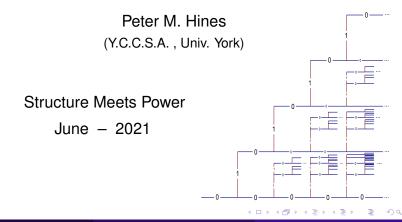
# On the combinatorics of Girard's exponentials



### This is not a talk about logic!

(Linear, or otherwise)

It is about the **combinatorics** behind some logical models.

- Intuitive combinatorial interpretations of the structures used.
- Where we might find such structures in other settings.
- How such things generalise, from a *combinatorial* rather than a *logical* perspective.

It is nevertheless useful to have at least some idea of what is being modeled!

# Our starting point :

Modus Ponens.

The models we consider are of a fragment<sup>1</sup> of J.-Y. Girard's *Linear Logic*.

As first emphasised by Y. Lafont, this treats **formulæ** as **resources** that may be 'used up' in a deduction

$$\frac{A, A \Rightarrow B}{B}$$
  
The resource *A* is *'consumed'* by

$$\frac{A, A \Rightarrow B}{A, B}$$

Resource *A* is still '*available for re-use*'.

### This was a consequence of re-considering structural rules

These are rules to do with "how proofs are put together", rather than "how logical operators behave".

They nevertheless have consequences for logical operators, such as *commutativity* or *idempotency* of conjunction.

<sup>&</sup>lt;sup>1</sup>Precisely, the multiplicative-exponential fragment.

### This is the way the world ends? - restricting structural rules!

Unlike other substructural logics, LL does not entirely discard structural rules :

Affine logic rules out verious logical paradoxes (e.g. Kleene's paradox) by eliminating **contraction**.

Relevance logic keeps a 'causal link' between assumption and conclusion, by ruling out **weakening**.

Instead, these are *heavily controlled* by introducing two 'exponential' forms of each formula A

- !(A) "of course" or "bang"
- ?(*A*) "why not" or "whimper"

that are susceptible to these rules, along with rules for introducing / manipulating them.

In particular !(A) may be thought of as an "infinitely re-usable version of A".

< □ > < □ > < □ > < □ > < □ >

We consider the combinatorics of how "Of course" and "conjunction" are modeled, with particular reference to this concept of 'infinite re-usability'.

This is within the setting of Gol:

- "Geometry of Interaction (I) : Interpretation of system *F*" — J.-Y. Girard (1988)
- "Geometry of Interaction (II) : Deadlock-free algorithms — J.-Y. Girard (1988)

Both of these give representations of a fragment of linear logic.

Propositions are modeled as,

partial injective functions on the natural numbers

These are, equivalently :

**1** Relations  $f \subseteq \mathbb{N} \times \mathbb{N}$  satisfying,

 $a = a' \Leftrightarrow b = b'$  for all  $(b', a'), (b, a) \in f$ 

Partial functions that are bijections from their domain to their image. These are

- closed under composition,
- include the identity, and all other bijections,
- closed under generalised inverse (relational converse)

and so form a monoid  $\mathcal{I}(\mathbb{N})$  — the symmetric inverse monoid on  $\mathbb{N}.$ 

Given 'propositions'  $f, g \in \mathcal{I}(\mathbb{N})$ , their **conjunction** in the Gol system is :

$$[f \star g](n) = \begin{cases} 2.f\left(\frac{n}{2}\right) & n \text{ even,} \\ \\ 2.g\left(\frac{n-1}{2}\right) + 1 & n \text{ odd.} \end{cases}$$

### Algebraically

An injective inverse monoid homomorphism

- $\star:\mathcal{I}(\mathbb{N})\times\mathcal{I}(\mathbb{N})\to\mathcal{I}(\mathbb{N})$
- $[f \star g][h \star k] = fh \star gk.$
- $[Id \star Id] = Id$

#### Categorically

A faithful symmetric semi-monoidal<sup>a</sup> tensor on an inverse monoid (i.e. single-object category).

<sup>a</sup>In the sense of Joyal & Kock's "weak units"

### Alice and Bob play with an infinite deck of cards

- A countably infinite deck of cards is dealt in the usual way to Alice and Bob.
- Alice applies f to her hand of cards, and Bob applies g to his hand.
- I Alice and Bob's hands are then merged, using a perfect, interleaving, riffle shuffle.

Some subtleties :

● N has a bottom element, but no top element

- cards are dealt from the bottom of the pack.

• *f* and *g* may be *partially defined*. For simplicity, we consider the *very special case* where they are bijections<sup>2</sup>.

<sup>&</sup>lt;sup>2</sup>As intuition for partiality, consider that Alice & Bob can erase the picture on a card, or insert blank cards ...

## An unusual conjunction

Some relevant properties :

 $\bigcirc [f \star g] \neq [g \star f]$ 

- $\bigcirc \ [f \star f] \neq f$

#### Some very standard category theory ...

Identities 1. and 2. hold, up to a fixed bijection. For all  $f, g, h \in \mathcal{I}(\mathbb{N})$ 

$$\sigma[f \star g] = [g \star f]\sigma \quad , \quad \alpha[f \star [g \star h]] = [[f \star g] \star h]\alpha$$

Girard's conjunction is *semi-monoidal tensor* on the monoid  $\mathcal{I}(\mathbb{N})$ .

Identity 3. cannot hold in the same way.

**Counterexample :** Consider some *f* that is only defined for a single  $n \in \mathbb{N}$ . Observe that  $[f \star f]$  is defined at both 2n and 2n + 1.

# Bringing in the bang!

Instead, we have  $!(f) \in \mathcal{I}(\mathbb{N})$ , which is the 'infinitary' form of *f*.

This satisfies the crucial fixed-point equation

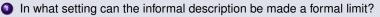
 $f \star !(f) = !(f)$ 

that allows it to be thought of as 'infinitely many copies of f'.

```
INFORMALLY !(f) = f \star [f \star [f \star ...]]
FORMALLY !(f) = \Phi(Id \times f)\Phi^{-1} where
\Phi(x, y) = 2^{x+1}y + 2^x - 1 \quad \forall \ (x, y) \in \mathbb{N} \times \mathbb{N}
```

is a bijection, monotone in both variables.

### A few questions



- 2 Does it also relate to "shuffling decks of cards"?
- What if anything is the significance of monotonicity w.r.t. the product order?

### A (mathematical) strategy :

We take the (very well-studied) finite case, and, "check everything still works".

#### Shuffles are modeled by monotone bijections :

Bijectivity ensures all cards are used,

Monotonicity accounts for,

"If card a is above card b before the shuffle, it is still above b afterwards."

'Multiple identical decks' are given by disjoint unions,

 $\underbrace{\mathbb{N} \oplus \ldots \oplus \mathbb{N}}_{k \text{ times}} = \mathbb{N} \times \{0\} \cup \ldots \mathbb{N} \times \{k-1\} = \mathbb{N} \times \{0, \ldots k-1\}$ 

These are ordered using the induced partial order :

 $(x,i) \leq (y,j)$  iff  $x \leq y$  and i = j

### Shuffles as Cantor points

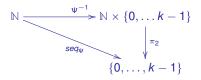
As in the finite & infinite case, we may also describe a shuffle of k decks of cards

 $\Psi: \mathbb{N} \times \{0, \dots, k-1\} \to \mathbb{N}$ 

operationally, as a sequence  $p_0, p_1, p_2, p_3, \dots$  over the set  $\{0, \dots, k-1\}$ .

This has the intuition of an operational description :

"Take from deck  $p_0$ , then  $p_1$ , then  $p_2$ , then ... "



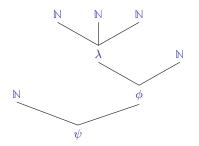
This is the **sequence of plays** for  $\Psi$ , a point of the Cantor space  $C_{\{0,...,k-1\}}$  over the set  $\{0,...,k-1\}$ . It is enough to characterise  $\Psi$ , by monotonicity & bijectivity.

## Operads of card shuffles

Unsurprisingly, plugging together card shuffles forms an (non-symmetric) operad.

(It is an example of a standard construction : the endomorphism operad in a semi-monoidal category)

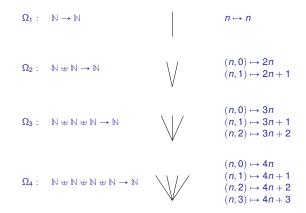
A tree such as :



represents a shuffle (i.e. monotone bijection) of five decks of cards :

 $\psi(\mathbf{1}_{\mathbb{N}} \uplus \phi(\lambda \uplus \mathbf{1}_{\mathbb{N}})) \ : \ \mathbb{N} \uplus \mathbb{N} \uplus \mathbb{N} \uplus \mathbb{N} \uplus \mathbb{N} \to \mathbb{N}$ 

We define the *k*-deck riffle shuffle  $\Omega_k : \mathbb{N}^{\oplus k} \to \mathbb{N}$  to be the bijection  $\Omega_k(n, i) = kn + i$  for all  $(n, i) \in \mathbb{N}^{\oplus k}$ , with the natural diagrammatics :

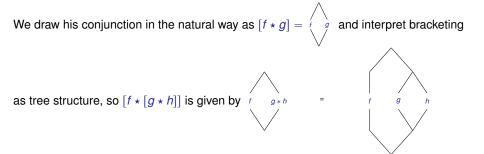


The inverse of  $\Omega_n$  is the *n*-player **fair deal**.

### Shuffles & bangs in conjunction

Girard's conjunction is based on the binary case :

```
The two-player fair deal \Omega_2^{-1} : \mathbb{N} \to \mathbb{N} \oplus \mathbb{N}
The two-pack riffle shuffle \Omega_2 : \mathbb{N} \oplus \mathbb{N} \to \mathbb{N}
```



We nevertheless consider the general setting, and treat his conjunction as a special case ... without worrying too much about logical interpretations!

peter.hines@york.ac.uk

Fun & Games in Hilbert's Casino

# The object of study

We define  $\mathcal{R}$ *iff*, the operad of **hierarchical riffle shuffles** to be the operad generated by the perfect riffle shuffles  $\{\Omega_k\}_{k>1}$ 

#### The obvious diagrammatics :

- As we only have one generator of each arity, we may draw H-R shuffles as unlabled planar trees.
- We leave identities implicit.

We do not distinguish between

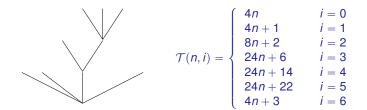
and

**Claim :** Each *k*-leaf tree determines a <u>distinct</u> monotone Hilbert-hotel style bijection from *k* copies of  $\mathbb{N}$  to a single copy of  $\mathbb{N}$ , so *Riff* is isomorphic to the formal operad *RPT* of *rooted planar trees*<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup>Some fun may be had labeling facets of associahedra by elements of  $\mathcal{R}$ *iff*. That is the subject of another talk ...

### What bijections do they determine??

An illustrative example :  $\mathcal{T} = \Omega_4 \circ_3 (\Omega_2 \circ_2 \Omega_3) = (\Omega_4 \circ_3 \Omega_2) \circ_4 \Omega_3$ 



Each  $\mathcal{T}(-, i)$  is a linear injection  $n \mapsto X_i n + Y_i$ .

As  $\mathcal{T}$  is a bijection,  $im(\mathcal{T}(-,i)) \cap im(\mathcal{T}(-,j)) = \emptyset$  and  $\bigcup_{i=0}^{7} im(\mathcal{T}(-,j)) = \mathbb{N}$ 

Every member of *Riff* 'covers the natural numbers with linear sequences'

They determine distinct finite open covers of  $\mathbb{N}$  w.r.t. the profinite topology.

Consider  $S, T \in \mathcal{R}iff_k$  where

 $T(n,i) = X_i n + Y_i$  and  $S(n,i) = A_i n + B_i$ 

What happens when we

- **1** deal out a deck of cards using  $S^{-1}$
- then shuffle them back together using T?

We derive a piecewise-linear bijection on  $\mathbb{N}$ ,

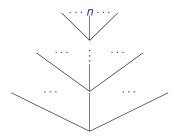
$$TS^{-1}(n) = X_i\left(\frac{n-B_i}{A_i}\right) + Y_i$$
 where  $n \pmod{A_i} = B_i$ 

These are *congruential functions* introduced by John Conway ("Unpredictable iterations" 1971), to prove formal undecidability of iterative problems such as Collatz's 3x + 1 problem.

(A result heavily prefigured in Sergei Maslov's "On E. L. Post's Tag Problem" 1964)

How do we compute such (indexed families) of linear maps?

The general case : card *n* from deck *i* :



Branch  $a_k$  out of  $b_k$ 

Branch a2 out of b2

Branch a1 out of b1

We have an injection  $n \mapsto X_i n + Y_i$ . How to compute  $X_i$  and  $Y_i$ ?

Multiplicative coefficients Trivially,  $X_i = \prod_{j=1}^k b_j$ .

Additive coefficients We can simply write down the value of  $Y_i$ .

peter.hines@york.ac.ul

### Über Einfache Zahlensysteme – G. Cantor (1869)

*On Simple Number Systems* studied **mixed-radix** counting : positional number systems where the *base* used varies between *columns*.

Familiar example : pre-decimal / post-brexit British currency

4 Farthings = 1 Penny, 12 Pennies = 1 Shilling, 20 Shillings = 1 Pound ...

We may simply write down the value of  $Y_i$ 

| <b>v</b> . –            | base <b>b</b> <sub>k</sub> | base $b_{k-1}$ | <br>base <mark>b</mark> 1 |  |  |
|-------------------------|----------------------------|----------------|---------------------------|--|--|
| <i>r</i> <sub>1</sub> – | $a_k$                      | $a_{k-1}$      | <br>a <sub>1</sub>        |  |  |

(Note :  $b_k b_{k-1} \dots b_1$  is an ordered factorisation of  $X_i$ ).

Transformations between different mixed-radix counting systems are particularly well-studied in the Fast Fourier Transforms re-discovered by Cooley & Tukey (... but originally due to Gauss).

**Proposition :**  $\mathcal{R}$ *iff* is *freely generated* by  $\{\Omega_j\}_{j=2,3,4,...}$ .

No two distinct *k*-leaf trees determine the same bijection from  $\mathbb{N}^{\forall k}$  to  $\mathbb{N}$ .

i.e.  $\mathcal{R}$ *iff* is isomorphic to the formal operad **rpt** of "rooted planar trees".

**Proof (outline) :** A simple induction argument on the number of leaves.

#### The only non-trivial step

We need to show that the generating set  $\{\Omega_K\}_{k>0}$  is *minimal* — no perfect riffle can be produced by composing other perfect riffles.

We do this by showing that the generators  $\Omega_{\mathcal{K}}$  are a very special type of shuffle.

Definition A shuffle of k decks of cards  $\Psi : \mathbb{N} \times \{0, \dots, k-1\} \rightarrow \mathbb{N}$  is

standard when it is monotone in both variables.

peter.hines@york.ac.ul

Fun & Games in Hilbert's Casino

An operational characterisation :

This has the natural interpretation that, at any stage of the shuffle,

```
# of cards placed from deck i

\geqslant

# of cards placed from deck i + 1
```

As a consequence, the sequence of plays will be an infinitary Ballot sequence.

**Equivalently :** The tableau determined by a standard shuffle is a (infinitary) standard Young tableau, with ordered rows & columns.

| Ψ(0,0)           | Ψ(1,0)           | Ψ(2,0)           | Ψ(3,0)           |  |
|------------------|------------------|------------------|------------------|--|
| Ψ(0,1)           | Ψ(1,1)           | Ψ(2, 1)          | Ψ(3,1)           |  |
| :                | :                | :                | :                |  |
| 1                | -                |                  |                  |  |
| $\Psi(0, k - 1)$ | $\Psi(1, k - 1)$ | $\Psi(2, k - 1)$ | $\Psi(3, k - 1)$ |  |

The generators  $\{\Omega_1, \Omega_2, \Omega_3, \ldots\}$  are certainly standard – which composites are similarly standard?

peter.hines@york.ac.ul



S and T are themselves both standard.

**2** S is of arity k - i.e. the product is the (associative) **overproduct** 

 $S \neg T \stackrel{\text{def.}}{=} S \circ_k T \quad \forall S \in \mathcal{R}$ iff<sub>k</sub> given by grafting onto the far right leaf.

As an illustrative example, consider  $\Omega_4 \circ_2 \Omega_2$ . All the generators are standard, but this composite is not standard :

| 0           | 4 | 8  | 12       | 16       |                    |
|-------------|---|----|----------|----------|--------------------|
| 1           | 5 | 9  | 13       | 17       |                    |
| 2           | 6 | 10 | 14       | 18       |                    |
| 3           | 7 | 11 | 15       | 19       |                    |
|             |   |    |          |          |                    |
|             |   |    |          |          |                    |
| 0           | 4 | 8  | 12       | 16       |                    |
| 0           | 4 | 8  | 12<br>25 |          |                    |
| 0<br>1<br>5 |   |    |          | 33<br>36 |                    |
| 1           | 9 | 17 | 25       | 33<br>36 | · · · ·<br>· · · · |





The 'standard' property is preserved precisely when the final row is split.

#### We may characterise standard hierarchical riffle shuffles

These are given by arbitrary (finite) overproducts of generators.

$$\Omega_{x_0} \, \mathbb{k}_{\Omega_{x_1}} \, \mathbb{k}_{\Omega_{x_2}} \, \mathbb{k}_{\dots} \, \mathbb{k}_{\Omega_{x_N}}$$

No generator is a non-trivial composite of this form; therefore, the generating set is minimal, and by induction  $\mathcal{R}$ *iff* is freely generated.

Every distinct finite sequence of natural numbers determines a distinct standard shuffle / standard Young tableau, by

$$n_0 n_1 \dots n_x \mapsto \Omega_{n_0+2} \Im \Omega_{n_1+2} \Im \dots \Im \Omega_{n_x+2}$$

i.e. there exists an injective monoid homomorphism from the free monoid over the natural numbers to ( $\mathcal{R}$ *iff*,  $\neg$ ), given by  $std(n) \stackrel{def}{=} \Omega_{n+2}$ .

#### Can we give meaning to infinitary overproducts??

In particular, for the 2-player riffle shuffle / fair deal, can we give a meaning to :



Doing so would allow us to formalise the bang as an 'infinitary conjunction'

 $!(f) = [f \star [f \star [f \star [f \star \ldots]]]]$ 

Precisely, is the limit  $\Omega_2 \neg \Omega_2 \neg \Omega_2 \neg \Omega_2 \neg \dots$  well-defined?

If so, how about other infinitary overproducts of generators??

peter.hines@york.ac.uk

We may extend our monoid homomorphism to *one-sided infinite* strings (i.e. points of  $C_{\mathbb{N}}$ , the Cantor space over the natural numbers) in a natural way.

Consider some infinite sequence  $\Omega_{x_0} \neg \Omega_{x_1} \neg \Omega_{x_2} \neg \Omega_{x_3} \neg \dots$  along with the sequence of tableaux determined by the prefixes :

- Ω<sub>x0</sub>
- $\bigcirc \Omega_{x_0} \neg \Omega_{x_1}$

At each step, every natural number N either:

- moves left (& possibly downwards as well), or
- stays in the same place ... at which point it remains there!

 $\forall (N, j) \in \mathbb{N} \times \mathbb{N}, \exists K \in \mathbb{N} \ s.t. \ \forall T, T' \in \mathcal{R}$ iff

These will define *infinitary standard shuffles*, or monotone bijections  $\mathbb{N} \times \mathbb{N} \cong \mathbb{N}$ .

### The simplest worked example:

The simplest is the infinitary overproduct  $\Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \ldots$  that may be thought of as "the right fixed point for the binary riffle shuffle"

```
\Omega_2 \supset (\Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \ldots) = \Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \Omega_2 \supset \ldots
```

Using the 'counting branches' method for determining coefficients leads us to Girard's bijection  $\Phi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

 $\Phi(x,y) = 2^{x+1}y + 2^x - 1$ 

Its description as an overproduct accounts for monotonicity in both variables.

#### A simple question

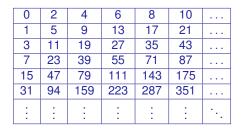
There are two different ways of describing a (standard) shuffle :

- A (monotone in both variables) bijection.
- The corresponding (ballot) sequence of plays.

What do both of these look like??

• • • • • • • • • • • •

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

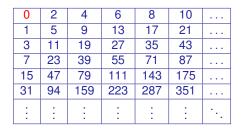
form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

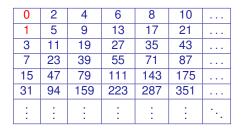
form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

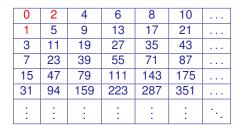
form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

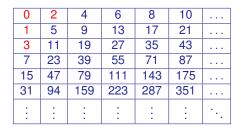
form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

Giving the tableaux for  $\Phi$  explicitly :



As a general pattern

The sub-tableaux given by considering the first *n* natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

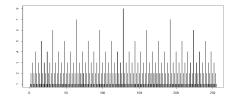
 $\Psi:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ 

## From bijections to sequences

Alternatively, the sequence of plays  $\pi_2 \Phi^{-1} : \mathbb{N} \to \mathbb{N}$  is given by

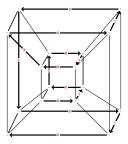
| 0 | 1 | 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 4 | 0 | 1 |  |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|--|
| 0 | 2 | 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 5 | 0 | 1 | 0 | 2 |  |
| 0 | 1 | 0 | 3 | 0 | 1 | 0 | 2 | 0 |   |   |   |   |   |   |   |   |   |  |

This is the (ballot) **ruler sequence** — sequence number A007814 in the Online Encyclopedia of Integer Sequences (https://oeis.org/A007814), where it is characterised as r(n) + 1 = *"The Hamming distance between n and n* + 1"



Picture taken from "On the ubiquity of the Ruler sequence" - J. Nuño, F. Muñoz (2020)

Among *many other applications*, the ruler sequence r(n) is known in network topology for determining Hamiltonian paths in hypercube graphs :



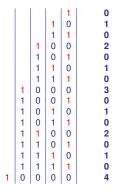
The simple prescription :

- Index axes (i.e. dimensions) by the natural numbers,
- On step *n*, move along axis r(n).

visits each vertex exactly once.

## Concretely, how could we perform this shuffle??

The ruler series is the sequence of plays for the bijection  $\Phi = \Omega_2 \neg \Omega_2 \neg \Omega_2 \neg \Omega_2 \neg \Omega_2 \neg \dots$ 



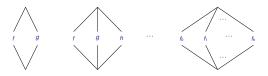
For an arbitrary (infinite) overproduct  $\Omega_{x_0} \neg \Omega_{x_1} \neg \Omega_{x_2} \neg \Omega_{x_3} \neg \dots$ , we simply count in a mixed-radix system with columns labeled by  $\dots, x_3, x_2, x_1, x_0$ .

**Question :** Is there some setting for which such infinite overproducts provide an infinitary form of conjunction?

peter.hines@york.ac.u

## Generalising conjunctions

Girard's conjunction naturally generalises to an  $\mathbb{N}$ -indexed family of injective homomorphisms, given by conjugation by  $\Omega_k$ , for all k > 1.



#### The intuition :

A pack of cards is dealt out amongst *k* players, using a fair deal. Each player *j* then applies  $f_j$  to his hand of cards. All hands of cards are then shuffled together using the perfect riffle shuffle  $\Omega_K$ .

Writing this out explicitly,

$$[f_0 \star f_1 \star \ldots \star f_{k-1}](n) = k f_r \left(\frac{n-r}{k}\right) + r \text{ where } n \pmod{k} = r$$

Each of these defines an *injective inverse monoid homomorphism*  $\mathcal{I}(\mathbb{N})^{\times k} \hookrightarrow \mathcal{I}(\mathbb{N})$ 

Define  $\mathcal{BOB}$ , the operad of **Bobzien Conjunctions** to be generated by

 $\begin{bmatrix} -\star \end{bmatrix} : \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \to \mathcal{I}(\mathbb{N})$ 

 $\begin{bmatrix} -\star_{-}\star_{-}\end{bmatrix} \quad : \quad \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \times \mathcal{I}(\mathbb{N}) \to \mathcal{I}(\mathbb{N})$ 

 $\begin{bmatrix} -\star_{-}\star_{-}\star_{-}\end{bmatrix} \quad : \quad \mathcal{I}(\mathbb{N})\times\mathcal{I}(\mathbb{N})\times\mathcal{I}(\mathbb{N})\times\mathcal{I}(\mathbb{N})\to\mathcal{I}(\mathbb{N})$ 

It is a sub-operad of the endomorphism operad of  $\mathcal{I}(\mathbb{N})$  in the monoidal category  $(Inv, \times)$  of inverse monoids with Cartesian product.

Note : it is *freely generated* by one generator of each arity and hence also isomorphic to the operad *RPT* or rooted planar trees.

"The Combinatorics of Stoic Conjunction"

- S. Bobzien (2011) Oxford Studies in Ancient Philosophy

This analyses the somewhat mysterious statement in Plutarch's **Quaestiones Convivales** :

"Chrysippus says that the number of conjunctions [constructible] from only ten assertibles exceeds one million. However, Hipparchus refuted this, demonstrating that the affirmative encompasses **103049** conjoined assertibles."

As pointed out by Daniel Hough (c. 1994), this is the 10<sup>th</sup> little Schröder number — the number of distinct 10-leaf rooted planar trees.

Suzanne Bobzien analysed the logical assumptions Hipparchus & Chrysippus must have made, to arrive at their figures.

"Hipparchus counts the same sequence of conjuncts but with different bracketing as different conjunctions. He counts

```
p \wedge [q \wedge r], [p \wedge q \wedge r], [[p \wedge q] \wedge r]
```

as different assertibles. " - S.B.

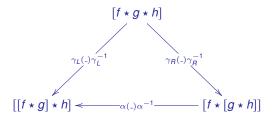
"In order to get to this number, Hipparchus took the order of atomic assertibles as fixed, so  $[p \land q] \neq [q \land p]$ " – *S.B.* 

"Non-simple [assertibles] are those that are put together from an assertible that is taken twice, or from different assertibles." – *Plutarch, quoted by S.B.* 

The Bobzien conjunctions

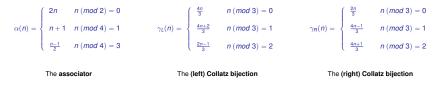
 $[f \star g \star h]$ ,  $[[f \star g] \star h]$ ,  $[f \star [g \star h]]$ 

are nevertheless equivalent up to (fixed) isomorphism.



The congruential bijection  $\alpha : \mathbb{N} \to \mathbb{N}$  is the canonical associativity isomorphism for Girard's conjunction, considered as a categorical tensor. What about the other two congruential bijections??

### A precursor to a famous problem



#### **The** 3x + 1 **problem & its generalisations** – Jeffrey Lagarias (1985)

Writing about L. Collatz : "In his notebook dated July 1, 1932, he considered the function

 $n \mapsto \begin{cases} \frac{2}{3}n & \text{if } n \equiv 0 \pmod{3} \\ \frac{4}{3}n - \frac{1}{3} & \text{if } n \equiv 1 \pmod{3} \\ \frac{4}{3}n + \frac{1}{3} & \text{if } n \equiv 2 \pmod{3} \end{cases}$ 

He posed the problem of whether the cycle containing 8 is finite or infinite. I will call this the **Original Collatz Problem**. His original question has never been answered."

Alice and Bob play a game against a dealer, with a countably infinite pack of cards. The Dealer deals out this pack to all players, using a fair deal.

- Alice and Bob merge their stacks together, using a perfect riffle shuffle.
- The Dealer merges the result of this with his stack, again using a perfect riffle.

The process repeats. Each round of the game permutes the infinite pack of cards

# Alice and Bob will win, and may leave the game, when one card, that they mark <u>beforehand</u>, returns to its original position in the Dealer's hand.