
Compositionality and
LogicalDefinability

forMonads

Achim Blumensath



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Examples

• tree-decompositions

• Feferman-Vaught products

•teorem of Gaifman



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Compositionteorem (weak version)

Ai ≡L Bi ⇒ F(Ai)i ≡L F(Bi)i



Composition results in logic
Typical example: disjoint unions

A ≡MSOm A′ B ≡MSOm B′ ⇒ A⊕B ≡MSOm A′ ⊕B′

General situation

• family (Ai)i∈I of structures

• additional structure on the index set I

• composition operation F ∶ (Ai)i ↦B

Compositionteorem (strong version)

F(Ai)i∈I ⊧ φ ⇔ I+ ⊧ ψ



Composition results in logic
Case study :monads

• classMA of ‘A-labelled structures’

• composition operation flat ∶MMA→MA

(usually assumed to be associative, turning M into amonad)

Examples

MA = A∗ finite words with concatenation (A∗)∗ → A∗

MA = A∞ finite and infinite words (-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,. . .



Composition results in logic
Case study :monads

• classMA of ‘A-labelled structures’

• composition operation flat ∶MMA→MA

(usually assumed to be associative, turning M into amonad)

Examples

MA = A∗ finite words with concatenation (A∗)∗ → A∗

MA = A∞ finite and infinite words (-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,. . .



Composition results in logic
Case study :monads

• classMA of ‘A-labelled structures’

• composition operation flat ∶MMA→MA

(usually assumed to be associative, turning M into amonad)

Examples

MA = A∗ finite words with concatenation (A∗)∗ → A∗

MA = A∞ finite and infinite words (-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,. . .



Composition results in logic
Case study :monads

• classMA of ‘A-labelled structures’

• composition operation flat ∶MMA→MA

(usually assumed to be associative, turning M into amonad)

Examples

MA = A∗ finite words with concatenation (A∗)∗ → A∗

MA = A∞ finite and infinite words (-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,. . .



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Example MA = A∗ with concatenation

•MA is the freemonoid over A.

• ⟨A, π⟩ is just amonoid with

π(⟨a, . . . , an−⟩) = a⋯an−



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Example MA = A∗ with concatenation

•MA is the freemonoid over A.

• ⟨A, π⟩ is just amonoid with

π(⟨a, . . . , an−⟩) = a⋯an−



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Morphism

φ ∶ A→ B with π(φ(s)) = φ(Mπ(s))

Free algebras

⟨MX, flat⟩ with flat ∶MMX →MX

Recognisability

K = φ−[P] for φ ∶MX → A and P ⊆ A

Example MX = X∗

K ⊆ X∗ is regular iff it is recognised by a finitemonoid.



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Morphism

φ ∶ A→ B with π(φ(s)) = φ(Mπ(s))

Free algebras

⟨MX, flat⟩ with flat ∶MMX →MX

Recognisability

K = φ−[P] for φ ∶MX → A and P ⊆ A

Example MX = X∗

K ⊆ X∗ is regular iff it is recognised by a finitemonoid.



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Morphism

φ ∶ A→ B with π(φ(s)) = φ(Mπ(s))

Free algebras

⟨MX, flat⟩ with flat ∶MMX →MX

Recognisability

K = φ−[P] for φ ∶MX → A and P ⊆ A

Example MX = X∗

K ⊆ X∗ is regular iff it is recognised by a finitemonoid.



Algebras
Algebra

⟨A, π⟩ with π ∶MA→ A

Morphism

φ ∶ A→ B with π(φ(s)) = φ(Mπ(s))

Free algebras

⟨MX, flat⟩ with flat ∶MMX →MX

Recognisability

K = φ−[P] for φ ∶MX → A and P ⊆ A

Example MX = X∗

K ⊆ X∗ is regular iff it is recognised by a finitemonoid.



Logic
Logic ⟨L,M,⊧⟩
• formulae L

•modelsM
• satisfaction relation ⊧ ⊆M × L

Example

L = MSO[Σ] andM = STR[Σ]

Morphisms

⟨λ, µ⟩ ∶ ⟨L,M,⊧⟩→ ⟨L′,M′,⊧′⟩
where λ ∶ L→ L′ and µ ∶M′ →M such that

µ(M′) ⊧ φ iff M′ ⊧ λ(φ)

Example interpretations



Logic
Logic ⟨L,M,⊧⟩
• formulae L

•modelsM
• satisfaction relation ⊧ ⊆M × L

Example

L = MSO[Σ] andM = STR[Σ]

Morphisms

⟨λ, µ⟩ ∶ ⟨L,M,⊧⟩→ ⟨L′,M′,⊧′⟩
where λ ∶ L→ L′ and µ ∶M′ →M such that

µ(M′) ⊧ φ iff M′ ⊧ λ(φ)

Example interpretations



Compositionality
Logical equivalence

A ⊑L B iff A ⊧ φ⇒B ⊧ φ for all φ ∈ L

M-Compositionality (forM =MX)

s ⊑ML t ⇒ flat(s) ⊑L flat(t)

where s ⊑ML t means that s(v) ⊑L t(v) for all positions v

Example

u ≡MSOm u′ v ≡MSOm v′ ⇒ uv ≡MSOm u′v′, for u, u′, v, v′ ∈ Σ∗

Similar results hold for trees.

teory algebra

ΘLX ∶=MX/⊑L if L isM-compositional



Compositionality
Logical equivalence

A ⊑L B iff A ⊧ φ⇒B ⊧ φ for all φ ∈ L

M-Compositionality (forM =MX)

s ⊑ML t ⇒ flat(s) ⊑L flat(t)

where s ⊑ML t means that s(v) ⊑L t(v) for all positions v

Example

u ≡MSOm u′ v ≡MSOm v′ ⇒ uv ≡MSOm u′v′, for u, u′, v, v′ ∈ Σ∗

Similar results hold for trees.

teory algebra

ΘLX ∶=MX/⊑L if L isM-compositional



Compositionality
Logical equivalence

A ⊑L B iff A ⊧ φ⇒B ⊧ φ for all φ ∈ L

M-Compositionality (forM =MX)

s ⊑ML t ⇒ flat(s) ⊑L flat(t)

where s ⊑ML t means that s(v) ⊑L t(v) for all positions v

Example

u ≡MSOm u′ v ≡MSOm v′ ⇒ uv ≡MSOm u′v′, for u, u′, v, v′ ∈ Σ∗

Similar results hold for trees.

teory algebra

ΘLX ∶=MX/⊑L if L isM-compositional



Compositionality
Logical equivalence

A ⊑L B iff A ⊧ φ⇒B ⊧ φ for all φ ∈ L

M-Compositionality (forM =MX)

s ⊑ML t ⇒ flat(s) ⊑L flat(t)

where s ⊑ML t means that s(v) ⊑L t(v) for all positions v

Example

u ≡MSOm u′ v ≡MSOm v′ ⇒ uv ≡MSOm u′v′, for u, u′, v, v′ ∈ Σ∗

Similar results hold for trees.

teory algebra

ΘLX ∶=MX/⊑L if L isM-compositional



Compositionality
Logical equivalence

A ⊑L B iff A ⊧ φ⇒B ⊧ φ for all φ ∈ L

M-Compositionality (forM =MX)

s ⊑ML t ⇒ flat(s) ⊑L flat(t)

where s ⊑ML t means that s(v) ⊑L t(v) for all positions v

Example

u ≡MSOm u′ v ≡MSOm v′ ⇒ uv ≡MSOm u′v′, for u, u′, v, v′ ∈ Σ∗

Similar results hold for trees.

teory algebra

ΘLX ∶=MX/⊑L if L isM-compositional



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Syntactic Algebras
Problem teory algebras are not well understood.

Syntactic congruence (for K ⊆MX)

s ⪯K t iff (p[s] ∈ K ⇒ p[t] ∈ K) for every context p ∈M(X + ◻) .

Syntactic algebra

Syn(K) ∶=MX/⪯K

Problem ⪯K is not always a congruence.

teorem

If each structure in MX is ‘finite’, then ⪯K is a congruence.

te same is true for infinite trees and K regular.

teorem

If Syn(K) exists, it is theminimal algebra recognising K.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class K ⊆ Σ∗ is FO-definable if, and only if, Syn(K) satisfies
xn = xn+ for some n.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class K ⊆ Σ∗ is FO-definable if, and only if, Syn(K) satisfies
xn = xn+ for some n.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D

• axiomatisations ofA

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class K ⊆ Σ∗ is FO-definable if, and only if, Syn(K) satisfies
xn = xn+ for some n.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class K ⊆ Σ∗ is FO-definable if, and only if, Syn(K) satisfies
xn = xn+ for some n.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class K ⊆ Σ∗ is FO-definable if, and only if, Syn(K) satisfies
xn = xn+ for some n.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Requirements

•M sufficiently ‘nice’ (e.g., polynomial functor).

• L isM-compositional.

• Every K ∈ D class has a finitary syntactic algebra Syn(K).
•D is closed under inversemorphisms.

Application

tese conditions are satisfied for MSOm and FOm over infinite trees.



Characterisations
Correspondences

• a logic L

• the classD of L-definable classes K

• the classA of algebras recognising all K ∈ D
• axiomatisations ofA

Requirements

•M sufficiently ‘nice’ (e.g., polynomial functor).

• L isM-compositional.

• Every K ∈ D class has a finitary syntactic algebra Syn(K).
•D is closed under inversemorphisms.

Application

tese conditions are satisfied for MSOm and FOm over infinite trees.



Definable algebras
Which algebras ‘correspond’ to a logic L?

Definable algebra A = ⟨A, π⟩
• finite set of generators C ⊆ A
• π−(a) ∩MC is L-definable for all a ∈ A

teorem

• A is L-definable iff every class recognised by A is L-definable.

• If K is L-definable then Syn(K) is L-definable.

(If L is sufficiently nice.)



Definable algebras
Which algebras ‘correspond’ to a logic L?

Definable algebra A = ⟨A, π⟩
• finite set of generators C ⊆ A
• π−(a) ∩MC is L-definable for all a ∈ A

teorem

• A is L-definable iff every class recognised by A is L-definable.

• If K is L-definable then Syn(K) is L-definable.

(If L is sufficiently nice.)



Definable algebras
Which algebras ‘correspond’ to a logic L?

Definable algebra A = ⟨A, π⟩
• finite set of generators C ⊆ A
• π−(a) ∩MC is L-definable for all a ∈ A

teorem

• A is L-definable iff every class recognised by A is L-definable.

• If K is L-definable then Syn(K) is L-definable.

(If L is sufficiently nice.)



Definable algebras
Which algebras ‘correspond’ to a logic L?

Definable algebra A = ⟨A, π⟩
• finite set of generators C ⊆ A
• π−(a) ∩MC is L-definable for all a ∈ A

teorem

• A is L-definable iff every class recognised by A is L-definable.

• If K is L-definable then Syn(K) is L-definable.

(If L is sufficiently nice.)


