Glued magic games self-test maximally entangled states

Thor Gabelgaard Nielsen

28th June 2021

This presentation is based on [MNP21], which is co-authored with Laura Mančinska and Jitendra Prakash.

Nonlocal games

- A nonlocal game G = (X, Y, A, B, V, π) is a cooperatively played game between two provers and a referee as follows:
- The referee selects a question pair (x, y) at random and sends it to the provers.
- Alice receives x, and Bob y, and are then not allowed to communicate in any way.
- They each send back their responses a and b, and the referee determine if they win.

The Magic Square game

- Consider a 3 × 3 board, which should be filled in so all rows and columns have even sum, except for the rightmost column.
 - A claimed solution can be tested using a nonlocal game.
 - One row/column is sent to Alice, one entry to Bob.
 - They win if Alice's assignments are satisfying, and are consistent with Bob's.
 - A perfect deterministic strategy is equivalent to a satisfying assignment.
- This can be interpreted as a system of equations over Z/2Z:

$$e_1 + e_2 + e_3 = 0$$
 $e_1 + e_4 + e_7 = 0$
 $e_4 + e_5 + e_6 = 0$ $e_2 + e_5 + e_8 = 0$
 $e_7 + e_8 + e_9 = 0$ $e_3 + e_6 + e_9 = 1$

e_1	e ₂	e ₃
<i>e</i> 4	<i>e</i> 5	<i>e</i> 6
<i>e</i> 7	<i>e</i> 8	<i>e</i> 9

Linear constraint system games

• Consider a system of linear equations in e_1, \ldots, e_k over $\mathbb{Z}/2\mathbb{Z}$:

$$\sum_{j=1}^k \alpha_{i,j} e_j = \beta_i, \quad i \in [n].$$

As with the Magic Square, we can define a corresponding nonlocal game:

- Alice receives an equation, which she fills in.
- Bob receives a variable, which he assigns a value to.
- They win if the equation is true, and their assignment is consistent.

• Observe one can reformulate the equations multiplicatively, by the identification $\{0,1\} \ni b \mapsto (-1)^b$:

$$\prod_{j=1}^k e_j^{\alpha_{i,j}} = (-1)^{\beta_i}, i \in [n].$$

Strategies for nonlocal games

Definition (Quantum strategy)

Suppose $G = (X, Y, A, B, V, \pi)$ is a binary LCS game. A *quantum strategy* consists of a state and two sets of measurements given by observables,

$$\mathcal{S} = \left(|\psi\rangle \in \mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}}, \left\{ \mathcal{A}_{i}^{(x)} \mid x \in X \right\}_{i \in \mathcal{A}}, \left\{ \mathcal{B}_{j} \right\}_{j \in \mathcal{B}} \right),$$

where \mathcal{H}_A and \mathcal{H}_B are (possibly infinite dimensional) Hilbert spaces. Alice successively uses $A_1^{(x)}, \ldots, A_k^{(x)}$ to assign values to each variable, while Bob only uses B_j to determine his answer.

- ▶ For a perfect quantum strategy for a BLCS game, [CM14] found that:
 - $A_i^{(x)} = A_i^{(x')}$ for all $x, x' \in X$. Thus, we set $A_i := A_i^{(x)}$ for some x.
 - ▶ If e_i and e_j appear in the same equation, $[A_i, A_j] = 0 = [B_i, B_j]$.
 - The operators {A_i}_i (resp. {B_j}_j) satisfy the equations of the game when written multiplicatively.

Convex combinations of strategies

Definition

Suppose for each $k \in [n]$ that $S_k = \left(|\psi^{(k)}\rangle, \left\{ A_i^{(k)} \right\}_i, \left\{ B_j^{(k)} \right\}_j \right)$ are quantum strategies for some nonlocal game G, and $\{\alpha_k\}_{k=1}^n \subseteq [0, 1]$ is a set of scalars satisfying $\sum_{k=1}^n \alpha_k^2 = 1$. The corresponding convex combination is the quantum strategy

$$\mathcal{S} := \sum_{k=1}^{n} \alpha_k \mathcal{S}_k := \left(\left| \psi \right\rangle, \left\{ A_i \right\}_i, \left\{ B_j \right\}_j \right),$$

where the state and the observables are given by

$$|\psi\rangle = \bigoplus_{k=1}^{n} \alpha_k \left|\psi^{(k)}\right\rangle, \qquad A_i = \bigoplus_{k=1}^{n} A_i^{(k)}, \qquad B_j = \bigoplus_{k=1}^{n} B_j^{(k)}.$$

Local dilations

Definition (Local dilation, [MPS21])

Suppose $S = (|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B, \{A_i\}_i, \{B_j\}_j)$ and $\tilde{S} = (|\tilde{\psi}\rangle \in \tilde{\mathcal{H}}_A \otimes \tilde{\mathcal{H}}_B, \{\tilde{A}_i\}_i, \{\tilde{B}_j\}_j)$ are two quantum strategies having the same number of observables for each party. We say that \tilde{S} is a local dilation of S if there exist Hilbert spaces $\mathcal{H}_{A,aux}$ and $\mathcal{H}_{B,aux}$, a state $|aux\rangle \in \mathcal{H}_{A,aux} \otimes \mathcal{H}_{B,aux}$ and isometries $U_A : \mathcal{H}_A \to \tilde{\mathcal{H}}_A \otimes \mathcal{H}_{A,aux}$ and $U_B : \mathcal{H}_A \to \tilde{\mathcal{H}}_B \otimes \mathcal{H}_{B,aux}$ such that with $U := U_A \otimes U_B$ it holds that for all i and j,

$$egin{aligned} U \ket{\psi} &= \left| ilde{\psi}
ight
angle \otimes \ket{\mathsf{aux}}, \ U \left(\mathsf{A}_i \otimes \mathsf{I}
ight) \ket{\psi} &= \left(ilde{\mathsf{A}}_i \otimes \mathsf{I}
ight) \left| ilde{\psi}
ight
angle \otimes \ket{\mathsf{aux}}, \ U \left(\mathsf{I} \otimes \mathsf{B}_j
ight) \ket{\psi} &= \left(\mathsf{I} \otimes ilde{\mathsf{B}}_j
ight) \left| ilde{\psi}
ight
angle \otimes \ket{\mathsf{aux}}. \end{aligned}$$

Definition (Self-testing)

A nonlocal game G is a *self-test* for the ideal strategy \tilde{S} achieving the optimal quantum value, if for any other quantum strategy S achieving the optimal quantum value, \tilde{S} is a local dilation of S.

- Allows one to completely characterise the possible optimal strategies.
- A common weaker result is that the above holds only for the state.
- Has two major limitations: Difficult to show, and does not apply for more than one optimal strategy.

Definition (Convex self-testing)

A nonlocal game G is a *convex self-test* for the ideal quantum strategies $\tilde{S}_1, \ldots, \tilde{S}_n$, if for any quantum strategy S achieving the optimal quantum value of G, there exists coefficients $\{\alpha_k\}_{k=1}^n \subseteq [0,1]$ and a decomposition of S into the internal convex combination $\sum_{k=1}^n \alpha_k S_k$ such that each of \tilde{S}_k is a local dilation of S_k .

Theorem (Self-testing of Magic Square, [WBMS16])

The Magic Square game self-tests its ideal strategy S_{MS} which consists of nine observables for each party along with the state $|\psi_4\rangle = \frac{1}{2}\sum_{i=0}^{3} |ii\rangle$.

► Implies there exists a set of operators {A_i}_{i∈[9]} satisfying the constraints of the game.

- ▶ If G and H are BLCS games each with one equation summing to 1, we can construct a new game by coalescing these two constraints to a single summing to 1.
 - Generalisation of the Glued Magic Square from [Cui+20].

Glued Magic Square

A note about some perfect strategies

• If $(|\psi\rangle, \{\tilde{A}_i\}_{i \in [9]}, \{\tilde{B}_j\}_{j \in [9]})$ is a perfect strategy for Magic Square, then one obtains a perfect one for GMS by setting $\tilde{A}_i := \tilde{B}_i := I$, for $I \in \{10, ..., 18\}$.

- ► This was originally observed in [Cui+20].
- Another perfect strategy appears by symmetry: Pairwisely swap operators for e_i and e_{19-i} (i.e. play Magic Square on the other Magic Square part).
- A different type of perfect strategy appears by taking a convex combination of the two previous ones.
 - An ad-hoc version of such a strategy appears in [Cui+20], and is inequivalent to the first one considered.
- Are there any other perfect strategies?

- For a perfect strategy $(|\psi\rangle, \{A_i\}_i, \{B_j\}_j)$, it holds that $A_3A_6A_9A_{10}A_{13}A_{16} = -I$.
 - ► Ideally, we would have $A_3A_6A_9 = -A_{10}A_{13}A_{16} = \pm I$. That implies we have a perfect Magic Square strategy on one Magic Square part. $A_4 - A_5 - A_6$
 - It is not true in general consider $A_i := \tilde{A}_i \oplus \tilde{A}_{19-i}$.
- While A₃A₆A₉ is not always ±1, it is a central operator for all considered strategies.
- Exploiting the relations of the game, it can be shown that $[A_3A_6A_9, A_i] = 0$ for all $i \in [18]$.
- Thus, restricting A_i to either of the ±1-eigenspace of A₃A₆A₉ is well-defined.
 - One can similarly restrict to the eigenspaces of B₃B₆B₉.

 $A_1 - A_2 - A_3$ $A_4 - A_5 - A_6$ $A_7 - A_9 - A_0$ $A_{10} - A_{11} - A_{12}$ $A_{13} - A_{14} - A_{15}$ $A_{16} - A_{17} - A_{18}$

▶ Restricted to $(A_3A_6A_9)^-$ and $(B_3B_6B_9)^-$, we essentially get the following game:

▶ Restricted to $(A_3A_6A_9)^-$ and $(B_3B_6B_9)^-$, we essentially get the following game:

$$e_{10} - e_{11} - e_{12}$$

 $| | | | |$
 $e_{13} - e_{14} - e_{15}$
 $| | | |$
 $e_{16} - e_{17} - e_{18}$

Analysing perfect strategies for subgames

- All operators can be derived from those corresponding to the blue variables.
- ► All blue operators pairwisely commute.
 - Clear when sharing equations; can be readily derived when not (e.g. A₁₄A₁₈A₁₄A₁₈ = I).
- ▶ This implies we get a representation of $(\mathbb{Z}/2\mathbb{Z})^{\times 4}$.

- ▶ Let S_1^{σ} be the strategy for GMS which is the ideal Magic Square strategy on the first part, and the representation σ of $(\mathbb{Z}/2\mathbb{Z})^{\times 4}$ on the second part.
- Let S_2^{σ} be as S_1^{σ} , except the operators for the first and second Magic Square part are swapped.
- Any perfect strategy for GMS decomposes into the above two types of strategies.
 - Thus, we get convex self-testing of the families

$$\hat{\mathcal{S}}_k = \left\{ \mathcal{S}_k^\sigma \mid \sigma \text{ is a representation of } (\mathbb{Z}/2\mathbb{Z})^{ imes 4}
ight\}, k \in [2].$$

- These all use the state $|\psi_4\rangle$, giving (ordinary) self-testing of the state.
- This generalises robustly.
- Replacing one or both parts with Magic Pentagram also works.

References I

Richard Cleve and Rajat Mittal. 'Characterization of binary constraint system games'. In: *International Colloquium on Automata, Languages, and Programming.* Springer. 2014, pp. 320–331.

David Cui, Arthur Mehta, Hamoon Mousavi and Seyed Sajjad Nezhadi. 'A generalization of CHSH and the algebraic structure of optimal strategies'. In: *Quantum* 4 (2020), p. 346.

Laura Mančinska, Thor Gabelgaard Nielsen and Jitendra Prakash. 'Glued magic games self-test maximally entangled states'. In: *arXiv preprint arXiv:2105.10658* (2021).

Laura Mančinska, Jitendra Prakash and Christopher Schafhauser. 'Constant-sized robust self-tests for states and measurements of unbounded dimension'. In: *arXiv e-print arXiv:2103.01729* (2021).

Xingyao Wu, Jean-Daniel Bancal, Matthew McKague and Valerio Scarani. 'Device-independent parallel self-testing of two singlets'. In: *Physical Review A* 93.6 (2016), p. 062121.