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This talk

PART I

Quantum isomorphism and different ways to think about it:

• Nonlocal games

• Matrix formulations

• Homomorphism counts

PART II

Elements of the proof:

• Intertwiners of quantum groups

• Bi-labeled graphs

• Homomorphism matrices
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Graph isomorphism

∼=

A map f : V(G)→ V(H) is an isomorphism from G to H if

• f is a bijection and

• g ∼ g ′ if and only if f(g) ∼ f(g ′).

If such a map exists, we say that G and H are isomorphic and
write G ∼= H.

Matrix formulation: PAGP
† = AH for some permutation matrix P
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(G,H)-Isomorphism Game

Intuition: Alice and Bob want to convince a referee that G ∼= H.

R

BA

g ′g

h h ′

• To win players must reply h,h ′

such that rel(h,h ′) = rel(g,g ′)

• No communication during game

Fact. G ∼= H ⇔ Classical players can win the game with certainty

Def. (Quantum isomorphism)
We say that G ∼=qc H if quantum1 players can win the game with
certainty.

1We work in the commuting rather than the tensor-product model.
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Quantum commuting strategies

G ∼=qc H := Quantum players can win the (G,H)-isomorphism game

R

BA

g ′g

h h ′

ψ

• Alice and Bob share a quantum state ψ
ψ is a unit vector in a Hilbert space H

• Upon receiving g, Alice performs a local
measurement Eg to get h ∈ V(H)
Eg = {Egh ∈ B(H) : h ∈ V(H)} where

Egh � 0,
∑

h Egh = I.

• Bob measures with Fg′

• Egh and Fg′h′ commute

The probability that players respond with h,h ′ on questions g,g ′ is

p(h,h ′|g,g ′) = 〈ψ,
(
EghFg ′h ′

)
ψ〉
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Example: G 6∼= H but G ∼=qc H

x1 + x2 + x3 = 0

000 011 101 110

x1 + x4 + x7 = 0

000 011 101 110

x4 + x5 + x6 = 0

000 011 101 110

x2 + x5 + x8 = 0

000 011 101 110

x7 + x8 + x9 = 0

000 011 101 110

x3 + x6 + x9 = 1

111 100 010 001

Construction based on reduction from linear system games.
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Undecidability

Cor. Given two graphs G and H it is undecidable to test whether
they are quantum isomorphic.
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Quantum isomorphism and quantum groups

Def. A matrix P = (pij) whose entries are elements of a
C∗-algebra is a quantum permutation matrix (QPM), if

• pij is a projection, i.e., p2ij = pij = p
∗
ij for all i, j

•
∑

k pik = 1 =
∑

` p`j for all i, j

Remark. A QPM with entries from C is a permutation matrix.

Thm. (Lupini, M., Roberson)

G ∼=qc H ⇔ PAGP† = AH for some quantum

permutation matrix P
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Can we describe quantum
isomorphism in

combinatorial terms?
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Graph homomorphisms

Def. A map ϕ : V(F)→ V(G) is a homomorphism from F to G if
ϕ(u) ∼ ϕ(v) whenever u ∼ v.

Example

C7 → C5

hom(F,G) := # of homomorphisms from F to G.
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Counting homomorphisms

Theorem. (Lovász, 1967)
Homomorphism counts determine a graph up to isomorphism, i.e.

G ∼= H ⇔ hom(F,G) = hom(F,H) for all graphs F.

Theorem. (M., Roberson)
G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar graphs F.
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Context: Homomorphism counting

Thm. (Lovász, 1967)
G ∼= H ⇔ hom(F,G) = hom(F,H) for all graphs F

Thm. (M., Roberson, 2019)
G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar graphs F

Folklore.
G and H cospectral ⇔ hom(F,G) = hom(F,H) for all cycles F

Thm. (Dvǒrák, 2010; Dell, Grohe, Rattan, 2018)
G ∼=f H ⇔ hom(F,G) = hom(F,H) for all trees F
G ∼=k H ⇔ hom(F,G) = hom(F,H) for all F of treewidth 6 k

Complexity: Except for the class of planar graphs, equality of
homomorphism counts from all of the above graph classes can be
tested in at worst quasi-polynomial time.
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Application: Certificate for G 6∼=qc H
Are these two graphs quantum isomorphic?

Rook graph Shrikhande graph

Before: Difficult to prove that they are not quantum isomorphic.

Now: Only one (the Rook graph) contains K4.
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Part II
Elements of the proof

Thm. G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar graphs F

Main component of our proof: Provide a combinatorial
description of the intertwiners of Qut(G).



The quantum automorphism group Qut(G)

Definition. (Banica 2005)
C(Qut(G)) is the universal C∗-algebra generated by elements uij,
i, j ∈ V(G), satisfying the following:

1 U = (uij) is a quantum permutation matrix.

2 AGU = UAG.

The quantum automorphism group Qut(G) is given by C(Qut(G))
together with the comultiplication

∆(uij) =
∑

k uik ⊗ ukj

The matrix U is called the fundamental representation of Qut(G).
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Intertwiners of Qut(G)

• U = (uij) - fundamental representation of Qut(G).

•
(
U⊗k

)
i1...ik,j1...jk

= ui1j1 . . .uikjk

Definition. An (`,k)-intertwiner of Qut(G) is a matrix T s.t.

U⊗`T = TU⊗k.

CG
q = {T : T is an (`,k)-intertwiner for some `,k ∈ N}.

CG
q is closed under matrix product, tensor product, conjugate

transposition, and linear combinations.
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Examples of intertwiners of Qut(G)

(1, 1)-intertwiner: UAG = AGU

(1, 2)-intertwiner: M(ei ⊗ ej) = δijei.
(1, 0)-intertwiner: U =

∑n
i=1 ei.

Theorem. (Chassaniol 2019)

CG
q = 〈U,M,AG〉+,◦,⊗,∗
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Bi-labeled graphs

Def. (Lovász, Large Networks and Graph Limits)

An (`,k)-bi-labeled graph is a triple ~F = (F, ~a,~b) where

• F is a graph

• ~a = (a1, . . . ,a`) and ~b = (b1, . . . ,bk) are tuples of vertices
of F.

Example. ~F =
(
K4, (2, 1), (2, 2)

)

2

1

43
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How to draw bi-labeled graphs

2

1

43
~F =

(
K4, (2, 1), (2, 2)

)

~M =
(
K1, (1), (1, 1)

)
~U =

(
K1, (1),∅

)
~A =

(
K2, (1), (2)

)
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Homomorphism matrices

Let G be a graph and ~F = (F, (a), (b)) an (1, 1)-bi-labeled graph.

Def. (G-homomorphism matrix of ~F)

For u, v ∈ V(G), the uv-entry of the homomorphism matrix T
~F

is
|{homs ϕ : F→ G | ϕ(a) = u, ϕ(b) = v}| .

Example. ~A = (K2, (1), (2)) 1 2

(
T
~A
)
u,v

=

{
1 if u ∼ v

0 otherwise

So T
~A = AG. Similarly, T

~U = U, T
~M =M.
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Operations on bi-labeled graphs: Products

Thm. For a graph G and bi-labeled graphs ~F1,~F2,

T
~F1T

~F2 = T
~F1◦~F2 ,

where ~F1 ◦~F2 is defined as

1

2

3

4

5

~F1

a

b

c

d

~F2

e

1

2

3

{4, a, c}

{5, b, d}
e

~F1 ◦ ~F2

◦ =
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Planar bi-labeled graphs

Recall: Intertwiners of Qut(G) = 〈U,M,AG〉◦,⊗,∗,lin
So we want to know what bi-labeled graphs are in 〈~U, ~M, ~A〉◦,⊗,∗.

Def.

a1

a2

a3

b1

b2

b3

F

F ◦

a1

a2

a3

b1

b2

b3

F

α1

α2

α3

β1

β2

β3

P = {~F : F◦ has planar embedding w/ enveloping cycle bounding outer face}

Thm. (informal) Intertwiners of Qut(G) are given by the span of
homomorphism matrices of planar bi-labeled graphs.
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Summary
Graph isomorphism can be formulated in terms of a nonlocal game.

R

BA

g ′g

h h ′

• G ∼=qc H := Quantum players can win the isomorphism game

Quantum isomorphisms have a rich mathematical structure:

• Thm. G ∼=qc H ⇔ PAGP† = AH for some quantum
permutation matrix P

• Thm. G ∼=qc H ⇔ hom(F,G) = hom(F,H) for all planar F

Thank you!
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