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The topic of the talk

This is not a talk about logic!

(Linear, or otherwise)

It is about the combinatorics behind some logical models.

Intuitive combinatorial interpretations of the structures used.

Where we might find such structures in other settings.

How such things generalise, from a combinatorial

rather than a logical perspective.

It is nevertheless useful to have at least some idea of what is being modeled!
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Our starting point :

The models we consider are of a fragment1 of J.-Y. Girard’s Linear Logic.

As first emphasised by Y. Lafont, this treats formulæ as resources that may be ‘used
up’ in a deduction

A , A ñ B
B

The resource A is ‘consumed’ by
Modus Ponens.

A , A ñ B
A , B

Resource A is still ‘available for
re-use’.

This was a consequence of re-considering structural rules

These are rules to do with “how proofs are put together”, rather than “how logical
operators behave”.

They nevertheless have consequences for logical operators, such as commutativity or
idempotency of conjunction.

1Precisely, the multiplicative-exponential fragment.
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This is the way the world ends? – restricting structural rules!

Unlike other substructural logics, LL does not entirely discard structural rules :

Affine logic rules out verious logical paradoxes (e.g. Kleene’s paradox) by
eliminating contraction.

Relevance logic keeps a ‘causal link’ between assumption and conclusion, by ruling
out weakening.

Instead, these are heavily controlled by introducing two ‘exponential’ forms of each
formula A

!pAq — “of course” or “bang”

?pAq — “why not” or “whimper”

that are susceptible to these rules, along with rules for introducing / manipulating them.

In particular !pAq may be thought of as an “infinitely re-usable version of A”.
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The precise setting of the talk

We consider the combinatorics of how “Of course” and “conjunction” are modeled,

with particular reference to this concept of ‘infinite re-usability’.

This is within the setting of GoI :

“Geometry of Interaction (I) : Interpretation of system F”
— J.-Y. Girard (1988)

“Geometry of Interaction (II) : Deadlock-free algorithms
— J.-Y. Girard (1988)

Both of these give representations of a fragment of linear logic.
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The algebraic setting

Propositions are modeled as,

partial injective functions on the natural numbers

These are, equivalently :
1 Relations f Ď Nˆ N satisfying,

a “ a1 ô b “ b1 for all pb1, a1q, pb, aq P f

2 Partial functions that are bijections from their domain to their image.

These are

closed under composition,

include the identity, and all other bijections,

closed under generalised inverse (relational converse)

and so form a monoid IpNq — the symmetric inverse monoid on N.
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The conjunction of partial injections

Given ‘propositions’ f , g P IpNq, their conjunction in the GoI system is :

rf ‹ gspnq “

$

&

%

2.f
` n

2

˘

n even,

2.g
` n´1

2

˘

` 1 n odd.

Algebraically

An injective inverse monoid
homomorphism

‹ : IpNq ˆ IpNq Ñ IpNq

rf ‹ gsrh ‹ ks “ fh ‹ gk .

rId ‹ Ids “ Id

Categorically

A faithful symmetric semi-monoidala

tensor on an inverse monoid

(i.e. single-object category).

aIn the sense of Joyal & Kock’s “weak units”
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Thinking concretely

Alice and Bob play with an infinite deck of cards

1 A countably infinite deck of cards is dealt in the usual way to Alice and Bob.
2 Alice applies f to her hand of cards, and Bob applies g to his hand.
3 Alice and Bob’s hands are then merged, using a perfect, interleaving, riffle shuffle.

Some subtleties :

N has a bottom element, but no top element

— cards are dealt from the bottom of the pack.

f and g may be partially defined. For simplicity, we consider the

very special case where they are bijections2.

2As intuition for partiality, consider that Alice & Bob can erase the picture on a card, or insert
blank cards ...
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An unusual conjunction

Some relevant properties :

1 rf ‹ gs ‰ rg ‹ f s

2 f ‹ rg ‹ hss ‰ rrf ‹ gs ‹ hs

3 rf ‹ f s ‰ f

Some very standard category theory ...

Identities 1. and 2. hold, up to a fixed bijection. For all f , g, h P IpNq

σrf ‹ gs “ rg ‹ f sσ , αrf ‹ rg ‹ hss “ rrf ‹ gs ‹ hsα

Girard’s conjunction is semi-monoidal tensor on the monoid IpNq.

Identity 3. cannot hold in the same way.

Counterexample : Consider some f that is only defined for a single n P N. Observe
that rf ‹ f s is defined at both 2n and 2n ` 1.
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Bringing in the bang!

Instead, we have !pf q P IpNq, which is the ‘infinitary’ form of f .

This satisfies the crucial fixed-point equation

f‹!pf q “ !pf q

that allows it to be thought of as ‘infinitely many copies of f ’.

INFORMALLY !pf q “ f ‹ rf ‹ rf ‹ . . .sss

FORMALLY !pf q “ ΦpId ˆ f qΦ´1 where

Φpx , yq “ 2x`1y ` 2x
´ 1 @ px , yq P Nˆ N

is a bijection, monotone in both variables.

A few questions

1 In what setting can the informal description be made a formal limit?
2 Does it also relate to “shuffling decks of cards”?
3 What – if anything – is the significance of monotonicity w.r.t. the product order?
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First – modeling shuffles

A (mathematical) strategy :

We take the (very well-studied) finite case, and, “check everything still works”.

Shuffles are modeled by monotone bijections :
Bijectivity ensures all cards are used,

Monotonicity accounts for,

“If card a is above card b before the shuffle,it is still above b afterwards.”

‘Multiple identical decks’ are given by disjoint unions,

NZ . . .Z N
loooooomoooooon

k times

“ Nˆ t0u Y . . .Nˆ tk ´ 1u “ Nˆ t0, . . . k ´ 1u

These are ordered using the induced partial order :

px , iq ď py , jq iff x ď y and i “ j

A deal is then simply the inverse of a shuffle.peter.hines@york.ac.uk Fun & Games in Hilbert’s Casino www.peterhines.info 11 / 46



Shuffles as Cantor points

As in the finite & infinite case, we may also describe a shuffle of k decks of cards

Ψ : Nˆ t0, . . . k ´ 1u Ñ N

operationally, as a sequence p0, p1, p2, p3, . . . over the set t0, . . . , k ´ 1u.

This has the intuition of an operational description :

“Take from deck p0, then p1, then p2, then . . . ”

N
Ψ´1
//

seqΨ ))

Nˆ t0, . . . k ´ 1u

π2

��
t0, . . . , k ´ 1u

This is the sequence of plays for Ψ, a point of the Cantor space Ct0,...,k´1u over the

set t0, . . . , k ´ 1u. It is enough to characterise Ψ, by monotonicity & bijectivity.
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Operads of card shuffles

Unsurprisingly, plugging together card shuffles forms an (non-symmetric) operad.

(It is an example of a standard construction :
the endomorphism operad in a semi-monoidal category)

A tree such as :

ψ

φ

Nλ

NNN

N

represents a shuffle (i.e. monotone bijection) of five decks of cards :

ψp1N Z φpλZ 1Nqq : NZ NZ NZ NZ N Ñ N
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The riffle shuffles

We define the k -deck riffle shuffle Ωk : NZk
Ñ N to be the bijection Ωk pn, iq “ kn ` i

for all pn, iq P NZk , with the natural diagrammatics :

Ω1 : N Ñ N n ÞÑ n

Ω2 : NZ N Ñ N
pn, 0q ÞÑ 2n
pn, 1q ÞÑ 2n ` 1

Ω3 : NZ NZ N Ñ N
pn, 0q ÞÑ 3n
pn, 1q ÞÑ 3n ` 1
pn, 2q ÞÑ 3n ` 2

Ω4 : NZ NZ NZ N Ñ N

pn, 0q ÞÑ 4n
pn, 1q ÞÑ 4n ` 1
pn, 2q ÞÑ 4n ` 2
pn, 3q ÞÑ 4n ` 3

The inverse of Ωn is the n-player fair deal.
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Shuffles & bangs in conjunction

Girard’s conjunction is based on the binary case :

The two-player fair deal Ω´1
2 : N Ñ NZ N

The two-pack riffle shuffle Ω2 : NZ N Ñ N

We draw his conjunction in the natural way as rf ‹ gs “ f g and interpret bracketing

as tree structure, so rf ‹ rg ‹ hss is given by f g ˚ h

. . .

. . .

= f g h

We nevertheless consider the general setting, and treat his conjunction as a special
case . . . without worrying too much about logical interpretations!
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The object of study

We define Riff , the operad of hierarchical riffle shuffles to be the operad generated
by the perfect riffle shuffles tΩkuką1

The obvious diagrammatics :

As we only have one generator of each arity, we may
draw H-R shuffles as unlabled planar trees.

We leave identities implicit.

We do not distinguish between and

Claim : Each k -leaf tree determines a distinct monotone Hilbert-hotel style bijection

from k copies of N to a single copy of N, so Riff is isomorphic to the formal

operad RPT of rooted planar trees3.

3Some fun may be had labeling facets of associahedra by elements of Riff . That is the subject
of another talk . . .
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What bijections do they determine??

An illustrative example : T “ Ω4 ˝3 pΩ2 ˝2 Ω3q “ pΩ4 ˝3 Ω2q ˝4 Ω3

T pn, iq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

4n i “ 0
4n ` 1 i “ 1
8n ` 2 i “ 2
24n ` 6 i “ 3
24n ` 14 i “ 4
24n ` 22 i “ 5
4n ` 3 i “ 6

Each T p , iq is a linear injection n ÞÑ Xin ` Yi .

As T is a bijection, impT p , iqq X impT p , jqq “ H and
Ť7

i“0 impT p , jqq “ N

Every member of Riff ‘covers the natural numbers with linear sequences’

They determine distinct finite open covers of N w.r.t. the profinite topology.
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From riffle shuffles to congruential bijections

Consider S,T P Riff k where

T pn, iq “ Xin ` Yi and Spn, iq “ Ain ` Bi

What happens when we
1 deal out a deck of cards using S´1

2 then shuffle them back together using T ?

We derive a piecewise-linear bijection on N,

TS´1
pnq “ Xi

ˆ

n ´ Bi

Ai

˙

` Yi where n pmod Aiq “ Bi

These are congruential functions introduced by John Conway (“Unpredictable
iterations” 1971), to prove formal undecidability of iterative problems such
as Collatz’s 3x ` 1 problem.

(A result heavily prefigured in Sergei Maslov’s “On E. L. Post’s Tag Problem” 1964)
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Counting coefficients

How do we compute such (indexed families) of linear maps?

The general case : card n from deck i :

...

n

. . . . . .

. . . . . .

. . . . . .

Branch a1 out of b1

Branch a2 out of b2

. . .

Branch ak out of bk

We have an injection n ÞÑ Xin ` Yi . How to compute Xi and Yi ?

Multiplicative coefficients Trivially, Xi “
śk

j“1 bj .

Additive coefficients We can simply write down the value of Yi .
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Relating two strands of Cantor’s work

Über Einfache Zahlensysteme – G. Cantor (1869)

On Simple Number Systems studied mixed-radix counting : positional number
systems where the base used varies between columns.

Familiar example : pre-decimal / post-brexit British currency

4 Farthings = 1 Penny , 12 Pennies = 1 Shilling , 20 Shillings = 1 Pound ...

We may simply write down the value of Yi

Yi “
base bk base bk´1 . . . base b1

ak ak´1 . . . a1

(Note : bk bk´1 . . . b1 is an ordered factorisation of Xi ).

Transformations between different mixed-radix counting systems are particularly well-studied in the
Fast Fourier Transforms re-discovered by Cooley & Tukey (... but originally due to Gauss).
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To justify the claim of “uniqueness”

Proposition : Riff is freely generated by tΩjuj“2,3,4,....

No two distinct k -leaf trees determine the same bijection from NZk to N.

i.e. Riff is isomorphic to the formal operad rpt of “rooted planar trees”.

Proof (outline) : A simple induction argument on the number of leaves.

The only non-trivial step

We need to show that the generating set tΩK uką0 is minimal — no perfect riffle can be
produced by composing other perfect riffles.

We do this by showing that the generators ΩK are a very special type of shuffle.

Definition A shuffle of k decks of cards Ψ : Nˆ t0, . . . , k ´ 1u Ñ N is

standard when it is monotone in both variables.
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Standard shuffles

An operational characterisation :

This has the natural interpretation that, at any stage of the shuffle,

# of cards placed from deck i
ě

# of cards placed from deck i ` 1

As a consequence, the sequence of plays will be an infinitary Ballot sequence.

Equivalently : The tableau determined by a standard shuffle is a (infinitary)
standard Young tableau, with ordered rows & columns.

Ψp0, 0q Ψp1, 0q Ψp2, 0q Ψp3, 0q . . .

Ψp0, 1q Ψp1, 1q Ψp2, 1q Ψp3, 1q . . .
...

...
...

...
Ψp0, k ´ 1q Ψp1, k ´ 1q Ψp2, k ´ 1q Ψp3, k ´ 1q . . .

The generators tΩ1,Ω2,Ω3, . . .u are certainly standard – which composites are
similarly standard?
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Characterising standard riffle shuffles

For a composite S ˝k T to be standard, we need the following :

1 S and T are themselves both standard.
2 S is of arity k – i.e. the product is the (associative) overproduct

S

é

T def .
“ S ˝k T @S P Riff k given by grafting onto the far right leaf.

As an illustrative example, consider Ω4 ˝2 Ω2. All the generators are standard, but this
composite is not standard :

0 4 8 12 16 . . .

1 5 9 13 17 . . .

2 6 10 14 18 . . .

3 7 11 15 19 . . .

0 4 8 12 16 . . .

1 9 17 25 33 . . .

5 13 21 29 36 . . .

2 6 10 14 18 . . .

3 7 11 15 19 . . .

The ‘standard’ property is preserved precisely when the final row is split.
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Standard ” Right-Associated

We may characterise standard hierarchical riffle shuffles

These are given by arbitrary (finite) overproducts of generators.

Ωx0

é

Ωx1

é

Ωx2

é

. . .

é

ΩxN

No generator is a non-trivial composite of this form; therefore, the generating set is
minimal, and by induction Riff is freely generated.

Every distinct finite sequence of natural numbers determines a distinct standard
shuffle / standard Young tableau, by

n0n1 . . . nx ÞÑ Ωn0`2

é

Ωn1`2

é

. . .

é

Ωnx`2

i.e. there exists an injective monoid homomorphism from the free monoid over the
natural numbers to pRiff ,

é

q, given by stdpnq def
“ Ωn`2.
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Taking things to the limit ...

Can we give meaning to infinitary overproducts??

In particular, for the 2-player riffle shuffle / fair deal, can we give a meaning to :
...

Doing so would allow us to formalise the bang as an ‘infinitary conjunction’

!pf q “ rf ‹ rf ‹ rf ‹ rf ‹ . . .ssss

Precisely, is the limit Ω2

é

Ω2

é

Ω2
é

Ω2

é

. . . well-defined?

If so, how about other infinitary overproducts of generators??
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From monoids to Cantor spaces

We may extend our monoid homomorphism to one-sided infinite strings (i.e. points of
CN, the Cantor space over the natural numbers) in a natural way.

Consider some infinite sequence Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

é

. . . along with the sequence of
tableaux determined by the prefixes :

1 Ωx0

2 Ωx0

é

Ωx1

3 Ωx0

é

Ωx1

é

Ωx2

4 Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

At each step, every natural number N either:

moves left (& possibly downwards as well), or

stays in the same place ... at which point it remains there!

@pN, jq P Nˆ N, DK P N s.t . @T ,T 1 P Riff

pΩ0

é

. . .ΩK
é

T qpN, jq “ pΩ0

é

. . .ΩK

é

T 1qpN, jq

These will define infinitary standard shuffles, or monotone bijections Nˆ N – N.
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The simplest worked example:

The simplest is the infinitary overproduct Ω2

é

Ω2

é

Ω2

é

Ω2

é

. . . that may be thought

of as “the right fixed point for the binary riffle shuffle”

Ω2

é

pΩ2

é

Ω2

é

Ω2

é

Ω2

é

. . .q “ Ω2

é

Ω2

é

Ω2

é

Ω2
é

. . .

Using the ‘counting branches’ method for determining coefficients leads us to Girard’s
bijection Φ : Nˆ N Ñ N

Φpx , yq “ 2x`1y ` 2x
´ 1

Its description as an overproduct accounts for monotonicity in both variables.

A simple question

There are two different ways of describing a (standard) shuffle :

A (monotone in both variables) bijection.

The corresponding (ballot) sequence of plays.

What do both of these look like??
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For people who prefer finite Young tableaux ..

Giving the tableaux for Φ explicitly :

0 2 4 6 8 10 . . .

1 5 9 13 17 21 . . .

3 11 19 27 35 43 . . .

7 23 39 55 71 87 . . .

15 47 79 111 143 175 . . .

31 94 159 223 287 351 . . .
...

...
...

...
...

...
. . .

As a general pattern

The sub-tableaux given by considering the first n natural numbers

form an inclusion-ordered unbounded sequence of

finitary standard Young tableaux,

for any monotone bijection

Ψ : Nˆ N Ñ N
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From bijections to sequences

Alternatively, the sequence of plays π2Φ´1 : N Ñ N is given by

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1

0 2 0 1 0 3 0 1 0 2 0 1 0 5 0 1 0 2

0 1 0 3 0 1 0 2 0 . . .

This is the (ballot) ruler sequence — sequence number A007814 in the

Online Encyclopedia of Integer Sequences (https://oeis.org/A007814),

where it is characterised as rpnq ` 1 “ “The Hamming distance between n and n ` 1”

Picture taken from “On the ubiquity of the Ruler sequence” – J. Nuño, F. Muñoz (2020)
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A fun application

Among many other applications, the ruler sequence rpnq is known in network
topology for determining Hamiltonian paths in hypercube graphs :

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

0

1

0

2

0

1

0

3

0

1

0

2

0

1

0

The simple prescription :

Index axes (i.e. dimensions) by the natural numbers,

On step n, move along axis rpnq.

visits each vertex exactly once.
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Concretely, how could we perform this shuffle??

The ruler series is the sequence of plays for the bijection Φ “ Ω2

é

Ω2

é

Ω2
é

Ω2

é

. . .

1 0
1 0 1
1 1 0

1 0 0 2
1 0 1 0
1 1 0 1
1 1 1 0

1 0 0 0 3
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 2
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1 0 0 0 0 4

For an arbitrary (infinite) overproduct Ωx0

é

Ωx1

é

Ωx2

é

Ωx3

é

. . ., we simply count
in a mixed-radix system with columns labeled by . . . , x3, x2, x1, x0.

Question : Is there some setting for which such infinite overproducts provide an
infinitary form of conjunction?
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Generalising conjunctions

Girard’s conjunction naturally generalises to an N-indexed family of injective
homomorphisms, given by conjugation by Ωk , for all k ą 1.

f g f g h

. . .

. . .

. . .

. . .

. . .

f0 f1
. . .

fk

The intuition :

A pack of cards is dealt out amongst k players, using a fair deal. Each player j then
applies fj to his hand of cards. All hands of cards are then shuffled together using the
perfect riffle shuffle ΩK .

Writing this out explicitly,

rf0 ‹ f1 ‹ . . . ‹ fk´1spnq “ k .fr
´n ´ r

k

¯

` r where n pmod kq “ r

Each of these defines an injective inverse monoid homomorphism IpNqˆk
ãÑ IpNq
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Generalised conjunctions as an operad

Define BOB, the operad of Bobzien Conjunctions to be generated by

r ‹ s : IpNq ˆ IpNq Ñ IpNq

r ‹ ‹ s : IpNq ˆ IpNq ˆ IpNq Ñ IpNq

r ‹ ‹ ‹ s : IpNq ˆ IpNq ˆ IpNq ˆ IpNq Ñ IpNq

...

It is a sub-operad of the endomorphism operad of IpNq in the monoidal category
pInv,ˆq of inverse monoids with Cartesian product.

Note : it is freely generated by one generator of each arity and hence

also isomorphic to the operad RPT or rooted planar trees.
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Why “Bobzien conjunctions” ?

“The Combinatorics of Stoic Conjunction”

— S. Bobzien (2011) Oxford Studies in Ancient Philosophy

This analyses the somewhat mysterious statement in Plutarch’s Quaestiones
Convivales :

“Chrysippus says that the number of conjunctions [constructible] from
only ten assertibles exceeds one million. However, Hipparchus refuted this,
demonstrating that the affirmative encompasses 103049 conjoined assert-
ibles.”

As pointed out by Daniel Hough (c. 1994), this is the 10th little Schröder number
— the number of distinct 10-leaf rooted planar trees.

Suzanne Bobzien analysed the logical assumptions Hipparchus & Chrysippus must
have made, to arrive at their figures.
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Some logical(?) assumptions!

“Hipparchus counts the same sequence of conjuncts but with different bracketing as
different conjunctions. He counts

p ^ rq ^ r s , rp ^ q ^ r s , rrp ^ qs ^ r s

as different assertibles. ” – S.B.

“In order to get to this number, Hipparchus took the order of atomic assertibles as
fixed, so rp ^ qs ‰ rq ^ ps” – S.B.

“Non-simple [assertibles] are those that are put together from an assertible that is
taken twice, or from different assertibles.” – Plutarch, quoted by S.B.
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Isomorphic ‰ Identical

The Bobzien conjunctions

rf ‹ g ‹ hs , rrf ‹ gs ‹ hs , rf ‹ rg ‹ hss

are nevertheless equivalent up to (fixed) isomorphism.

rf ‹ g ‹ hs

γRp qγ
´1
R

  

γLp qγ
´1
L

~~
rrf ‹ gs ‹ hs rf ‹ rg ‹ hssαp qα´1oo

The congruential bijection α : N Ñ N is the canonical associativity isomorphism

for Girard’s conjunction, considered as a categorical tensor. What about

the other two congruential bijections??
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A precursor to a famous problem

αpnq “

$

’

’

’

’

&

’

’

’

’

%

2n n pmod 2q “ 0

n ` 1 n pmod 4q “ 1

n´1
2 n pmod 4q “ 3

γLpnq “

$

’

’

’

’

&

’

’

’

’

%

4n
3 n pmod 3q “ 0

4n`2
3 n pmod 3q “ 1

2n´1
3 n pmod 3q “ 2

γRpnq “

$

’

’

’

’

&

’

’

’

’

%

2n
3 n pmod 3q “ 0

4n´1
3 n pmod 3q “ 1

4n`1
3 n pmod 3q “ 2

The associator The (left) Collatz bijection The (right) Collatz bijection

The 3x ` 1 problem & its generalisations – Jeffrey Lagarias (1985)

Writing about L. Collatz : “In his notebook dated July 1, 1932, he considered the
function

n ÞÑ

$

’

’

’

’

&

’

’

’

’

%

2
3 n if n ” 0 pmod 3q

4
3 n ´ 1

3 if n ” 1 pmod 3q

4
3 n ` 1

3 if n ” 2 pmod 3q

He posed the problem of whether the cycle containing 8 is finite or infinite. I will call
this the Original Collatz Problem. His original question has never been answered.”
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The nature of my game

Alice and Bob play a game against a dealer, with a countably infinite pack of cards.
The Dealer deals out this pack to all players, using a fair deal.

Alice and Bob merge their stacks together, using a perfect riffle shuffle.

The Dealer merges the result of this with his stack, again using a perfect riffle.

The process repeats. Each round of the game permutes the infinite pack of cards

Alice and Bob will win, and may leave the game, when

one card, that they mark beforehand,

returns to its original position in the Dealer’s hand.
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