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Distributive laws
Monads = effects

effect create effect collapse effects

I nondeterminism = x ∨ y
I probability = x ⊕p y

Distributive laws = compositionality of effects

swap effects

+ 4 axioms:
collapse

create

collapse

create

The composite effect is

effect create effect collapse effects
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Weak distributive laws

No-go theorems. Composing

I ∨ and ∨ is impossible

I ∨ and ⊕p is impossible

I ⊕p and ∨ is impossible

I ⊕p and ⊕p is impossible

Forcing distributivity

x ⊕p (y ∨ z) = (x ⊕p y) ∨ (x ⊕p z)

induces a weak distributive law (in Garner’s sense) between ∨ and ⊕p

swap effects

+ 3 axioms:
collapse

create

collapse

×

and a weak composite effect
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Examples

Trivial weak distributive laws

Any induces a trivial weak distributive law

i.e. the weak composite effect is just the blue effect.

Monotone weak distributive laws include, in the category of sets

I ∨ and ∨
I ∨ and ⊕p

I ∨ and + where + is semiring choice

I ∨ and → where → is ultrafilter convergence

and in other categories

I ∨ and ∨ in any topos (graphs, nominal sets...)

I ∨ and ∨ in compact Hausdorff spaces
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Applications

Compositionality

I composite algebraic theories e.g. x ⊕p (y ∨ z) = (x ⊕p y) ∨ (x ⊕p z)

I iterated weak distributive laws to combine more than 2 effects

Coalgebra

I monads = effects = branching types for state-based systems

I generalised powerset construction for automata X
I up-to techniques for bisimulations
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Generalised powerset construction

x y 7→ x x ∨ y

a,b

a a

b a

b

I Powerset construction relies on a (monad-functor) distributive law.

y y ⊕ 1
2
z

x z 7→ x

w z ⊕ 1
2
w

a

a

a

a

1
2

1
2

1
2

1
2

On the right, x can a-transition to any distribution (y ⊕ 1
2
z)⊕p (z⊕ 1

2
w).

I Generalised powerset construction relies on a weak distributive law.
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Conclusion

Main open question: continuous probability and nondeterminism

I ∨ and ∨ in compact Hausdorff spaces X
I ∨ and ⊕p in compact Hausdorff spaces ?

∨ = Vietoris monad and ⊕p = Radon monad

Other future work

I Find non-trivial non-monotone weak distributive laws, e.g.

⊕p and ∨
I Coweak distributive laws = dual framework, much less well-behaved

swap effects

+ 3 axioms:
collapse

create

collapse

×
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Thank you!
Any questions?
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Failing diagrams

Weak distributive laws:

6=

Coweak distributive laws:

6=
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The slides quote [11, 2, 10, 13, 15, 14, 8, 7, 4, 9, 1, 6, 3, 12, 5]
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