Input-Output Disjointness for Forward Expressions in the Logic of Information Flows

Heba Aamer a joint work with Jan Van den Bussche

Hasselt University , Belgium

SmP Workshop, $27^{\rm th}$ of July 2021

Logic of Information Flows

Logic of Information Flows (LIF) [Ternovska, FroCoS2019]:

- Pupose: model how information propagates in complex systems (complex systems = **modules** connected together)
- Syntax: algebraic (algebraization of FOL)

Semantics: dynamic

Logic of Information Flows

Logic of Information Flows (LIF) [Ternovska, FroCoS2019]:

- Pupose: model how information propagates in complex systems (complex systems = **modules** connected together)
- Syntax: algebraic (algebraization of FOL)

Semantics: dynamic

Expressiveness of the logic depends on

- 1 the set of operations in the language
- 2 the logic expressing the atomic modules

Module is a relation with input arguments and output arguments.

Dynamic Semantics and the "Law of Inertia"

Consider a binary relation Increment

- 1st argument: input
- 2nd argument: output
- Example: Increment(x; y)

Dynamic Semantics and the "Law of Inertia"

Consider a binary relation Increment

- ▶ 1st argument: input
- 2nd argument: output
- Example: Increment(x; y)

Standard (static) semantics, valuation ν :

$$u \models Increment(x; y) \quad \Leftrightarrow \quad \nu(y) = \nu(x) + 1$$

Dynamic Semantics and the "Law of Inertia"

Consider a binary relation Increment

- ▶ 1st argument: input
- 2nd argument: output
- Example: Increment(x; y)

Standard (static) semantics, valuation ν :

$$\nu \models Increment(x; y) \quad \Leftrightarrow \quad \nu(y) = \nu(x) + 1$$

Dynamic semantics, pair of valuations (ν_1, ν_2) :

$$(\nu_1, \nu_2) \models \textit{Increment}(x; y) \quad \Leftrightarrow \quad \nu_2(y) = \nu_1(x) + 1$$

and
$$\nu_2 = \nu_1$$
 elsewhere

Facebook Example

Consider a database *D* with a binary relation:

Friends

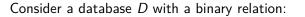
alice	bob
alice	carol
carol	dave

All pairs (ν_1, ν_2) such that $D, (\nu_1, \nu_2) \models Friends(x; y)$

l	ν_1		ν_2		
X	у	Ζ	x	у	Ζ
alice	*	_	alice	bob	_
alice	*	_	alice	carol	—
carol	*	_	carol	dave	_

Semantics of atomic modules (or relations) are BRVs.

Facebook Example



Friends

alice	bob
alice	carol
carol	dave

All pairs (ν_1, ν_2) such that $D, (\nu_1, \nu_2) \models Friends(x; y)$

l	′1			ν_2	
x	у	Ζ	X	y	Ζ
alice	*	—	alice	bob	_
alice	*	-	alice	carol	—
carol	*	_	carol	dave	—

Semantics of atomic modules (or relations) are BRVs.

Binary Relation on Valuations (BRV)

BRV is

- a set of pairs of valuations
- the dynamic semantics of a module

Semantics of Complex Modules operations on BRVsBRVsE.g. $R_1(x; y) \cup R_2(u; v)$ union of BRVsE.g. $R_1(x; y) \circ R_2(y; z)$ composition of BRVs

FLIF expressions E are:

$$E ::= \tau \mid E \circ E \mid E \cup E \mid E \cap E \mid E - E$$

Atomic expressions τ are (where x and y are variables, and c is a constant):

$$\tau ::= \underbrace{R(\bar{x}; \bar{y})}_{\text{relation atom}} \mid \underbrace{(x = y) \mid (x = c)}_{\text{selection}} \mid \underbrace{(x := y) \mid (x := c)}_{\text{assignment}}$$

Evaluation Problem

Attempt #1

Given a FLIF expression E, the evaluation problem for expression E on instance D:

Input: A valuation ν_1

Output: All valuations ν_2 such that $D, (\nu_1, \nu_2) \models E$

Evaluation Problem

Attempt #1

Given a FLIF expression E, the evaluation problem for expression E on instance D:

Input: A valuation ν_1

Output: All valuations ν_2 such that $D, (\nu_1, \nu_2) \models E$

Not practical...

- variables are infinitely many
 - \Rightarrow give values only for input variables
- most of variables remain unchanged
 - \Rightarrow return only values for output variables

Semantic Inputs and Outputs of FLIF Expressions

Atomic modules (relations):

- input arguments are specified in the vocabulary
- remaining arguments are outputs

Example

Relation *Friend* of input arity 1, total arity 2 Expression *Friend*(x; y) has input variable x, output variable y

Semantic Inputs and Outputs of FLIF Expressions

Atomic modules (relations):

- input arguments are specified in the vocabulary
- remaining arguments are outputs

Example

Relation *Friend* of input arity 1, total arity 2 Expression *Friend*(x; y) has input variable x, output variable y

For complicated expressions, not so obvious

Semantic Inputs and Outputs of FLIF Expressions

Atomic modules (relations):

- input arguments are specified in the vocabulary
- remaining arguments are outputs

Example

Relation *Friend* of input arity 1, total arity 2 Expression *Friend*(x; y) has input variable x, output variable y

For complicated expressions, not so obvious

Intuitively,

- **Outputs** O(E): can change during the evaluation
- Inputs I(E): are needed from the beginning to determine O(E)

Ideal Formalization $Eval_E(D, \nu_{in})$

Given a FLIF expression E, the evaluation problem for expression E on instance D:

- Input: A valuation ν_{in} on the input variables
- Output: Projection on output variables of

$$\{\nu_{\mathrm{out}} \mid \exists \nu_{\mathrm{in}}' \supseteq \nu_{\mathrm{in}} : D, (\nu_{\mathrm{in}}', \nu_{\mathrm{out}}) \models E\}$$

Ideal Formalization $Eval_E(D, \nu_{in})$

Given a FLIF expression E, the evaluation problem for expression E on instance D:

- Input: A valuation ν_{in} on the input variables
- Output: Projection on output variables of

$$\{\nu_{\mathrm{out}} \mid \exists \nu_{\mathrm{in}}' \supseteq \nu_{\mathrm{in}} : D, (\nu_{\mathrm{in}}', \nu_{\mathrm{out}}) \models E\}$$

Not feasible...

- deciding whether a variable is output (input) of some given expression is undecidable [KR2020]
 - \Rightarrow work with syntactic approximations

Syntactic Approximations of Inputs and Outputs

Е	<i>I</i> (<i>E</i>)	<i>O</i> (<i>E</i>)
$R(\bar{x};\bar{y})$	x	<i>y</i>
$E_1 \circ E_2$	$I(E_1) \cup (I(E_2) - O(E_1))$	$O(E_1)\cup O(E_2)$
$E_1 \cup E_2$	$I(E_1) \cup I(E_2) \cup (O(E_1) \bigtriangleup O(E_2))$	$O(E_1) \cup O(E_2)$
$E_1 \cap E_2$	$I(E_1) \cup I(E_2) \cup (O(E_1) \bigtriangleup O(E_2))$	$O(E_1) \cap O(E_2)$
$E_{1} - E_{2}$	$I(E_1) \cup I(E_2) \cup (O(E_1) \bigtriangleup O(E_2))$	$O(E_1)$
(x = y)	$\{x, y\}$	Ø
(x := y)	{ <i>y</i> }	$\{x\}$
(x = c)	$\{x\}$	Ø
(x := c)	Ø	$\{x\}$

What happens if a variable is an input and an output? Relation a binary relation $Increment = \{(0, 1), (1, 2), (2, 3), ...\}$. Expression Increment(x; x) increments the value of x Discrepancy Increment(x; x) is not satisfied in FOL What happens if a variable is an input and an output? Relation a binary relation $Increment = \{(0, 1), (1, 2), (2, 3), ...\}$. Expression Increment(x; x) increments the value of x Discrepancy Increment(x; x) is not satisfied in FOL

Solution work with (FLIF^{io}): the input-output disjoint fragment of FLIF.

How does FLIF^{io} compare to FLIF?

not a simple equivalence ...

How does FLIF^{io} compare to FLIF?

not a simple equivalence ...

Example

Consider the following two semantically equivalent expressions

•
$$E_1 = (R_1(x; y) \cup R_2(y; x)) - (R_1(x; y) \bigtriangleup R_2(y; x))$$

• $E_2 = (R_1(x; y) \cap R_2(y; x))$

	E_1	E_2
FLIF ^{io}	no	yes
1	$\{x, y\}$	$\{x, y\}$
0	$ \begin{cases} x, y \\ \{x, y \end{cases} $	{}

How does FLIF^{io} compare to FLIF?

not a simple equivalence ...

Example

Consider the following two semantically equivalent expressions

•
$$E_1 = (R_1(x; y) \cup R_2(y; x)) - (R_1(x; y) \bigtriangleup R_2(y; x))$$

•
$$E_2 = (R_1(x; y) \cap R_2(y; x))$$

	E_1	E_2
FLIF ^{io}	no	yes
1	$\{x, y\}$	$\{x, y\}$
0	$\begin{array}{l} \{x,y\}\\ \{x,y\} \end{array}$	{}

It is not good to

- require more inputs
- return less outputs

Heba Aamer

Attempt #1 (Rename Output Variables)

Let *E* be an FLIF expression, and ρ be a renaming of output variables of *E*. Then there exists an FLIF^{io} expression *E'* such that:

- 1 inputs of E and E' are the same;
- **2** outputs of E' are the outputs of E renamed by ρ ; and
- ${f 3}$ for every interpretation D and every valuation $u_{
 m in}$ on inputs, we have

 $Eval_{E}(D, \nu_{in}) \circ \rho = Eval_{E'}(D, \nu_{in})$

Attempt #1 (Rename Output Variables)

Let *E* be an FLIF expression, and ρ be a renaming of output variables of *E*. Then there exists an FLIF^{io} expression *E'* such that:

- 1 inputs of E and E' are the same;
- **2** outputs of E' are the outputs of E renamed by ρ ; and
- **3** for every interpretation D and every valuation $u_{\rm in}$ on inputs, we have

$$Eval_{E}(D, \nu_{in}) \circ \rho = Eval_{E'}(D, \nu_{in})$$

For trivial expressions, it works:

For
$$E = R(x; x)$$
 and $\rho = \{x \mapsto y\}$
Take $E' = R(x; y)$

Attempt #1 (Rename Output Variables)

Let *E* be an FLIF expression, and ρ be a renaming of output variables of *E*. Then there exists an FLIF^{io} expression *E'* such that:

- 1 inputs of E and E' are the same;
- **2** outputs of E' are the outputs of E renamed by ρ ; and
- **3** for every interpretation D and every valuation $\nu_{\rm in}$ on inputs, we have

$$Eval_{E}(D, \nu_{in}) \circ \rho = Eval_{E'}(D, \nu_{in})$$

For trivial expressions, it works:

For
$$E = R(x; x)$$
 and $\rho = \{x \mapsto y\}$
Take $E' = R(x; y)$

For complex expressions, not really...

Problems in Attempt#1

 $\textbf{0} Requiring outputs of E' to be outputs of E renamed by <math>\rho$

• expression S(x;) - R(x;x) has no outputs

Problems in Attempt#1

1 Requiring outputs of E' to be outputs of E renamed by ρ

• expression S(x;) - R(x;x) has no outputs

2 Variable clashes

expression R(x; x) ∘ S(y; z) has x and z as outputs, using ρ : {x ↦ y}
 x R(x; y) ∘ S(y; z) wrong semantics

Theorem Statement

Let *E* be an FLIF expression, *F* be a set of forbidden variables, and ρ be a bijection from the output variables of *E* to a set of variables disjoint from the variables in *E*. Then there exists an FLIF^{io} expression *E'* such that:

- inputs of E and E' are the same;
- **2** outputs of E' include the outputs of E renamed by ρ and the extra output variables are disjoint from F; and
- ${f 0}$ for every interpretation D and every valuation $u_{
 m in}$ on inputs, we have

$$Eval_{E}(D, \nu_{in}) = Eval_{E'}(D, \nu_{in}) \circ \rho$$

$$\mathrm{FLIF}^{\mathrm{io}} \equiv \mathrm{FLIF}$$

Examples

expression S(x;) - R(x; x) has no outputs
 (S(x;) ∘ (y := x)) - (R(x; y) ∘ (y := x))

expression R(x; x) ∘ S(x; x) has x as output, using ρ: {x ↦ y}
R(x; z) ∘ S(z; y)

S expression $R(x, u; u, y) \cap S(y; y)$ has y as output, using $\rho : \{y \mapsto z\}$ ▶ $R(x, u; u_1, z_1) \circ (u_1 = u) \circ S(y; z) \circ (z_1 = z)$

② expression $T(;) \cup (S(;x) \circ R(x;x))$ has x as output, using $\rho : \{x \mapsto y\}$ ► $T(;) \circ (z := x) \circ (y := x) \cup (S(;z) \circ R(z;y))$

Observations and Future Work

Observation on proving $FLIF^{io} \equiv FLIF$:

 the need for extra output variables (their values is not important, though)

Observations and Future Work

Observation on proving $FLIF^{io} \equiv FLIF$:

 the need for extra output variables (their values is not important, though)

Open problems:

- Will FLIF benefit from adding a new category of variables, namely intermediate variables?
- ▶ Does IO-disjoint LIF have the same expressive power of LIF?

References

E. Ternovska

An Algebra of Modular Systems: Static and Dynamic Perspectives. Proceedings 12th International Symposium on Frontiers of Combining Systems (FroCos 2019).

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Executable First-Order Queries in the Logic of Information Flows. *Proceedings 23rd International Conference on Database Theory (ICDT 2020).*

H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche Inputs, Outputs, and Composition in the Logic of Information Flows. *Proceedings 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020).*

H. Aamer and J. Van den Bussche

Input-Output Disjointness for Forward Expressions in the Logic of Information Flows

Proceedings 24th International Conference on Database Theory (ICDT 2021).