
Graph traversals as universal constructions

Siddharth Bhaskar with Robin Kaarsgaard

Københavns Universitet and the University of Edinburgh



Searching through graphs

• A graph search is an algorithm for systematically visiting each vertex

in a graph.

• Searches are local (each vertex is in the neighborhood of previously

visited ones).

• The resulting vertex orders are called traversals.

1



Example

a

b

c

d

Traversals

a b c d

a c b d

a b d c

a c d b

Non-traversals

a d b c

a d c b

2



Motivating question

• In what sense is a traversal (or BFT/DFT) canonical in its original

graph?

• Observe that there is no canonical way to choose between BFTs or

DFTs in the previous graph.

• Solution: linearly order each neighborhood.

• Our contribution: the resulting lexicographic BFTs and DFTs are

canonical (functorial) in the edge-ordered graph

3



Structure vs. Power

• Power. Traversals are expressive.

• Graph searches are used as “subroutines” in all sorts of algorithms

(connectivity, planarity, . . . ).

• Connection to complexity classes.

• Various interesting algorithms (sequential, parallel, . . . )

• Structure. By endowing traversals with the right categorical

structure, we might hope to

• “read off” algorithms computing them

• clearly visualize obstructions to efficient computation.

4



Structure vs. Power

I see our work as interpolating between the problem statement and

algorithms solving it.

5



Structure vs. Power

I see our work as interpolating between the problem statement and

algorithms solving it.

6



Structure vs. Power

• Inferring algorithms from problems is a very tall order.

• Moderate version: infer stacks from DFTs and queues from BFTs.

• I believe our work is a first step in this direction.

7



Our construction—DFT

a

b c

ed f

1 2

2 1

1

2

1

1

8



Our construction—DFT

a

b c

ed f

1

1

1

2

1

9



Our construction—DFT

a

b c

ed f

1

1

1

2

1

2

3

4

5

2

3

4

3

10



Our construction—DFT

• It turns out that both transformations can be formulated as

universal constructions in the right category.

FinGraphlex
� FinArb<� TLexGraph� �

• The output DFT as a linear order can be extracted by a forgetful

functor out of TLexGraph.

11



Our construction—BFT

a

b c

ed f

1 2

2 1

1

2

1

1

12



Our construction—BFT

a

b c

ed f

1 2

2 1 1

13



Our construction—BFT

a

b c

ed f

1

1 1

3

4

2

5

2

14



Our construction—BFT

• It turns out that both transformations can be formulated as

universal constructions in the right category.

FinGraphslex
� FinArb<� TArb� �

• The output BFT as a linear order can be extracted by a forgetful

functor out of TArb.

15



Remarks

• The universal constructions in the BFT and DFT setting are

analogous, but imperfectly so.

• Both lexicographic BFTs and DFTs are known to have a general

setting as path algebra problems relative to an arbitrary semiring.

• The natural next step is to see whether we can express a general

path algebra problem via universal constructions.

16



Remarks

• What does the categorical decomposition suggest about (sequential

or parallel) algorithms that solve these problems?

• A single universal construction suggests a greedy strategy. What

about two? (One free one cofree)

• Can we already extract some upper bounds from our decomposition?

• If we could show that we could not express a lex-BFT/DFT as a

single universal construction, could we extract lower bounds from

that?

17



Remarks

• Lex-BFTs naturally extend from finite edge-ordered graphs to

infinite edge-well-ordered graphs.

• Resulting BFTs always well-ordered.

• However, not all infinite graphs have well-ordered DFTs. (Problem:

well-orderings are not closed under taking lists and ordering them

lexicographically.)

• Can we use our machinery to find the “correct” notion of a lex-DFT

for infinite edge-ordered graphs, or show that none exist?

18



Remarks

Thank you for your attention!

19


