Compositionality and Logical Definability for Monads

Achim Blumensath

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

• family $(\mathfrak{A}_i)_{i \in I}$ of structures

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Examples

tree-decompositions

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Examples

- tree-decompositions
- Feferman-Vaught products

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Examples

- tree-decompositions
- Feferman-Vaught products
- Theorem of Gaifman

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Composition Theorem (weak version)

 $\mathfrak{A}_i \equiv_L \mathfrak{B}_i \quad \Rightarrow \quad F(\mathfrak{A}_i)_i \equiv_L F(\mathfrak{B}_i)_i$

Typical example: disjoint unions

 $\mathfrak{A} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \quad \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{B}' \quad \Rightarrow \quad \mathfrak{A} \oplus \mathfrak{B} \equiv_{\mathrm{MSO}_m} \mathfrak{A}' \oplus \mathfrak{B}'$

General situation

- family $(\mathfrak{A}_i)_{i \in I}$ of structures
- additional structure on the index set I
- composition operation $F: (\mathfrak{A}_i)_i \mapsto \mathfrak{B}$

Composition Theorem (strong version)

 $F(\mathfrak{A}_i)_{i\in I}\vDash \varphi \quad \Leftrightarrow \quad I^+\vDash \psi$

Case study: monads

- class $\mathbb{M}A$ of 'A-labelled structures'
- composition operation flat : $\mathbb{MM}A \to \mathbb{M}A$

(usually assumed to be associative, turning $\mathbb M$ into a monad)

Case study: monads

- class $\mathbb{M}A$ of 'A-labelled structures'
- composition operation flat : $\mathbb{MM}A \to \mathbb{M}A$

(usually assumed to be associative, turning $\mathbb M$ into a monad)

Examples

 $\mathbb{M}A = A^*$ finite words with concatenation $(A^*)^* \to A^*$

Case study: monads

- class $\mathbb{M}A$ of 'A-labelled structures'
- composition operation flat : $\mathbb{MM}A \to \mathbb{M}A$

(usually assumed to be associative, turning $\mathbb M$ into a monad)

Examples

 $\mathbb{M}A = A^*$ finite words with concatenation $(A^*)^* \to A^*$ $\mathbb{M}A = A^\infty$ finite and infinite words (2-sorted)

Case study: monads

- class $\mathbb{M}A$ of 'A-labelled structures'
- composition operation flat : $\mathbb{MM}A \to \mathbb{M}A$

(usually assumed to be associative, turning $\mathbb M$ into a monad)

Examples

 $\mathbb{M}A = A^*$ finite words with concatenation $(A^*)^* \to A^*$

 $\mathbb{M}A = A^{\infty}$ finite and infinite words (2-sorted)

finite/infinite trees, countable linear orders, series-parallel graphs,...

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Example $\mathbb{M}A = A^*$ with concatenation

- $\mathbb{M}A$ is the free monoid over A.
- $\langle A, \pi \rangle$ is just a monoid with

 $\pi(\langle a_0,\ldots,a_{n-1}\rangle)=a_0\cdots a_{n-1}$

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Morphism

 $\varphi: A \to B$ with $\pi(\varphi(s)) = \varphi(\mathbb{M}\pi(s))$

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Morphism

 $\varphi: A \to B$ with $\pi(\varphi(s)) = \varphi(\mathbb{M}\pi(s))$

Free algebras

 $\langle \mathbb{M}X, \text{flat} \rangle$ with $\text{flat} : \mathbb{M}\mathbb{M}X \to \mathbb{M}X$

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Morphism

 $\varphi: A \to B$ with $\pi(\varphi(s)) = \varphi(\mathbb{M}\pi(s))$

Free algebras

 $\langle \mathbb{M}X, \text{flat} \rangle$ with $\text{flat} : \mathbb{M}\mathbb{M}X \to \mathbb{M}X$

Recognisability

 $K = \varphi^{-1}[P]$ for $\varphi : \mathbb{M}X \to \mathfrak{A}$ and $P \subseteq A$

Algebra

 $\langle A, \pi \rangle$ with $\pi : \mathbb{M}A \to A$

Morphism

 $\varphi: A \to B$ with $\pi(\varphi(s)) = \varphi(\mathbb{M}\pi(s))$

Free algebras

 $\langle \mathbb{M}X, \text{flat} \rangle$ with $\text{flat} : \mathbb{M}\mathbb{M}X \to \mathbb{M}X$

Recognisability

 $K = \varphi^{-1}[P]$ for $\varphi : \mathbb{M}X \to \mathfrak{A}$ and $P \subseteq A$

Example $\mathbb{M}X = X^*$

 $K \subseteq X^*$ is regular iff it is recognised by a finite monoid.

Logic

Logic $\langle L, \mathcal{M}, \vDash \rangle$

- formulae *L*
- \bullet models ${\cal M}$
- satisfaction relation $\vDash \subseteq \mathcal{M} \times L$

Example

 $L = MSO[\Sigma]$ and $\mathcal{M} = STR[\Sigma]$

Logic

Logic $\langle L, \mathcal{M}, \vDash \rangle$

- formulae *L*
- models \mathcal{M}
- satisfaction relation $\vDash \subseteq \mathcal{M} \times L$

Example

 $L = MSO[\Sigma]$ and $\mathcal{M} = STR[\Sigma]$

Morphisms

$$\begin{split} &\langle \lambda, \mu \rangle : \langle L, \mathcal{M}, \vDash \rangle \to \langle L', \mathcal{M}', \vDash' \rangle \\ &\text{where } \lambda : L \to L' \text{ and } \mu : \mathcal{M}' \to \mathcal{M} \text{ such that} \\ &\mu(\mathfrak{M}') \vDash \varphi \quad \text{iff} \quad \mathfrak{M}' \vDash \lambda(\varphi) \end{split}$$

Example interpretations

Logical equivalence

 $\mathfrak{A} \sqsubseteq_L \mathfrak{B}$ iff $\mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$ for all $\varphi \in L$

Logical equivalence

 $\mathfrak{A} \sqsubseteq_L \mathfrak{B}$ iff $\mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$ for all $\varphi \in L$

M-Compositionality (for $\mathcal{M} = \mathbb{M}X$)

 $s \subseteq_L^{\mathbb{M}} t \implies \operatorname{flat}(s) \subseteq_L \operatorname{flat}(t)$

where $s \subseteq_{L}^{\mathbb{M}} t$ means that $s(v) \subseteq_{L} t(v)$ for all positions v

Logical equivalence

 $\mathfrak{A} \sqsubseteq_L \mathfrak{B}$ iff $\mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$ for all $\varphi \in L$

M-Compositionality (for $\mathcal{M} = \mathbb{M}X$)

 $s \subseteq_L^{\mathbb{M}} t \implies \operatorname{flat}(s) \subseteq_L \operatorname{flat}(t)$

where $s \subseteq_{L}^{\mathbb{M}} t$ means that $s(v) \subseteq_{L} t(v)$ for all positions v

Example

 $u \equiv_{\mathrm{MSO}_m} u' \quad v \equiv_{\mathrm{MSO}_m} v' \quad \Rightarrow \quad uv \equiv_{\mathrm{MSO}_m} u'v', \quad \text{for } u, u', v, v' \in \Sigma^*$

Logical equivalence

 $\mathfrak{A} \sqsubseteq_L \mathfrak{B}$ iff $\mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$ for all $\varphi \in L$

M-Compositionality (for $\mathcal{M} = \mathbb{M}X$)

 $s \subseteq_L^{\mathbb{M}} t \implies \operatorname{flat}(s) \subseteq_L \operatorname{flat}(t)$

where $s \subseteq_{L}^{\mathbb{M}} t$ means that $s(v) \subseteq_{L} t(v)$ for all positions v

Example

 $u \equiv_{MSO_m} u' \quad v \equiv_{MSO_m} v' \implies uv \equiv_{MSO_m} u'v', \text{ for } u, u', v, v' \in \Sigma^*$ Similar results hold for trees.

Logical equivalence

 $\mathfrak{A} \sqsubseteq_L \mathfrak{B}$ iff $\mathfrak{A} \models \varphi \Rightarrow \mathfrak{B} \models \varphi$ for all $\varphi \in L$

M-Compositionality (for $\mathcal{M} = \mathbb{M}X$)

 $s \subseteq_L^{\mathbb{M}} t \implies \operatorname{flat}(s) \subseteq_L \operatorname{flat}(t)$

where $s \subseteq_{L}^{\mathbb{M}} t$ means that $s(v) \subseteq_{L} t(v)$ for all positions v

Example

 $u \equiv_{MSO_m} u' \quad v \equiv_{MSO_m} v' \implies uv \equiv_{MSO_m} u'v', \text{ for } u, u', v, v' \in \Sigma^*$ Similar results hold for trees.

Theory algebra

 $\Theta_L X := \mathbb{M} X / \sqsubseteq_L$ if *L* is \mathbb{M} -compositional

Problem Theory algebras are not well understood.

Problem Theory algebras are not well understood.

Syntactic congruence (for $K \subseteq \mathbb{M}X$)

 $s \leq_K t$ iff $(p[s] \in K \Rightarrow p[t] \in K)$ for every context $p \in \mathbb{M}(X + \Box)$.

Problem Theory algebras are not well understood.

Syntactic congruence (for $K \subseteq \mathbb{M}X$)

 $s \leq_K t$ iff $(p[s] \in K \Rightarrow p[t] \in K)$ for every context $p \in \mathbb{M}(X + \Box)$.

Syntactic algebra

 $\operatorname{Syn}(K) := \mathbb{M}X/ \leq_K$

Problem Theory algebras are not well understood.

Syntactic congruence (for $K \subseteq \mathbb{M}X$)

 $s \leq_K t$ iff $(p[s] \in K \Rightarrow p[t] \in K)$ for every context $p \in \mathbb{M}(X + \Box)$.

Syntactic algebra

 $\operatorname{Syn}(K) := \mathbb{M}X/ \leq_K$

Problem \leq_K is not always a congruence.

Theorem

If each structure in $\mathbb{M}X$ is 'finite', then \leq_K is a congruence.

Problem Theory algebras are not well understood.

Syntactic congruence (for $K \subseteq \mathbb{M}X$)

 $s \leq_K t$ iff $(p[s] \in K \Rightarrow p[t] \in K)$ for every context $p \in \mathbb{M}(X + \Box)$.

Syntactic algebra

 $\operatorname{Syn}(K) := \mathbb{M}X/ \leq_K$

Problem \leq_K is not always a congruence.

Theorem

If each structure in $\mathbb{M}X$ is 'finite', then \leq_K is a congruence.

The same is true for infinite trees and *K* regular.

Problem Theory algebras are not well understood.

Syntactic congruence (for $K \subseteq \mathbb{M}X$)

 $s \leq_K t$ iff $(p[s] \in K \Rightarrow p[t] \in K)$ for every context $p \in \mathbb{M}(X + \Box)$.

Syntactic algebra

 $\operatorname{Syn}(K) := \mathbb{M}X/ \leq_K$

Problem \leq_K is not always a congruence.

Theorem

If each structure in $\mathbb{M}X$ is 'finite', then \leq_K is a congruence.

The same is true for infinite trees and *K* regular.

Theorem

If Syn(K) exists, it is the minimal algebra recognising *K*.

Correspondences

• a logic *L*

Correspondences

- a logic L
- the class \mathcal{D} of *L*-definable classes *K*

Correspondences

- a logic L
- the class \mathcal{D} of *L*-definable classes *K*
- the class \mathcal{A} of algebras recognising all $K \in \mathcal{D}$

Correspondences

- a logic *L*
- the class \mathcal{D} of *L*-definable classes *K*
- the class \mathcal{A} of algebras recognising all $K \in \mathcal{D}$
- axiomatisations of \mathcal{A}

Conclusion

K is L-definable iff Syn(K) satisfies E

Correspondences

- a logic *L*
- the class \mathcal{D} of *L*-definable classes *K*
- the class \mathcal{A} of algebras recognising all $K \in \mathcal{D}$
- \bullet axiomatisations of $\mathcal A$

Conclusion

K is L-definable iff Syn(K) satisfies E

Example (Schützenberger)

A class $K \subseteq \Sigma^*$ is FO-definable if, and only if, Syn(K) satisfies

 $x^n = x^{n+1}$ for some *n*.

Correspondences

- a logic *L*
- the class \mathcal{D} of *L*-definable classes *K*
- the class \mathcal{A} of algebras recognising all $K \in \mathcal{D}$
- \bullet axiomatisations of $\mathcal A$

Requirements

- M sufficiently 'nice' (e.g., polynomial functor).
- L is \mathbb{M} -compositional.
- Every $K \in \mathcal{D}$ class has a finitary syntactic algebra Syn(K).
- \mathcal{D} is closed under inverse morphisms.

Correspondences

- a logic *L*
- the class \mathcal{D} of *L*-definable classes *K*
- the class \mathcal{A} of algebras recognising all $K \in \mathcal{D}$
- \bullet axiomatisations of $\mathcal A$

Requirements

- M sufficiently 'nice' (e.g., polynomial functor).
- L is \mathbb{M} -compositional.
- Every $K \in \mathcal{D}$ class has a finitary syntactic algebra Syn(K).
- \mathcal{D} is closed under inverse morphisms.

Application

These conditions are satisfied for MSO_m and FO_m over infinite trees.

Which algebras 'correspond' to a logic *L*?

Which algebras 'correspond' to a logic L?

Definable algebra $\mathfrak{A} = \langle A, \pi \rangle$

- finite set of generators $C \subseteq A$
- $\pi^{-1}(a) \cap \mathbb{M}C$ is *L*-definable for all $a \in A$

Which algebras 'correspond' to a logic *L*?

Definable algebra $\mathfrak{A} = \langle A, \pi \rangle$

- finite set of generators $C \subseteq A$
- $\pi^{-1}(a) \cap \mathbb{M}C$ is *L*-definable for all $a \in A$

Theorem

• \mathfrak{A} is *L*-definable iff every class recognised by \mathfrak{A} is *L*-definable.

Which algebras 'correspond' to a logic *L*?

Definable algebra $\mathfrak{A} = \langle A, \pi \rangle$

- finite set of generators $C \subseteq A$
- $\pi^{-1}(a) \cap \mathbb{M}C$ is *L*-definable for all $a \in A$

Theorem

- \mathfrak{A} is *L*-definable iff every class recognised by \mathfrak{A} is *L*-definable.
- If *K* is *L*-definable then Syn(K) is *L*-definable.

(If *L* is sufficiently nice.)