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Composition results in logic
Typical example: disjoint unions

A=ms0, A B =ms0, B = AV =ys0, A &'

General situation
o family (21;);e; of structures
« additional structure on the index set [
« composition operation F : (2;); — B
Composition Theorem (strong version)

F(Qli)ig Eo <~ I'e v
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Composition results in logic
Case study: monads
o class MA of ‘A-labelled structures’

« composition operation flat : MIMA — MA

(usually assumed to be associative, turning M into a monad)

Examples

MA = A* finite words with concatenation (A*)* — A*
MA = A finite and infinite words (2-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,...
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Algebras
Algebra
(A,m) with 7:MA—> A
Example MA = A* with concatenation

« MA is the free monoid over A.
o (A, ) is just a monoid with

({aos .- +»an-1)) = Ao -An—y
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Algebras

Algebra

(A,m) with 7:MA—> A
Morphism

p:A~B with (g(s)) = p(Mn(s))
Free algebras

(MX, flat) with flat : MMX — MX
Recognisability

K=¢7'[P] forp:MX —>2andPCA
Example MX = X"

K ¢ X* is regular iff it is recognised by a finite monoid.
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Logic
Logic (L, M, k)
o formulae L
« models M

« satisfaction relation = ¢ M x L
Example

L =MSO[ZX] and M = STR[Z]
Morphisms

(A )+ (L, M, =) > (L', M)
where A : L - L"and y : M" — M such that

p(M )= iff M EA(p)

Example interpretations
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Compositionality
Logical equivalence
A, B iff A=e=>Vr=¢ forallpel
M-Compositionality (for M = MX)
scilt = flat(s) o flat(t)
where s =)* ¢ means that s(v) £, t(v) for all positions v
Example
U=yso, 4 V=mso,V = uv=mso, 'V, foru,u,v,v eZX*
Similar results hold for trees.
Theory algebra
O X :=MX/cp  if L is Ml-compositional
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Syntactic Algebras

Problem Theory algebras are not well understood.

Syntactic congruence (for K ¢ MX)
skt iff (p[s] € K= p[t]€K) foreverycontextp e M(X +0O).

Syntactic algebra
SYH(K) = MX/SK
Problem < is not always a congruence.

Theorem
If each structure in MX is ‘finite} then <k is a congruence.
The same is true for infinite trees and K regular.

Theorem

If Syn(K) exists, it is the minimal algebra recognising K.
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Correspondences
e alogic L
« the class D of L-definable classes K
« the class A of algebras recognising all K € D

» axiomatisations of A

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schiitzenberger)
A class K ¢ X* is FO-definable if, and only if, Syn(K) satisfies

x™ = x" for some n.
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Correspondences
e alogic L
« the class D of L-definable classes K
« the class A of algebras recognising all K € D

» axiomatisations of A

Requirements
« M sufficiently ‘nice’ (e.g., polynomial functor).
o L is M-compositional.
o Every K € D class has a finitary syntactic algebra Syn(K).

o D is closed under inverse morphisms.

Application

These conditions are satisfied for MSO,,, and FO,,, over infinite trees.
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Definable algebras
Which algebras ‘correspond’ to a logic L?
Definable algebra A = (A, )

« finite set of generators C € A

e 17" (a) " MC is L-definable for all a € A

Theorem
« 2 is L-definable iff every class recognised by 2l is L-definable.
o If K is L-definable then Syn(K) is L-definable.
(If L is sufficiently nice.)



