, 2018])

The following are equivalent:

1 Duplicator has a winning strategy in ∃+EFn(A,B)

2 There exists a Kleisli morphism f : EnA → B
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Pebbling comonad

Similar construction for k-pebble game, where PkA is sequences
[(p1, a1), . . . , (pn, an)] with pi ∈ k

Additional active pebble condition in defining RPkA

PkA necessarily infinite, i.e. not comonad over Σf

Bound length of sequences by ≤ n, Pk,n obtains a comonad over Σf

First game comonad discovered from Abramksy, Dawar, and Wang
LICS 2017
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Game comonad power theorems

Theorem ([Abramsky et al., 2017, Abramsky and S, 2018])

For all game comonads Ck and A,B ∈ Σf

AV∃+Lk B ⇔ A →C
k B ⇔ Duplicator wins ∃+Gk(A,B)

A ≡Lk B ⇔ A ↔C
k B ⇔ Duplicator wins Gk(A,B)

A ≡Lk (#) B ⇔ A ∼=C
k B ⇔ Duplicator wins #Gk(A,B)

The →C
k and ∼=C

k arise from Kl(Ck):

→C
k if the there exists a Kleisli morphism f : CkA → B
∼=C

k if there are pairs of Kleisli morphisms f : CkA → B and
g : CkB → A that are inverses

The ↔C
k arises from a notion of open map bisimulation [Joyal et al., 1996]

in the category of coalgebras EM(Ck)
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Eilenberg-Moore category of coalgebras

Coalgebras are morphisms α : A → EnA satisfying the equations:

εA ◦ α = idA Ckα ◦ α = δA ◦ α

We can define the Eilenberg-Moore category EM(En):

Objects are coalgebras (A, α : A → EnA)

Morphisms are commuting squares:

A EnA

B EnB

α

f Enf

β
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Tree-depth, Forest covers and En

Proposition ([Abramsky and S, 2018])

Category of En-coalgebras EM(En) isomorphic to a category of n-height
forest covers ΣE

n

Objects are (A,≤) where A ∈ Σ and ≤ is a forest order on A:

All the elements below an element a ∈ A form a chain.
If a, a′ are related in A, then a ≤ a′ or a′ ≤ a.

Morphisms are homomorphisms that preserve the covering relation

Corollary ([Abramsky and S, 2018])

Coalgebra A → EnA iff td(A) ≤ n
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Bisimulation ↔E
n

We can pick out subcategory of paths in ΣE as objects (P,≤) where ≤ is
a linear order

Paths in (A,≤) can be seen as ΣE
n -morphisms i : (P,≤)� (A,≤) which

are embeddings (as a Σ morphism)
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Bisimulation ↔E
k

Given σ-structures A,B, we say A ↔E
n B iff there exists a span:

(R,≤R)

(EnA,v) (EnB,v)

f g

Where f , g are:

Pathwise embedding:
e : (P,≤)� (R,≤R)⇒ f ◦ e : (P,≤)� (EnA,v)

Open: If a path can be extended to a larger path in the image, then
the preimage of the path can also be extended.
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Path-lifting property

(P,≤) (Q,≤)

(R,≤R) (EnA,v)
f

(P,≤) (Q,≤)

(R,≤R) (EnA,v)
f

This is modified notion of open map bisimulation, used in categories of
transition systems, event structures, etc. [Joyal et al., 1996]

Fully explicated and generalized to “arboreal categories”
[Abramsky and Reggio, 2021]
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Treewidth and Pk

Proposition ([Abramsky et al., 2017])

Category of Pk -coalgebras EM(Pk) isomorphic to a category of k-pebble
forest covers ΣE

n

Objects are (A,≤, p : A → k) with (A,≤) a forest cover and p
satisfying some conditions.

Morphisms are morphisms of forest covers that preserver the pebbling
function.

Corollary ([Abramsky et al., 2017])

Coalgebra A → PkA iff tw(A) < k
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Categorified Lovász using comonads

Theorem (Dawar,Jakl,Reggio 2021)

If C is a comonad on Σ, then:

A ∼=C B ⇔ HomΣF
(C,A) ∼= HomΣF

(C,A)

for all finite coalgebras C → CC

Applied to En and Pk yields new proofs for Dvǒrák 2009 and Grohe 2020

Not direct applications, must be explicit about equality in signature

For Pk , use of the approximate comonads Pk,n

Also prove a new Lovász result for graded modal logic using Mk
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“One-sided” Lovász-type result

Proposition

If C comonad on Σ restricting to Σf , then:

A →C B ⇔ HomΣf
(C,A)→ HomΣf

(C,B)

for all finite coalgebras C → CC

For En, get the equivalence

AV∃+QRn B ⇔ C → A ⇒ C → B

for all finite C w/ td(C) ≤ n

Used in Rossman’s HPT paper, CSPs, Datalog, etc.
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Spoiler’s winning strategy in the ∃+EFn(A,B) is given by a primitive
∃+-sentence φ such that A � φ, B 6� φ and qr(φ) ≤ n

We can view such sentences as En-coalgebras, consider n = 3

∃v1(∃v3(φa(v1, v3)∧∃v5φb(v1, v3, v5)∧∃v4φc(v1, v3, v4))∧∃v6(φd(v1, v6)))

v1

v3

v4

v5

v6

A � φ⇔ C[φ]→ A in ΣE
3

There exists a finite coalgebra C[φ] such that there is no function
Hom(C[φ],A)→ Hom(C[φ],B)

Applying “one-sided” Lovász result, A 6→E
3 B
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Bisimulation completes the picture

Theorem (+Conjecture)

For all game comonads Ck and finite coalgebras C → CkC:

AV∃+Lk B ⇔ A →C
k B ⇔ HomΣf

(C,A)→ HomΣf
(C,B)

A ≡Lk B ⇔ A ↔C
k B ⇔ ∃ span HomΣf

(C,A)← S → HomΣf
(C,B)?

A ≡Lk (#) B ⇔ A ∼=C
k B ⇔ HomΣf

(C,A) ∼= HomΣf
(C,B)

Nihil Shah (University of Oxford) Bisimulation between hom sets June 28, 2021 22 / 26



Removing naturality

Theorem (Yoneda)

A ∼= B ⇐⇒ Hom(−,A) ∼=[Σop
f ,Set] Hom(−,B)

Yoneda embedding is fully faithful and so reflects isomorphisms

Theorem (Lovász 1967)

A ∼= B ⇐⇒ Hom(F ,A) ∼=Set Hom(F ,B) ∀F ∈ Σf

Lovász: For finite relational structures Σf , isomorphism between the sets
suffices

Before bisimulation analog of Lovász, is there a bisimulation analog of
Yoneda?
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Bisimulation of presheaves

Let T E
n be the subcategory of n-height forest covers ΣE

n with pathwise
embeddings. FnA = (EnA,v). Adapting lemma 16 of [Joyal et al., 1996]

S

FnA FnB

f g

⇔

Ŝ(−)

HomT E
n

(−,FnA) HomT E
n

(−,FnB)

F G

Where F ,G are:

Componentwise epimorphic, for all C , FC : Ŝ(C )→ Hom(C ,FnA) is a
surjective function.
Open maps in a topos [Joyal and Moerdijk, 1994]
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Open maps in a topos

Dropping subscript HomT E
n

(−,−) = Hom(−,−)

For all path embeddings i : P � Q, the following is an quasi-pullback
square:

Ŝ(Q) Ŝ(P)

Hom(Q,FnA) Hom(P,FnA)

Ŝ(i)

FQ FP

Hom(i ,FnA)

The mediating morphism

Ŝ(Q)→ Ŝ(P)×Hom(P,FnA) Hom(Q,FnA)

is a surjective function.
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Conclusion

Good evidence for bisimulation between hom sets as a way of achieving a
Lovász result for logics without counting

Completing this picture

AV∃+Lk B ⇔ A →C
k B ⇔ HomΣf

(C,A)→ HomΣf
(C,B)

A ≡Lk B ⇔ A ↔C
k B ⇔ ∃ span HomΣf

(C,A)← S → HomΣf
(C,B)?

A ≡Lk (#) B ⇔ A ∼=C
k B ⇔ HomΣf

(C,A) ∼= HomΣf
(C,B)

As “removing natuality” from open maps of presheaves inducing open
maps of structures
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