Implicit automata in typed λ -calculi

Pierre Pradic (University of Oxford) j.w.w. Nguyễn Lê Thành Dũng (a.k.a. Tito) (Paris 13)

Structure meets Power Workshop, June 28th 2021

Church encodings of (unary) natural numbers:

- Nat = $(o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \overline{n} = \lambda f. \ \lambda x. f(\dots(f x) \dots) : \text{Nat with } n \text{ times } f$
- all inhabitants of Nat are equal to some \overline{n} up to $=_{\beta\eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \to \mathbb{N}$ definable by simply-typed λ -terms of type $Nat \to Nat$ are the extended polynomials. (generated by 0, 1, +, ×, id and if zero) *Church encodings* of (unary) natural numbers:

- Nat = $(o \rightarrow o) \rightarrow o \rightarrow o$
- $n \in \mathbb{N} \rightsquigarrow \overline{n} = \lambda f. \ \lambda x. f(\dots(f x) \dots) : \text{Nat with } n \text{ times } f$
- all inhabitants of Nat are equal to some \overline{n} up to $=_{\beta\eta}$

Theorem (Schwichtenberg 1975)

The functions $\mathbb{N} \to \mathbb{N}$ definable by simply-typed λ -terms of type $Nat \to Nat$ are the extended polynomials. (generated by 0, 1, +, ×, id and if zero)

Let's add a bit of (meta-level) polymorphism: $t = Nat[A] \rightarrow Nat$ where $Nat[A] = Nat[A/o] = (A \rightarrow A) \rightarrow A \rightarrow A$

Open question

Choose some simple type *A* and some term $t : Nat[A] \rightarrow Nat$. What functions $\mathbb{N} \rightarrow \mathbb{N}$ can be defined this way?

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = $Str_{\{1\}}$

Church encodings of *strings* over alphabet $\Sigma = \{a, b\}$:

•
$$\mathsf{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

• $abb \in \{a, b\}^* \rightsquigarrow \overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\Sigma}$

More generally $Str_{\Sigma} = (o \rightarrow o) \rightarrow \dots |\Sigma|$ times $\dots \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o$

Open question

Choose some simple type *A* and some term $t : \operatorname{Str}_{\Gamma}[A] \to \operatorname{Str}_{\Sigma}$. What functions $\Gamma^* \to \Sigma^*$ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

Simply typed functions on Church-encoded strings

To gain more insight, let's generalize! Nat = $Str_{\{1\}}$

Church encodings of *strings* over alphabet $\Sigma = \{a, b\}$:

•
$$\mathsf{Str}_{\{a,b\}} = (o \to o) \to (o \to o) \to o \to o$$

•
$$abb \in \{a, b\}^* \rightsquigarrow \overline{abb} = \lambda f_a. \ \lambda f_b. \ \lambda x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\Sigma}$$

More generally $Str_{\Sigma} = (o \rightarrow o) \rightarrow \dots |\Sigma|$ times $\dots \rightarrow (o \rightarrow o) \rightarrow o \rightarrow o$

Open question

Choose some simple type *A* and some term $t : \operatorname{Str}_{\Gamma}[A] \to \operatorname{Str}_{\Sigma}$. What functions $\Gamma^* \to \Sigma^*$ can be defined this way?

Without input type substitutions, an answer is known [Zaionc 1987].

An answer for predicates [Hillebrand & Kanellakis 1996]

A subset of Σ^* is decidable by some $t : \operatorname{Str}_{\Sigma}[A] \to \operatorname{Bool}$ if and only if it is a *regular language*.

Note: unary regular languages \cong ultimately periodic subsets of \mathbb{N}

For any type *A* and any simply typed λ -term $t : \operatorname{Str}_{\Sigma}[A] \to \operatorname{Bool}, \{w \in \Sigma^* \mid t \overline{w} =_{\beta} \operatorname{true}\}$ is *regular*.

Proof by semantic evaluation.

Let [-] stand for a denotational semantics in the *CCC of finite sets*.

(determined by [[o]])

We build an automaton with *finite* set of states $Q = [Str_{\Sigma}[A]]$

For any type A and any simply typed λ -term $t : \operatorname{Str}_{\Sigma}[A] \to \operatorname{Bool}, \{w \in \Sigma^* \mid t \overline{w} =_{\beta} \operatorname{true}\}$ is *regular*.

Proof by semantic evaluation.

Let $\llbracket - \rrbracket$ stand for a denotational semantics in the CCC of finite sets.

We build an automaton with *finite* set of states $Q = \llbracket \operatorname{Str}_{\Sigma}[A] \rrbracket$

 $t \ \overline{w} =_{\beta} \texttt{true} \iff \llbracket t \rrbracket (\llbracket \overline{w} \rrbracket) = \llbracket \texttt{true} \rrbracket \iff w \text{ accepted}$

(determined by [o])

For any type *A* and any simply typed λ -term $t : \operatorname{Str}_{\Sigma}[A] \to \operatorname{Bool}, \{w \in \Sigma^* \mid t \overline{w} =_{\beta} \operatorname{true}\}$ is *regular*.

Proof by semantic evaluation.

Let [-] stand for a denotational semantics in the *CCC of finite sets*.

We build an automaton with *finite* set of states $Q = [Str_{\Sigma}[A]]$

 $t \ \overline{w} =_{\beta} \texttt{true} \iff \llbracket t \rrbracket (\llbracket \overline{w} \rrbracket) = \llbracket \texttt{true} \rrbracket \iff w \text{ accepted}$

To conclude: if $Card(\llbracket o \rrbracket) \ge 2$ then $\llbracket true \rrbracket \neq \llbracket false \rrbracket)$

(determined by [o])

For any type *A* and any simply typed λ -term $t : \operatorname{Str}_{\Sigma}[A] \to \operatorname{Bool}, \{w \in \Sigma^* \mid t \overline{w} =_{\beta} \operatorname{true}\}$ is *regular*.

Proof by <u>semantic evaluation</u>.

Let [-] stand for a denotational semantics in the *CCC of finite sets*.

We build an automaton with *finite* set of states $Q = [Str_{\Sigma}[A]]$

To conclude: if $Card(\llbracket o \rrbracket) \ge 2$ then $\llbracket true \rrbracket \neq \llbracket false \rrbracket)$

Similar ideas in higher-order model checking (see e.g. Grellois & Melliès)

(determined by [o])

Regular functions

Assume a λ -calculus for linear intuitionistic logic with additives

- $\lambda^{\rightarrow} x. t : A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x. t : A \multimap B$ linear function (exactly one *x* in *t*)
- coproducts $A \oplus B$ and products A & B

Church encoding with linear types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Regular functions

Assume a λ -calculus for linear intuitionistic logic with additives

- $\lambda^{\rightarrow} x. t : A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x. t : A \multimap B$ linear function (exactly one *x* in *t*)
- coproducts $A \oplus B$ and products A & B

Church encoding with linear types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Today's main theorem [Nguyễn & P.]

 $f \colon \Gamma^* \to \Sigma^*$ is a regular function

\iff

f is defined by some t: Str_{Γ} $[A] \rightarrow$ Str_{Σ} in the intuitionistic linear λ -calculus with *A purely linear*, i.e. containing no ' \rightarrow '

Regular functions

Assume a λ -calculus for linear intuitionistic logic with additives

- $\lambda^{\rightarrow} x. t : A \rightarrow B$ unrestricted function
- $\lambda^{\circ} x. t : A \multimap B$ linear function (exactly one *x* in *t*)
- coproducts $A \oplus B$ and products A & B

Church encoding with linear types [Girard 1987]:

 $\overline{abb} = \lambda^{\rightarrow} f_a. \ \lambda^{\rightarrow} f_b. \ \lambda^{\circ} x. \ f_a \ (f_b \ (f_b \ x)) : \mathsf{Str}_{\{a,b\}} = (o \multimap o) \to (o \multimap o) \to o \multimap o$

Today's main theorem [Nguyễn & P.]

 $f: \Gamma^* \to \Sigma^*$ is a regular function \iff

f is defined by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in the intuitionistic linear λ -calculus with *A purely linear*, i.e. containing no ' \rightarrow '

Regular functions are a classical topic, many equivalent definitions... One of them: **copyless** *streaming string transducers* [Alur & Černý 2010] \rightarrow sounds suspiciously like affine types!

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

Execution over *abaa*: start with

$$X = \varepsilon$$
 $Y = \varepsilon$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

$$X = a$$
 $Y = a$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

$$X = ab$$
 $Y = ba$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

$$X = aba$$
 $Y = aba$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

$$X = abaa$$
 $Y = aaba$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

Execution over *abaa*: f(abaa) = abaaaaba

$$X = abaa \qquad Y = aaba$$

• Finite set of Σ^* -valued *registers* e.g. $R = \{X, Y\}$

• Initial values
$$R \to \Sigma^*$$
 e.g. $X_{init} = Y_{init} = \epsilon$

• Register update function e.g.
$$a \mapsto \begin{cases} X := Xa \\ Y := aY \end{cases}$$
 $b \mapsto \begin{cases} X := Xb \\ Y := bY \end{cases}$ $c \mapsto \begin{cases} X := aba \\ Y := YabaX \end{cases}$
• "output function" e.g. out = XY

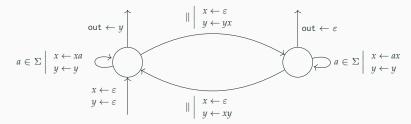
Execution over *abaa*: f(abaa) = abaaaaba

$$X = abaa \qquad Y = aaba$$

f restricted to $\{a, b\}^*$: corresponds to $w \mapsto w \cdot reverse(w)$

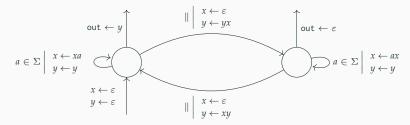
Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)



Stateful streaming string transducers

SSTs can also have *states*: their memory is $Q \times (\Sigma^*)^R$ (with $|Q| < \infty$)



Copylessness restriction

Each register appears *at most once* on RHS of \leftarrow

(for each fixed input letter, at most once among all the associated \leftarrow)

Intuition: memory $M = Q \otimes \Sigma^* \otimes \ldots \otimes \Sigma^*$, transitions $M \multimap M$

 $(Q \cong 1 \oplus \ldots \oplus 1, \text{concat} : \Sigma^* \otimes \Sigma^* \multimap \Sigma^*)$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \to \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category $\mathcal R$ of copyless register updates

+ add states by free finite coproduct completion $(-)_\oplus$

Categorical automata

A framework for "single-pass" automata [Colcombet & Petrişan 2017]

- internal memory = object of a *category* C
- transitions = morphisms (and [letter \mapsto transition] = functor $\mathcal{T}_{\Sigma} \to \mathcal{C}$)

$$\mathcal{T}_{\Sigma} = \bullet \xrightarrow{a \in \Sigma} \bullet \longrightarrow \bullet \mathcal{C}$$

- DFA = automata over the category of finite sets
- Copyless SSTs \approx start from a category $\mathcal R$ of copyless register updates

+ add states by free finite coproduct completion $(-)_{\oplus}$

Formally

A streaming setting $\mathfrak C$ with output X is a tuple $(\mathcal C, \mathbb T, \mathbb L, \mathit{out})$ with

- \mathcal{C} a category
- \mathbb{T} and \mathbb{L} objects of \mathcal{C}
- *out* : Hom_C (\mathbb{T} , \mathbb{L}) \rightarrow *X* a set-theoretic-map

Notion of C-automaton

(abusively called *C*-automata in the sequel)

SSTs as categorical automata

The register category with output alphabet Σ

• **Objects:** finite sets *R*, *S*

think register variables

- Morphisms: Hom_{\mathcal{R}} $(R, S) = \text{maps } S \to (R + \Sigma)^*$ corresponding to copyless register affectations $\sum_{s \in S} |f(s)|_r \leq 1$
- Monoidal with $\otimes = +$
- Free affine monoidal category over an object $\Sigma^* = \{\bullet\}$, morphisms $\varepsilon, a : \mathbf{I} \to \Sigma^*$ for $a \in \Sigma$ and $cat : \Sigma^* \otimes \Sigma^* \to \Sigma^*$
- For the streaming setting, take $\mathbb{T} = \mathbf{I} = 0$ and $\mathbb{L} = \Sigma^* = \{\bullet\}$

SSTs as categorical automata

The register category with output alphabet Σ

• **Objects:** finite sets *R*, *S*

think register variables

- Morphisms: Hom_{\mathcal{R}} $(R, S) = \text{maps } S \to (R + \Sigma)^*$ corresponding to copyless register affectations $\sum_{s \in S} |f(s)|_r \leq 1$
- Monoidal with $\otimes = +$
- Free affine monoidal category over an object $\Sigma^* = \{\bullet\}$, morphisms $\varepsilon, a : \mathbf{I} \to \Sigma^*$ for $a \in \Sigma$ and $cat : \Sigma^* \otimes \Sigma^* \to \Sigma^*$
- For the streaming setting, take $\mathbb{T} = \mathbf{I} = 0$ and $\mathbb{L} = \Sigma^* = \{\bullet\}$

Definition of the free finite coproduct completion \mathcal{C}_\oplus

• **Objects:** formal finite sums $\bigoplus_{u \in U} C_u$ of objects of C

formally pairs $(U, (C_u)_{u \in U})$, U a finite set, $C_u \in C_0$

• Morphisms: $\operatorname{Hom}_{\mathcal{C}_{\oplus}} \left(\bigoplus_{u} C_{u}, \bigoplus_{v} D_{v} \right) = \prod_{u} \sum_{v} \operatorname{Hom}_{\mathcal{C}} \left(C_{u}, D_{v} \right)$

 $\cong \sum_{f} \prod_{u} \operatorname{Hom}_{\mathcal{C}} (C_{u}, D_{f(u)})$

- Morphisms $\bigoplus_{q \in Q} R \rightarrow \bigoplus_{q \in Q} R$ correspond to transitions in a SST
- Canonical embedding $\mathcal{C} \to \mathcal{C}_\oplus$ allows to lift streaming settings

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Compiling into higher-order transducers

Transductions definable in linear λ -calculus can be turned into automata over a category \mathcal{L} of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)

Claim

 \mathcal{L} -automata compute the same string functions as λ -terms.

Proof: syntactic analysis of normal forms

Proof strategy for linear λ **-definable** \implies **regular function**

Define a *functor* $\mathcal{L} \to \mathcal{R}_{\oplus}$ preserving enough structure

Useful fact: there is a canonical functor from \mathcal{L} to any *symmetric monoidal closed category* with (co)products

Unfortunately \mathcal{R}_{\oplus} is **not** monoidal closed...

So far, we encountered:

- \mathcal{L} : category of purely linear λ -terms (w/ const $f_c : o \multimap o$ for $c \in \Sigma$)
- \mathcal{R} : category of finite sets of registers and copyless assignments
- \mathcal{R}_{\oplus} : free finite coproduct completion of the latter (add states)

Now consider:

• the free finite *product* completion: $\mathcal{C} \mapsto \mathcal{C}_{\&} = ((\mathcal{C}^{op})_{\oplus})^{op}$

Objects: formal products $\&_x C_x$

• the composite completion $\mathcal{C} \mapsto \mathcal{C}_{\&} \mapsto (\mathcal{C}_{\&})_{\oplus}$

Objects: formal sums of products $\bigoplus_{u} \&_{x} C_{u,x}$

similar to de Paiva's *Dialectica* categories **DC**, think $\exists u. \forall x. \varphi(u, x)$

Goals toward our main theorem

- Structure: $(\mathcal{R}_{\&})_{\oplus}$ has finite products and is monoidal closed
- Conservativity: $(\mathcal{R}_{\&})_\oplus\text{-}automata$ and $\mathcal{R}_\oplus\text{-}automata$ are equivalent

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

 $A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$

When embedded in (co)presheafs \cong Day convolution

Structure (1): generic remarks $(\mathcal{C}_{\&})_{\oplus}$

Tensorial products can be lifted to the completions

• The new tensorial products satisfy the additional laws

 $A \otimes (B \& C) \equiv (A \otimes B) \& (A \otimes C) \qquad A \otimes (B \oplus C) \equiv (A \otimes B) \oplus (A \otimes C)$

• In particular, $(\mathcal{C}_{\&})_{\oplus}$ has distributive cartesian products

 $A \& (B \oplus C) \equiv (A \& B) \oplus (A \& C)$

When embedded in (co) presheafs \cong Day convolution

Lemma (folklore observation about dependent Dialectica categories?)

If *C* is symmetric monoidal and $(C_{\&})_{\oplus}$ has the internal homs $A \multimap B$ for all $A, B \in C$, then $(C_{\&})_{\oplus}$ is symmetric monoidal closed.

$$\left(\bigoplus_{u \in U} \bigotimes_{x \in X_u} A_x\right) \multimap \left(\bigoplus_{v \in V} \bigotimes_{y \in Y_v} B_y\right) = \bigotimes_{u \in U} \bigoplus_{v \in V} \bigotimes_{y \in Y_v} \bigoplus_{x \in X_u} A_x \multimap B_y$$

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

 $copyless SST \implies$ finitely many shapes: use as states; registers for parameters

Lemma

 \mathcal{R}_{\oplus} has the internal homs $A \multimap B$ for all $A, B \in \mathcal{R}$.

The construction appears in the original SST paper [Alur & Černý 2010] without the categorical vocabulary.

$$\begin{cases} X := abXcY \\ Y := ba \end{cases} \longrightarrow \text{ shape } \begin{cases} X := Z_1XZ_2Y \\ Y := Z_3 \end{cases} + \text{ parameters } Z_1 = ab, \dots \end{cases}$$

 $copyless SST \implies$ finitely many shapes: use as states; registers for parameters

Conclusion

 $(\mathcal{R}_{\&})_{\oplus}$ is symmetric monoidal closed (and almost affine).

Conservativity

Lemma

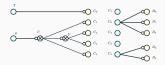
 $(\mathcal{C}_{\&})_{\oplus}$ automata are equivalent to non-deterministic \mathcal{C}_{\oplus} automata.

A uniformization (\sim determinization) theorem is enough to conclude

Conservativity

 $(\mathcal{R}_{\&})_{\oplus}$ -automata are equivalent to standard SSTs.

- Uniformization already known [Alur & Deshmuk 2011]
- Argument implicitly based on monoidal closure!



Theorem

For any monoidal category C, if C_{\oplus} has all the internal homsets $A \multimap B$ for $A, B \in C$, then $(C_{\&})_{\oplus}$ -automata and C_{\oplus} -automata are equivalent.

equivalently: ND \mathcal{C}_{\oplus} -automata can be uniformized

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff

definable by some t : $Str_{\Gamma}[A] \multimap Str_{\Sigma}$ in ILL with A purely linear

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]regular tree function \iff definable by some $t : \operatorname{Tree}_{\Gamma}[A] \multimap \operatorname{Tree}_{\Sigma}$
in ILL with A purely linear

Main results

I have just discussed

Today's main theorem [Nguyễn & P.]

regular string function \iff definable by some $t : \operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ in ILL with A purely linear

Using similar tools, analogous result for trees over ranked alphabets

Main theorem for trees [Nguyễn & P.]

regular *tree* function \iff definable by some $t : \mathsf{Tree}_{\Gamma}[A] \multimap \mathsf{Tree}_{\Sigma}$ in ILL with A purely linear

Specific ingredients:

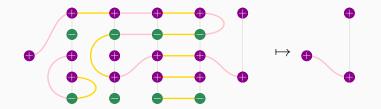
- Bottom-up categorical tree automata over SMCs
- A reasonably elegant multicategory of tree registers transition \mathcal{R}
 - Generated from the correponding PROP in a principled way
 - Argument for $\mathcal R\text{-}\mathsf{monoidal}$ closure argument generalizes to trees
- Regular functions already known to correspond to $\mathcal{R}_{\oplus\&}$ -automata!

(reminiscent from the notion of clone)

Dropping the additives

- Allows GoI-style interpretation in categories of diagrams
- → Interpretation as two-way automata

 $(\cong Int(FinPartInj))$ [Hines 2003] Define regular languages

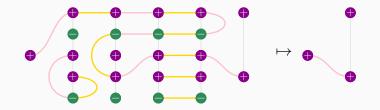


Consequence (not interesting)

Every linear term $t : Str_{\Sigma}[A] \longrightarrow Bool with A \rightarrow -free defines a regular language.$

- Allows GoI-style interpretation in categories of planar diagrams
- → Interpretation as two-way **planar** automata

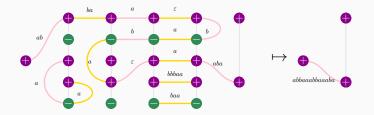
[Hines 2003,2006] Define **star-free** languages



Consequence [Nguyễn, P. 2020]

Every **planar** linear term $t : Str_{\Sigma}[A] \longrightarrow Str$ with $A \rightarrow$ -free defines a star-free language.

- Allows GoI-style interpretation in categories of planar labelled diagrams
- → Interpretation as two-way planar **transducers** (2DFTs; w/o registers)

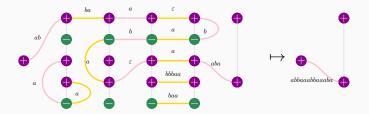


Consequence

Every **planar** linear term t: Str_{Σ}[A] \rightarrow Str with $A \rightarrow$ -free defines a FO-transduction.

- Allows GoI-style interpretation in categories of planar labelled diagrams
- → Interpretation as two-way planar **transducers** (2DFTs; w/o registers)

) [Hines 2003,2006] Define **first-order** regular functions



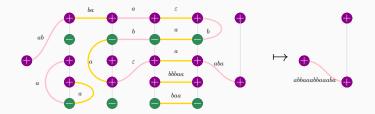
Consequence

Every **planar** linear term t: Str_{Σ}[A] \multimap Str with $A \rightarrow$ -free defines a FO-transduction.

Alas, planar linear terms are much weaker than FO-transductions

(preserve Parikh images)

- Allows GoI-style interpretation in categories of planar labelled diagrams
- → Interpretation as two-way planar **transducers** (2DFTs; w/o registers)



Conjecture

Every planar **affine** term $t : \operatorname{Str}_{\Sigma}[A] \longrightarrow \operatorname{Str}$ with $A \rightarrow$ -free defines a FO-transduction.

The converse holds (main ingredient for the proof: the Krohn-Rhodes theorem)

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(\mathcal{C}_{\&})_{\oplus} \to \mathcal{C}_{\oplus}$ for monoidal \mathcal{C} with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(\mathcal{C}_{\&})_{\oplus} \to \mathcal{C}_{\oplus}$ for monoidal \mathcal{C} with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
 - Slick formalization w/o categories (using e.g. transition monoids)?
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments

What happened here:

- Connections between Church encodings and automata
- Application of categorical semantics (Dialectica, geometry of interaction (GoI))
- A generic uniformization-like construction $(\mathcal{C}_{\&})_{\oplus} \to \mathcal{C}_{\oplus}$ for monoidal \mathcal{C} with certain homsets

Some take-aways:

- Important ingredient in uniformization: monoidal closure
 - Slick formalization w/o categories (using e.g. transition monoids)?
- Additive connectives are important for trees
- Links between planar GoI, two-way transducers and first-order fragments
 - Further links with tree-walking automata?

Broad	ler	pi	C	tu	re

$Str_{\Sigma}[A] \rightarrow Bool with A linear (adapted as needed):$				
	λ -calculus	languages	status	
	simply typed	regular	√[Hillebrand & Kanellakis 1996	
	linear or affine	regular	\checkmark	
	non-commutative linear or affine	star-free	\checkmark	

 $\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

Broade	r picture
--------	-----------

$Str_{\Sigma}[A] \multimap Bool$ with A linear (adapted as needed):				
	λ -calculus	languages	status	
	simply typed	regular	√[Hillebrand & Kanellakis 1996]	
	linear or affine	regular	\checkmark	
	non-commutative linear or affine	star-free	\checkmark	

 $\operatorname{Str}_{\Gamma}[A] \longrightarrow \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

+ a characterization of $Str[A] \rightarrow Str$ as *comparison-free* polyregular functions

B	Broad	ler p	ictu	re	

$\operatorname{Str}_{\Sigma}[A] \longrightarrow \operatorname{Bool} \operatorname{with} A$ linear (adapted as needed):				
	λ -calculus	languages	status	
	simply typed	regular	√[Hillebrand & Kanellakis 1996]	
	linear or affine	regular	\checkmark	
	non-commutative linear or affine	star-free	\checkmark	

 $\operatorname{Str}_{\Gamma}[A] \multimap \operatorname{Str}_{\Sigma}$ with *A* affine (adapted as needed):

λ -calculus	transducers	status
linear (without additives)	weird (?)	√(?)
affine	regular functions	\checkmark
non-commutative affine	first-order regular fn.	√?
linear/affine with additives	regular functions	\checkmark
parsimonious	polyregular	??
simply typed	variant of CPDA???	???

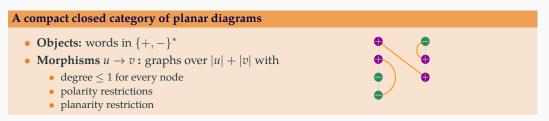
+ a characterization of $Str[A] \rightarrow Str$ as *comparison-free* polyregular functions

Thanks for listening! Questions?

A category of planar diagrams

- Interpret purely linear non-commutative λ -terms in a monoidal closed category
- We consider a non-commutative refinement of Geometry of Interaction

(well-known model of linear logic)

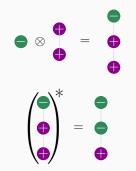


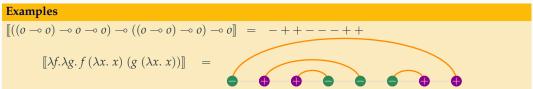
To compute the composition of two morphisms, follow the paths (and forget the middle component)

Compact-closure and interpretation of the λ -calculus

Structure to interpret the linear λ -calculus

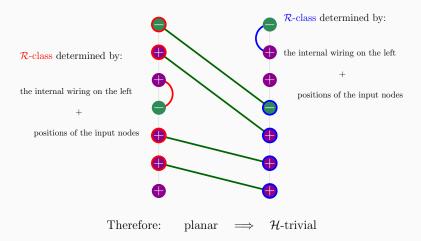
- Monoidal product $A \otimes B$ given by concatenation
- Duals *A*^{*}: reverse and flip polarities
- Monoidal closure by setting $A \multimap B = A^* \otimes B$
- Interpretation of types [[A]] by induction with [[*o*]] = + (injective interpretation of booleans)





Aperiodicity

To conclude, we need to show that every $(Hom(A, A), \circ)$ is finite and aperiodic for every A

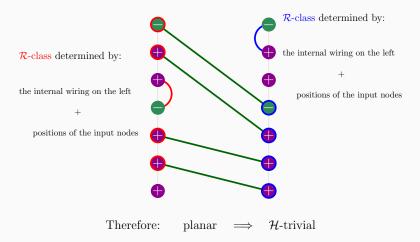


• More elementary proofs w/o Green relations possible

(e.g. order+Kleene's theorem)

Aperiodicity

To conclude, we need to show that every $(Hom(A, A), \circ)$ is finite and aperiodic for every A



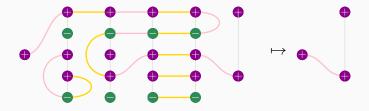
• More elementary proofs w/o Green relations possible

(e.g. order+Kleene's theorem)

• Planarity restriction is essential (consider

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!



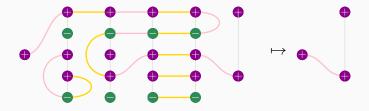
• Transition functions $\delta : \Sigma \to \text{Hom}(Q, Q)$ for some object Q

 $Q \approx$ set of directed states

• (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!



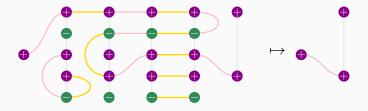
• Transition functions $\delta : \Sigma \to \text{Hom}(Q, Q)$ for some object Q

 $Q \approx$ set of directed states

- (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))
- Planarity restriction \Rightarrow the transition flow monoid is aperiodic
- (links between GoI and planar 2DFAs already considered by (Hines 2003))

Diagrams and two-way automata

Non-planar diagrams (with crossings): reminiscent of runs in 2DFAs!



• Transition functions $\delta : \Sigma \to \operatorname{Hom}(Q, Q)$ for some object Q

 $Q \approx$ set of directed states

- (actually, should also incorporate boundary morphisms Hom(+, Q) and Hom(Q, F))
- Planarity restriction \Rightarrow the transition flow monoid is aperiodic
- (links between GoI and planar 2DFAs already considered by (Hines 2003))

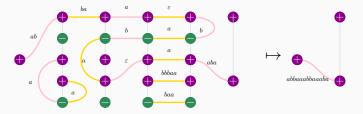
Theorem

Star-free languages are exactly those recognized by planar 2DFAs.

More generally: first-order transductions

Consider a richer category of diagrams where edges are labelled by output words

(labels of compositions given by concatenation)



Much like before, corresponding notion of (planar) 2DFTs.

Theorem

First-order transduction (FO regular functions) are those computed by reversible planar 2DFTs.

• 2DFTs with aperiodic transition monoid = FO regular functions [Carton&Dartois 2015]

(hence reversible planar 2DFTs \subseteq FO-transductions)

• FO transduction \subseteq reversible planar 2DFTs: closure by composition and Krohn–Rhodes

(see http://nguyentito.eu/2021-01-links.pdf)