Quantum isomorphism of graphs: An overview

Laura Mančinska

QMATH, University of Copenhagen

Structure meets Power June 28, 2021

Quantum isomorphism is equivalent to equality of homomorphism counts from planar graphs.

Mančinska, Roberson. Proceedings of FOCS'20.

Nonlocal games and quantum permutation groups.

Lupini, Mančinska, and Roberson. Journal of Functional Analysis, **279(5)**:108592, 2020.

Quantum and non-signalling graph isomorphisms.

Atserias, Mančinska, Roberson, Šámal, Severini, and Varvitisiotis. Journal of Combinatorial Theory, Series B, **136**:289–328, 2019. Proceedings of ICALP'17, LIPIcs **80**, 76:1–76:14, 2017.

This talk

PART I

Quantum isomorphism and different ways to think about it:

- Nonlocal games
- Matrix formulations
- Homomorphism counts

PART II

Elements of the proof:

- Intertwiners of quantum groups
- Bi-labeled graphs
- Homomorphism matrices

Graph isomorphism

A map $f:V(G)\to V(H)$ is an isomorphism from G to H if

- f is a bijection and
- $g \sim g'$ if and only if $f(g) \sim f(g')$.

If such a map exists, we say that G and H are isomorphic and write $G\cong H.$

Matrix formulation: $PA_GP^{\dagger} = A_H$ for some **permutation** matrix P

(G, H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that $G \cong H$.

- To win players must reply h, h' such that rel(h, h') = rel(g, g')
- No communication during game

Fact. $G \cong H \Leftrightarrow$ **Classical** players can win the game with certainty

Def. (Quantum isomorphism) We say that $G \cong_{qc} H$ if quantum¹ players can win the game with certainty.

¹We work in the **commuting rather than the tensor-product model**.

Quantum commuting strategies

 $G \cong_{qc} H :=$ Quantum players can win the (G, H)-isomorphism game

• Alice and Bob share a quantum state ψ ψ is a unit vector in a Hilbert space ${\cal H}$

• Upon receiving g, Alice performs a local measurement \mathcal{E}_g to get $h \in V(H)$ $\mathcal{E}_g = \{E_{gh} \in \mathcal{B}(\mathcal{H}) : h \in V(H)\}$ where $E_{gh} \succeq 0$, $\sum_h E_{gh} = I$.

- Bob measures with $\mathcal{F}_{g'}$
- E_{gh} and $F_{g'h'}$ commute

The probability that players respond with h, h' on questions g, g' is

$$p(h, h'|g, g') = \langle \psi, \left(E_{gh} F_{g'h'} \right) \psi \rangle$$

Example: $G \not\cong H$ but $G \cong_{qc} H$

Construction based on reduction from linear system games.

Example: $G \not\cong H$ but $G \cong_{qc} H$

Construction based on reduction from linear system games.

Undecidability

Cor. Given two graphs G and H it is undecidable to test whether they are quantum isomorphic.

Quantum isomorphism and quantum groups

Def. A matrix $\mathcal{P} = (p_{ij})$ whose entries are elements of a C*-algebra is a quantum permutation matrix (QPM), if

•
$$p_{ij}$$
 is a projection, i.e., $p_{ij}^2 = p_{ij} = p_{ij}^*$ for all i, j

•
$$\sum_{k} p_{ik} = \mathbf{1} = \sum_{\ell} p_{\ell j}$$
 for all i, j

Remark. A QPM with entries from \mathbb{C} is a permutation matrix.

Thm. (Lupini, M., Roberson) $G \cong_{qc} H \iff \mathcal{P}A_G \mathcal{P}^{\dagger} = A_H \text{ for some quantum}$ permutation matrix \mathcal{P}

Can we describe quantum isomorphism in combinatorial terms?

Graph homomorphisms

Def. A map $\varphi : V(F) \to V(G)$ is a homomorphism from F to G if $\varphi(u) \sim \varphi(v)$ whenever $u \sim v$.

hom(\mathbf{F} , \mathbf{G}) := # of homomorphisms from F to G.

Counting homomorphisms

Theorem. (Lovász, 1967)

Homomorphism counts determine a graph up to isomorphism, i.e.

 $G \cong H \Leftrightarrow hom(F, G) = hom(F, H)$ for all graphs F.

Theorem. (M., Roberson) $G \cong_{qc} H \Leftrightarrow hom(F, G) = hom(F, H)$ for all **planar** graphs F. Context: Homomorphism counting

Thm. (Lovász, 1967) $G \cong H \Leftrightarrow hom(F, G) = hom(F, H)$ for **all graphs** F

Thm. (M., Roberson, 2019) $G \cong_{qc} H \Leftrightarrow hom(F, G) = hom(F, H)$ for all **planar** graphs F

Folklore.

G and H cospectral \Leftrightarrow hom(F, G) = hom(F, H) for all cycles F

Thm. (Dvořák, 2010; Dell, Grohe, Rattan, 2018) $G \cong_f H \Leftrightarrow hom(F, G) = hom(F, H)$ for all **trees** F $G \cong_k H \Leftrightarrow hom(F, G) = hom(F, H)$ for all F of **treewidth** $\leq k$

Complexity: Except for the class of planar graphs, equality of homomorphism counts from all of the above graph classes can be tested in at worst quasi-polynomial time.

Application: Certificate for $G \not\cong_{qc} H$

Are these two graphs quantum isomorphic?

Rook graph

Shrikhande graph

Before: Difficult to prove that they are not quantum isomorphic. **Now:** Only one (the Rook graph) contains K₄.

Part II Elements of the proof

Thm. $G \cong_{qc} H \Leftrightarrow hom(F, G) = hom(F, H)$ for all **planar** graphs F

Main component of our proof: Provide a *combinatorial description* of the **intertwiners** of Qut(G).

The quantum automorphism group Qut(G)

Definition. (Banica 2005)

 $C(\mathsf{Qut}(G))$ is the universal C*-algebra generated by elements $u_{ij},$ i, $j\in V(G),$ satisfying the following:

- 1 $\mathcal{U} = (\mathfrak{u}_{ij})$ is a quantum permutation matrix.
- $\mathbf{2} A_{\mathbf{G}} \mathcal{U} = \mathcal{U} A_{\mathbf{G}}.$

The quantum automorphism group Qut(G) is given by C(Qut(G)) together with the comultiplication

$$\Delta(\mathfrak{u}_{ij}) = \sum_k \mathfrak{u}_{ik} \otimes \mathfrak{u}_{kj}$$

The matrix \mathcal{U} is called the **fundamental representation** of Qut(G).

Intertwiners of Qut(G)

• $\mathfrak{U} = (\mathfrak{u}_{\mathfrak{i}\mathfrak{j}})$ - fundamental representation of $\mathsf{Qut}(\mathsf{G}).$

•
$$(\mathfrak{U}^{\otimes k})_{i_1\dots i_k, j_1\dots j_k} = \mathfrak{u}_{i_1 j_1}\dots \mathfrak{u}_{i_k j_k}$$

Definition. An (ℓ, k) -intertwiner of Qut(G) is a matrix T s.t. $\mathcal{U}^{\otimes \ell}T = T\mathcal{U}^{\otimes k}.$

 $C_q^G = \{T : T \text{ is an } (\ell, k) \text{-intertwiner for some } \ell, k \in \mathbb{N} \}.$

 C_q^G is closed under matrix product, tensor product, conjugate transposition, and linear combinations.

Examples of intertwiners of Qut(G)

- $(1,1)\text{-intertwiner: } \mathcal{U}A_G = A_G\mathcal{U}$
- (1, 2)-intertwiner: $M(e_i \otimes e_j) = \delta_{ij} e_i$.
- (1, 0)-intertwiner: $U = \sum_{i=1}^{n} e_i$.

Theorem. (Chassaniol 2019) $C^G_q = \langle U, M, A_G \rangle_{+,\circ,\otimes,*}$

Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits) An (l, k)-bi-labeled graph is a triple $\vec{F} = (F, \vec{\alpha}, \vec{b})$ where

- F is a graph
- $\vec{a} = (a_1, \dots, a_\ell)$ and $\vec{b} = (b_1, \dots, b_k)$ are tuples of vertices of F.

Example. $\vec{F} = (K_4, (2, 1), (2, 2))$

How to draw bi-labeled graphs

Homomorphism matrices

Let G be a graph and $\vec{F} = (F, (a), (b))$ an (1, 1)-bi-labeled graph.

Def. (G-homomorphism matrix of \vec{F}) For $u, v \in V(G)$, the uv-entry of the homomorphism matrix $T^{\vec{F}}$ is $|\{\text{homs } \varphi : F \to G \mid \varphi(a) = u, \varphi(b) = v\}|.$

Example.
$$\vec{A} = (K_2, (1), (2))$$

$$(T^{\vec{A}})_{u,v} = \begin{cases} 1 & \text{if } u \sim v \\ 0 & \text{otherwise} \end{cases}$$

So $\mathsf{T}^{\vec{\mathcal{A}}}=\mathsf{A}_G.$ Similarly, $\mathsf{T}^{\vec{\mathcal{U}}}=\mathsf{U},\quad\mathsf{T}^{\vec{\mathcal{M}}}=\mathsf{M}.$

Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs $\vec{F}_1,\vec{F}_2,$

$$T^{\vec{F}_1}T^{\vec{F}_2} = T^{\vec{F}_1 \circ \vec{F}_2},$$

where $\vec{F}_1 \circ \vec{F}_2$ is defined as

Planar bi-labeled graphs

Recall: Intertwiners of $Qut(G) = \langle U, M, A_G \rangle_{\circ, \otimes, *, \text{lin}}$

So we want to know what bi-labeled graphs are in $\langle \vec{U}, \vec{M}, \vec{A} \rangle_{\circ, \otimes, *}$.

Def.

 $\mathcal{P} = \{\vec{F}: F^{\circ} \text{ has planar embedding } w/ \text{ enveloping cycle bounding outer face}\}$

Thm. (informal) Intertwiners of Qut(G) are given by the span of homomorphism matrices of planar bi-labeled graphs.

Summary

Graph isomorphism can be formulated in terms of a nonlocal game.

• $G\cong_{q\,c}H\mathrel{\mathop:}= {\textbf{Quantum}}$ players can win the isomorphism game

Quantum isomorphisms have a rich mathematical structure:

- Thm. $G \cong_{qc} H \iff \mathcal{P}A_G \mathcal{P}^{\dagger} = A_H$ for some quantum permutation matrix \mathcal{P}
- Thm. $G \cong_{qc} H \quad \Leftrightarrow \quad hom(F, G) = hom(F, H)$ for all planar F

Thank you!