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Compositionality and Logical Definability
for Monads

Achim Blumensath

In algorithmic model theory the so-called composition method is an established tool to
study the expressive power of various logics.The general idea is to compute the theory of a
large structure from the theories of several smaller ones into which it can be decomposed.
We apply this method in the particular context of algebraic language theory. Recently
there have been work to unify the various settings of algebraic language theory into a
single uniform framework based on monads and Eilenberg-Moore algebras [�, �, �].

In this talk I present results from [�] that are organised around the following two
questions.
(i) How does the composition method look like for a general monad and a general

logic?
(ii) How can tools from algebraic language theory be used to answer definability ques-

tions in this setting?
The presentation will be mostly conceptual in nature with an emphasis on definitions
over theorems.

The general idea is as follows.We consider an operation M that maps a set A to a
class MA of A-labelled structures of some kind, and we study logics L talking about
structures fromMA. In addition,we assume that the classMA is equipped with some sort
of composition operation (turning M into a monad) and that our logic L is compatible
with this operation. If M is sufficiently well-behaved,we can associate with every subclass
C ⊆MA a certain algebraS in such a way that L-definability of C corresponds to certain
algebraic properties of S.
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Implicit automata in typed λ-calculi
Pierre Pradic !Ï

Department of Computer Science, University of Oxford, United Kingdom

This is joint work with Lê Thành Dũng Nguyễn (LIPN, Paris Nord).

The research that we present here started out by exploring connections between the
languages (resp. functions) recognized by automata (resp. transducers, i.e., automata with
output) and those definable by programs in certain typed λ-calculi. While we are relating
logic and automata, much like programming language theory and proof theory are linked
via the Curry–Howard correspondence, our work does not fit in the “logics as specification
languages” paradigm, exemplified by the equivalence of finite-state automata and Monadic
Second-Order Logic (MSO). One could sum up the difference by analogy with the two
main approaches to machine-free complexity: implicit computational complexity (ICC) and
descriptive complexity. Both aim to characterize complexity classes without reference to a
machine model, but the methods of ICC have a more computational flavor.

programming paradigm declarative functional
complexity classes Descriptive Complexity Implicit Computational Complexity
automata theory subsystems of MSO our work

To our knowledge, very few works had previously looked at this kind of “type-theoretic”
or “proof-theoretic” ICC for automata. Let us mention a few recent papers concerning
transducers [5, 2] and multi-head automata [19, 10]. Most importantly, our starting point is
a remarkable result dating back to 1996:

▶ Theorem 1 (Hillebrand & Kanellakis [8, Theorem 3.4]). A language L ⊆ Σ∗ can be defined
in the simply typed λ-calculus by some closed λ-term of type StrΣ[A] → Bool for some type
A (that may depend on L) if and only if it is a regular language.

Let us explain this statement. We consider a grammar of simple types with a single base
type: A, B ::= o | A → B, and use the Church encodings of booleans Bool = o → o → o and
strings StrΣ = (o → o) → . . . → (o → o) → o → o with |Σ| arguments of type (o → o) where
Σ is a finite alphabet. For types A and B, we write B[A] for the substitution B{o := A} of
every occurrence of o in B by A.

Although little-known, Hillebrand and Kanellakis’s theorem is not surprising in retrospect:
strong connections between Church encodings and automata (see e.g. [18, 11]) have been
exploited, in particular in higher-order model checking.

Linear and non-commutative types While there exist some results in implicit complexity
based on the simply typed λ-calculus (e.g. [8]), many works in that area have taken inspiration
from linear logic to design more sophisticated type systems, starting with two characterizations
of polynomial time [7, 6]. We followed the same idea to characterize two transduction classes
in Intuitionistic Linear Logic with additives (ILL). From now on, StrΣ denotes the linearized
Church encoding StrΣ = (o ⊸ o) → . . . → (o ⊸ o) → o → o.

▶ Theorem 2 ([14]). A function Γ∗ → Σ∗ is regular (see e.g. [12]) (resp. comparison-free
polyregular [13]) if and only if it can be defined by a closed term of type StrΓ[A] ⊸ StrΣ
(resp. StrΓ[A] → StrΣ) in ILL for some purely linear type A (that may depend on f).

Here “purely linear” means that A does not contain any non-linear function arrow ‘→’. We
also provide a similar characterization of regular tree functions in [14]. What might be more
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2 Implicit automata in typed λ-calculi

surprising is our additional use of non-commutativity (a function must use its arguments in
the same order that they are given in) to characterize a subclass of regular languages.

▶ Theorem 3 ([15]). A language L ⊆ Σ∗ is star-free if and only if it can be defined by a
closed term of type StrΣ[A] ⊸ Bool in an affine variant of Intuitionistic Non-Commutative
Linear Logic [17] for some purely linear type A (that may depend on L).

Denotational semantics meets categorical automata theory The key conceptual insight
in our proof of Theorem 2 is to relate the semantics of purely linear ILL in monoidal closed
categories with the representation of transducers in Colcombet and Petrişan’s categorical
framework for automata [3]. More precisely, we show that a variant of copyless (i.e. affine)
streaming string transducers [12, §2] – a machine model for regular functions – can be
formulated as C-automata where C is a Dialectica-like completion of a category of string-
valued registers, so C is monoidal closed for the same reason as Dialectica categories [4].

The notion of monoidal closure has a relevance for automata theory that goes beyond
Theorem 2; intuitively, this is due to the important role that function spaces often play in
automata constructions. To illustrate that, in [14], we gave abstract generalizations of the
arguments showing that copyless SSTs may be determinized and that the composition of
two regular functions may be implemented by a copyless SST, in terms of internal homsets.
Interestingly, it is not clear to us if there is a nice condition analogous to monoidal closure
over classes of transition monoids allowing to carry out those generalized arguments without
introducing automata over monoidal closed categories.

Some automata-theoretic consequences We were thus led to define the aforementioned
comparison-free polyregular functions by considering expressible functions in linear logic.
This class of function is a natural restriction of polyregular functions [2], a class of string
transductions whose outputs are of size at most polynomial in the output. We studied that
class in [13] from the point of view of automata theory. While all arguments are rather
unsurprising, the connection with λ-calculus helped us realize that the class was closed under
composition, and provides an alternative proof of this fact leveraging the material of [14].

Furthermore, we also took inspiration from Theorem 3 and from the planar geometry
of interaction (GoI) semantics [1] of non-commutative linear logic to design a new machine
model for star-free languages and aperiodic regular functions (see [12, §3] for the latter):
planar two-way automata/transducers [16]. It was previously known that two-way automata
could be expressed as automata over a GoI category (a reformulation of the results of [9] in
the framework of [3]), and that two-way transducers compute regular functions [12, §2].
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Categorical composable cryptography
Martti Karvonen (joint work with Anne Broadbent)

Abstract—This work formalize the simulation paradigm of
cryptography in terms of category theory and shows that proto-
cols secure against abstract attacks form a symmetric monoidal
category, thus giving an abstract model of composable security
definitions in cryptography. Our model is able to incorporate
computational security, set-up assumptions and various attack
models such as colluding or independently acting subsets of
adversaries in a modular, flexible fashion. We are also able
to use string diagrams to rederive no-go results concerning
the limits of bipartite and tripartite cryptography, ruling out
e.g. composable commitments and broadcasting. Full version
available at arXiv:2105.05949.

I. INTRODUCTION

Modern cryptographic protocols are complicated algorith-
mic entities, and their security analyses are often no simpler
than the protocols themselves. Given this complexity, it would
be highly desirable to be able to design protocols and reason
about them compositionally, i.e. by breaking them down into
smaller constituent parts. In particular, one would hope that
combining protocols proven secure results in a secure protocol
without need for further security proofs. However, this is not
the case for stand-alone security notions that are common in
cryptography. To illustrate such failures of composability, let
us consider the history of quantum key distribution (QKD), as
recounted in [24]: QKD was originally proposed in 80s [3].
The first security proofs against unbounded adversaries fol-
lowed a decade later [4], [21], [27]. However, since compos-
ability was originally not a concern, it was later realized that
the original security definitions did not provide a good enough
level of security [15]—they didn’t guarantee security if the
keys were to be actually used, since even a partial leak of the
key would compromise the rest. The story ends on a positive
note, as eventually a new security criterion was proposed,
together with stronger proofs [2], [26].

In arXiv:2105.05949, we initiate a categorical study of com-
posable security definitions in cryptography. In the viewpoint
developed there one thinks of cryptography as a resource
theory: cryptographic functionalities (e.g. secure communi-
cation channels) are viewed as resources and cryptographic
protocols let one transform some starting resources to others.
For instance, one can view the one-time-pad as a protocol that
transforms an authenticated channel and a shared secret key
into a secure channel. For a given protocol, one can then study
whether it is secure against some (set of) attack model(s), and
protocols secure against a fixed set of models can always be
composed sequentially and in parallel.

This is in fact the viewpoint taken in constructive cryp-
tography [19], which also develops the one-time-pad example
above in more detail. However [19] does not make a formal
connection to resource theories as usually understood, whether

as in quantum physics [9], [14], or more generally as defined
in order theoretic [11] or categorical [10] terms. Instead,
constructive cryptography is usually combined with abstract
cryptography [20] which is formalized in terms of a novel
algebraic theory of systems [18].

Our work can be seen as a particular formalization of
the ideas behind constructive cryptography, or alternatively
as giving a categorical account of the real-world-ideal-world
paradigm (also known as the simulation paradigm [12]),
which underlies more concrete frameworks for composable
security, such as universally composable cryptography [7] and
others [1], [13], [16], [17], [22].

Our long-term goal is to enable cryptographers to reason
about composable security at the same level of formality
as stand-alone security, without having to fix all the details
of a machine model nor having to master category theory.
Indeed, our current results already let one define multipartite
protocols and security against arbitrary subsets of malicious
adversaries in any symmetric monoidal category C. Thus,
as long as one’s model of interactive computation results in
a symmetric monoidal category, or more informally, one is
willing to use pictures such as those appearing in the sequel, to
depict connections between computational processes without
further specifying the order in which the picture was drawn,
one can use the simulation paradigm to reason about multi-
partite security against malicious participants composably—
and specifying finer details of the computational model is
only needed to the extent that it affects the validity of one’s
argument. Moreover, as our attack models and composition
theorems are fairly general, we hope that more refined models
of adversaries can be incorporated.

We now highlight some of the contributions of
arXiv:2105.05949:

• We show how to adapt resource theories as categori-
cally formulated [10] in order to reason abstractly about
secure transformations between resources. This is done
by formalizing the simulation paradigm in terms of an
abstract attack model, designed to be general enough to
capture standard attack models of interest (and more)
while still structured enough to guarantee composability.
We show that for any fixed set of attack models, the
class of protocols secure against each of them results in
a symmetric monoidal category.

• We adapt this framework to model computational security
in two ways: either by replacing equations with an
equivalence relation, abstracting the idea of computa-
tional indistinguishability, or by working with a notion
of distance. In the case of a distance, one can then
either explicitly bound the distance between desired and
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actually achieved behavior, or work with sequences of
protocols that converge to the target in the limit: the
former models working in the finite-key regimen [28]
and the latter models the kinds of asymptotic security and
complexity statements that are common in cryptography.

• Finally, we apply the framework developed to study bi-
partite and tripartite cryptography. We reprove the no-go-
theorems of [18], [20], [25] concerning two-party com-
mitments (and three-party broadcasting) in this setting,
and reinterpret them as limits on what can be achieved
securely in any compact closed category (symmetric
monoidal category). The key steps of the proof are done
graphically, thus opening the door for cryptographers to
use such pictorial representations as rigorous tools rather
than merely as illustrations.

II. SKETCHING THE APPROACH

As shown in [10], many familiar resource theories arise in a
uniform fashion: starting from an SMC (symmetric monoidal
category) C of processes equipped with a wide sub-SMC
CF whose morphisms represent “free” processes, they build
several resource theories (=SMCs). Perhaps the most important
of these constructions is the resource theory of states: given
CF ↪→ C, the corresponding resource theory of states can be
explicitly constructed by taking the objects of this resource
theory to be states of C, i.e. maps r : I → A for some A, and
maps r → s are maps f : A→ B in CF such that fr = s

Our first observation is that there is no reason to restrict to
inclusions CF ↪→ C in order to construct a resource theory of
states. This is because the resulting category is the category of
elements of the composite CF → C

hom(I,−)−−−−−−→ Set. As this
is a (lax) symmetric monoidal functor, the resulting category
is automatically symmetric monoidal as observed in [23].
Thus this construction goes through for any symmetric (lax)
monoidal functors D

F−→ C
R−→ Set. Here we may think of

F as interpreting free processes into an ambient category of
all processes, and R : C→ Set as an operation that gives for
each object A of C the set R(A) of resources of type A.

Consider now the resource theory induced by Cn
⊗
−→

C
hom(I,−)−−−−−−→ Set, where we write

⊗
for the n-fold monoidal

product1. The resulting resource theory has a natural interpre-
tation in terms of n agents trying to transform resources to
others: an object of this resource theory corresponds to a pair
((Ai)

n
i=1, r : I → ⊗

Ai), and can be thought of as a state
where the i-th agent has access to a port of type Ai. A mor-
phism f̄ = (f1, . . . fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) between

such resources then amounts to a protocol that prescribes, for
each agent i a process fi that they should perform so that
(
⊗

i fi)r = s In this resource theory, all of the agents are
equally powerful and can perform all processes allowed by
C, and this might be unrealistic: first of all, C might include
computational processes that are too powerful/expensive for us
to use in our cryptographic protocols. Moreover, having agents

1As C is symmetric, the functor
⊗

is strong monoidal.

with different computational powers is important to model
e.g. blind quantum computing [5] where a client with access
only to limited, if any, quantum computation tries to securely
delegate computations to a server with a powerful quantum
computer. This limitation is easily remedied: we could take
the i-th agent to be able to implement computations in some
sub-SMC Ci of C, and then consider

∏n
i=1 Ci → C.

A more serious limitation is that such transformations
have no security guarantees—they only work if each agent
performs fi as prescribed by the protocol. In order for a
protocol f̄ = (f1, . . . , fn) : ((Ai)

n
i=1, r) → ((Bi)

n
i=1, s) to

be secure, we should have some guarantees what happens
if, as a result of an attack on the protocol, something else
than (f1, . . . , fn) happens. For instance, some subset of the
parties might deviate from the protocol and do something else
instead. In the simulation paradigm, security is then defined
by saying that, anything that could happen when running
the real protocol, i.e., f̄ with r, could also happen in the
ideal world, i.e. with s. A given protocol might be secure
against some kinds of attacks and insecure against others, so
in arXiv:2105.05949 we define security against an abstract
attack model.

Instead of general results, we discuss the resulting defini-
tions in a special case. We assume n = 2, and focus on perfect
security against either party behaving maliciously. In this case
we may define a protocol f̄ = (fA, fB) to be a secure protool
r → s if

(i)

r

fA fB

=
s

(Correctness)

(ii) There exists a morphism b such that

r

fA

=
s

b

(Security against Bob)

(iii) Similarly for Alice.
Composable security is a stronger constraint than stand-alone
security, and many cryptographic functionalities are known to
be impossible to achieve “in the plain model”, i.e. without
set-up assumptions. A case in point is bit commitment, which
was shown to be impossible in the UC-framework in [8].
This result was later generalized in [25] to show that any
two-party functionality that can be realized in the plain UC-
framework is “splittable”. We present a categorical proof of
this result, which promotes the pictures “illustrating the proof”
in [25] into a full proof — the main difference is that in [25]
the pictures explicitly keep track of an environment trying
to distinguish between different functionalities, whereas we
prove our result in the case of perfect security and then deduce
the asymptotic claim. We now assume that C, our ambient
category of interactive computations is compact closed.

2
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Theorem II.1. For Alice and Bob (one of whom might cheat),
if a bipartite functionality r can be securely realized from a
communication channel between them, i.e. from , then there
exists a g such that

r

A B

=
r r

g

. (∗)

Proof. Assume a protocol (fA, fB) achieving this. Security
constraints against each party give us

fA =
r

sB

and fB =
r

sA

so that

r = fA fB = fA fB =
r r

sB sA

Corollary II.2. Given a compact closed C modeling compu-
tation in which wires model communication channels, (com-
posable) bit commitment and oblivious transfer are impossible
in that model without setup, even asymptotically in terms of
distinguisher advantage.

Proof. If r represents bit commitment from Alice to Bob, it
does not satisfy the equation required by Theorem II.1 for
any f , and the two sides of (∗) can be distinguished efficiently
with at least probability 1/2. Indeed, take any f and let us
compare the two sides of (∗): if the distinguisher commits to
a random bit b, then Bob gets a notification of this on the left
hand-side, so that f has to commit to a bit on the right side
of (∗) to avoid being distinguished from the left side. But this
bit coincides with b with probability at most 1/2, so that the
difference becomes apparent at the reveal stage. The case of
OT is similar.

REFERENCES

[1] Michael Backes, Birgit Pfitzmann, and Michael Waidner. The reactive
simulatability (rsim) framework for asynchronous systems. Information
and Computation, 205(12):1685–1720, 2007. doi:10.1016/j.ic.
2007.05.002.

[2] Michael Ben-Or, Michał Horodecki, Debbie W Leung, Dominic May-
ers, and Jonathan Oppenheim. The universal composable secu-
rity of quantum key distribution. In 2nd Theory of Cryptography
Conference—TCC 2005, pages 386–406, 2005. doi:10.1007/
978-3-540-30576-7\_21.

[3] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. In International Conference on
Computers, Systems and Signal Processing, pages 175–179, 1984.

[4] Eli Biham, Michel Boyer, P. Oscar Boykin, Tal Mor, and Vwani
Roychowdhury. A proof of the security of quantum key distribution
(extended abstract). In 32nd Annual ACM Symposium on Theory of
Computing—STOC 2000, pages 715 – 724, 2000. doi:10.1145/
335305.335406.

[5] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal
blind quantum computation. In 50th Annual Symposium on Foundations
of Computer Science—FOCS 2009, pages 517–526, 2009. doi:10.
1109/FOCS.2009.36.

[6] Anne Broadbent and Martti Karvonen. Categorical composable cryp-
tography, 2021. arXiv:2105.05949.

[7] Ran Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In 42nd Annual Symposium on Foundations
of Computer Science—FOCS 2001, pages 136–145, 2001. doi:10.
1109/SFCS.2001.959888.

[8] Ran Canetti and Marc Fischlin. Universally composable commitments.
In Advances in cryptology—CRYPTO 2001, pages 19–40. Springer,
2001. doi:10.1007/3-540-44647-8_2.

[9] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews of
Modern Physics, 91(2):025001, 2019. doi:10.1103/revmodphys.
91.025001.

[10] Bob Coecke, Tobias Fritz, and Robert W Spekkens. A mathematical
theory of resources. Information and Computation, 250:59–86, 2016.
doi:10.1016/j.ic.2016.02.008.

[11] Tobias Fritz. Resource convertibility and ordered commutative monoids.
Mathematical Structures in Computer Science, 27(6):850–938, 2015.
doi:10.1017/s0960129515000444.

[12] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of
Computer and System Sciences, 28(2):270–299, 1984. doi:10.1016/
0022-0000(84)90070-9.

[13] Dennis Hofheinz and Victor Shoup. GNUC: A new universal com-
posability framework. Journal of Cryptology, 28(3):423–508, 2015.
doi:10.1007/s00145-013-9160-y.

[14] Michal Horodecki and Jonathan Oppenheim. (quantumness in the con-
text of) resource theories. International Journal of Modern Physics B,
27(01n03):1345019, 2013. doi:10.1142/s0217979213450197.

[15] Robert König, Renato Renner, Andor Bariska, and Ueli Maurer. Small
accessible quantum information does not imply security. Physical Re-
view Letters, 98(14):140502, 2007. doi:10.1103/PhysRevLett.
98.140502.
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Abstract

Distributive laws have proved useful to combine effects of two monads. In frequent cases
though, there is no way of defining a distributive law between a pair of specific monads.
When it feels like there almost exists one, we can use a weaker form of distributive law
instead. This talks gives an overview of how weak distributive laws can be applied in
computer science. Part of the results have been published in [8] or will be published in [10].
Some results, e.g. coweak distributive laws, have not been published. This research is joint
work with Daniela Petrişan and, as regards toposes, with Marc Aiguier.

A monad (T, ηT , µT ) on a category C is a functor T : C → C along with two natural
transformations ηT : 1 → T and µT : TT → T such that µT ◦ TηT = µT ◦ ηTT = 1 and
µT ◦ TµT = µT ◦ µTT . Monads have been originally imported in computer science to model
computational effects [12, 13], and nowadays constitute a must-have concept in one’s categorical
toolbox. A famous issue in the theory of monads is its non-compositionality. Given two monads
(S, ηS , µS) and (T, ηT , µT ), there is no guarantee that the functor ST has a monad structure.
However, in the presence of a distributive law, i.e. a natural transformation λ : TS → ST
satisfying the four axioms of Table 1, there is a monad (ST, ηSηT , µSµT ◦ SλT ) [1]. Notably,
each distributive law TS → ST is equivalently a lifting of S to the category of T -algebras, and an
extension of T to the Kleisli category of S. Again, a famous issue in the theory of distributive
laws is that in many interesting cases, there simply is no distributive law. For example, in
Set, the powerset monad P and the distribution monad D interact rather badly: there is no
distributive law PP → PP [11], DP → PD [15], PD → DP [15, 16] nor DD → DD [16].
This is not an isolated behaviour, and one can find many other concrete examples in Zwart’s
thesis [16].

In the last few years, some authors have been working to weakening the notion of distributive
law [2, 14, 3, 7]. We retain the definition of Garner: a weak distributive law is a natural
transformation λ : TS → ST such that all of the axioms in Table 1, except the (ηT ) one,
hold. Under the mild assumption that idempotents split in C, any weak distributive law is
equivalently a (weak form of) lifting of S to the category of T -algebras, and a (weak form of)
extension of T to the Kleisli category of S. One can also obtain – out of the weak lifting – a
tweaked composite monad involving features of both S and T , but whose functor is not required
to be ST .

Table 1: Axioms of distributive laws TS → ST
name axiom plain weak coweak
(ηS) λ ◦ TηS = ηST X X ×
(ηT ) λ ◦ ηTS = SηT X × X
(µS) λ ◦ TµS = µST ◦ Sλ ◦ λS X X X
(µT ) λ ◦ µTS = SµT ◦ λT ◦ Tλ X X X
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It turns out that there are lots of weak distributive laws. For example, any monad morphism
σ : S → T gives rise to a weak distributive law ηSµT ◦ Tσ : TS → ST – but the behaviour of
such laws is largely irrelevant. In Set and with S being the powerset monad P , a powerful way
of distinguishing useful weak distributive laws is to use the following result.

Theorem 1 ([7]). There is a (unique) monotone weak distributive law TP → PT if and only
if T preserves weak pullbacks and µT naturality squares are weak pullbacks.

This result can be adapted to regular categories that comprise a good notion of powerset
monad. A number of weak distributive laws can be obtained via Theorem 1 or its variants.

� There is weak distributive law βP → Pβ [7], where β is the ultrafilter monad. The
corresponding weak lifting is the Vietoris monad V on the category KHaus of compact
Hausdorff spaces and continuous functions.

� There is a weak distributive law DP → PD [8]. The corresponding weak lifting is the
convex powerset monad on the category of convex algebras.

� Under appropriate conditions on the semiring s, there is a weak distributive law SP →
PS [4], where here S denotes the s-left-semimodule monad.

� There is a weak distributive law PP → PP [7, 9].

� More generally, any topos has a powerset P and a weak distributive law PP → PP [10].

� With the Vietoris monad V playing the role of a powerset in KHaus, there is also a similar
distributive law V V → V V [10].

Interestingly enough, many constructions that are usually performed using distributive laws
can still be carried out with respect to weak ones. For example, one can obtain a composite
algebraic theory of the tweaked monad from algebraic theories of the basic monads [7], or one
can build iterated weak distributive laws in the style of Cheng [6]. One can define monad-functor
weak distributive laws TF → FT by forgetting the (ηS) and (µS) axioms, thereby recovering
the generalized powerset construction for FT -coalgebras [8, 9], as well as compatibility of up-to
techniques [9]. For example, the DP → PD weak distributive law entails that bisimilarity
up-to convex hull for probabilistic automata (see [5]) is sound.

Many interesting questions remain open. To begin with, further instances of weak distribu-
tive laws remain to be found. For example, the continuous equivalent of the distribution monad
D on Set is the Radon monad R on KHaus: can the law DP → PD be generalized to a law
RV → V R, using a variant of Theorem 1? Answering this question is actually equivalent to
proving four properties about R, out of which we only know two at the present time. Next,
the scope of Theorem 1 is very restrictive, so how can we identify interesting weak distributive
laws when S is not ”powerset-like”?

Another interesting line of research is to look at the dual of weak distributive laws, hereby
called coweak distributive laws. Such laws require the (ηT ) axiom but do not require the (ηS)
axiom (see Table 1). It turns out that under the assumption that idempotents split in the Kleisli
category of S (∗), a coweak distributive law is equivalently a (coweak form of) lifting of S to
T -algebras and a (coweak form of) extension of T to the Kleisli category of S. Additionally,
one can build – out of the coweak extension – a tweaked composite monad. Note that even if
idempotents split in C, they may not split in Kleisli of S (take e.g. C = Set and S = P ), so
that the condition (∗) can not be considered as mild anymore. Concrete non-trivial examples
of coweak distributive laws are still to be found.
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A central theme of category theory from its inception has been restriction
of the expressiveness of set theory. For instance, the set theoretic product of
sets X and Y is a specific set, with specified elements determined by those
of X and Y , whereas the category theoretic product of X and Y is only
determined up to coherent isomorphism. So the category theoretic definition
does not specify a specific set but rather only determines a class of sets that
satisfy the key mathematical feature of a product. Such contrast also applies
to the coproduct of sets and to their exponential.

This is part of a broader phenomenon. In general, category theory focuses
almost exclusively upon structures on sets that are invariant with respect to
isomorphism, whether that be isomorphism of algebraic structure or home-
omorphism of topological structure. In this specific aspect, it better reflects
the ordinary discourse of mathematics than set theory does. It involves a
subtle mosaic of ideas. One such idea is exemplified by the following: given
a group G and a bijection between the underlying set of G and a set X, the
group structure of G transports along the bijection uniquely to give a group
structure on X. Here, we investigate the extension of that fact from sets
with structure to categories with structure.

When one extends from sets with structure to categories with structure,
the situation becomes more complex. In particular, there are convenient
structures on categories that do not transport along equivalence. For in-
stance, given a small category C, the category End(C) of endofunctors on
C has a strict monoidal structure given by composition of functors; strict
monoidal structure does not, in general, transport along equivalence; but the
strictness of that monoidal structure is helpful, simplifying calculations.

However, it remains the case that, with a few exceptions such as the above,
the structures of primary interest on categories, such as products, coprod-
ucts, monoidal structure, exponentials, or subobject classifiers, do transport
along equivalence. So, in a conceptual setting that includes such examples,
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we seek a restriction on the expressiveness of categories with structure to
those that allow transport of structure along equivalence. For simplicity of
exposition, I shall restrict attention to covariant structure, thus including
limits, colimits and monoidal structure with assorted additional structure
such as a symmetry, but excluding exponentials or subobject classifiers.

Probably the most prominent systematic account of categories with struc-
ture to date has been given by finitary 2-monads T on Cat [1], equivalently
by Lawvere 2-theories. Perhaps counter-intuitively in light of the above, as
explained in detail in [1], the focus is on strict T -algebras. For instance,
there is a 2-monad Tfp for which the strict algebras are small categories with
assigned finite products; there is one, Tsm, for which the strict algebras are
small strict monoidal categories; and there is one, Tm, whose strict algebras
are small monoidal categories.

There is more than one kind of map of strict T -algebras. Strict maps of
T -algebras instantiate to functors that strictly preserve assigned finite prod-
ucts, monoidal structure, etcetera. Pseudo maps of T -algebras instantiate to
functors that preserve structure in the usual sense, i.e., up to coherent iso-
morphism. Strict T -algebras and pseudo-maps, with evident 2-cells, form a
2-category T -Alg that, together with its lax variant, form the central object
of study of [1], with T -Algs denoting the sub-2-category determined by strict
maps. The central technical theorem of [1] asserts that, for an arbitrary fini-
tary 2-monad T on an arbitrary locally finitely presentable 2-category K, the
inclusion J : T -Algs −→ T -Alg has a left adjoint, denoted by (−)′.

One can also routinely define pseudo-algebras, yielding the 2-category
Ps-T -Alg of pseudo-T -algebras and pseudo-maps, duly containing T -Alg as
a full subcategory.

It is routine to show that, in general, for any 2-monad T on any 2-category
K, given a strict T -algebra (C, c) and any 0-cell D together with an equiv-
alence e : C −→ D, the strict T -structure of C transports along e to a
pseudo-T -structure on D, yielding an equivalence in the 2-category Ps-T -
Alg. So if we could find a condition on a finitary 2-monad T on Cat for
which every pseudo-T -structure on a category D is isomorphic to a strict-
T -structure on D, that condition would suffice to ensure that T -structure
transports along equivalence. So that is what we seek.

In fact, with subtle boot-strapping, such a condition may be seen as an
instance of a phenomenon studied in [1], that being flexibility. So I shall ex-
plain the ideas surrounding flexibility, remark that it includes all our leading
examples, and mention that in joint, as yet unpublished, work with Steve
Lack, and acknowledging the ideas of Max Kelly, we can give a practical,
general condition that includes our examples and that implies flexibility of a
2-monad.
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First observe that, by a general result about enriched categories [2], the
2-category Endf (Cat) of finitary endo-2-functors on Cat is locally finitely
presentable, with a monoidal structure given by composition of 2-functors.
A monoid in Endf (Cat) is precisely a finitary 2-monad on Cat. Monoids in
Endf (Cat), together with (strict) maps of monoids and evident 2-cells, form a
2-categoryMonoid(Endf (Cat))s, withMonoid(Endf (Cat))s = Monadf (Cat)s.

For general reasons, this 2-category is finitarily monadic over Endf (Cat),
with 2-monad denoted by M . That allows us to boot-strap: M -Algs =
Monadf (Cat)s; the 2-categoryM -Alg is precisely the 2-categoryMonadf (Cat)
of finitary 2-monads on Cat and pseudo-maps of 2-monads; and the inclusion
J of Monadf (Cat)s into Monadf (Cat) has a left adjoint we denote by (−)′.

So a finitary 2-monad T on Cat is precisely an M -algebra. In [1], an
M -algebra T is called flexible if the counit εT : (JT )′ −→ T has a section h
in the 2-category M -Algs. It follows that, in the 2-category M -Alg, the map
Jh is isomorphic to the unit ηJT : JT −→ J(JT )′. An M -algebra T is called
semi-flexible if it satisfies the weaker condition, i.e., if there exists a map h
in M -Algs for which Jh is isomorphic to ηJT .

So how does this relate to our question? The short answer is that, if a
2-monad T is semi-flexible, every pseudo-T -algebra is isomorphic to a strict
T -algebra on the same 0-cell. The argument goes as follows.

Assuming a little completeness, any object C of a category K, seen as a
functor from 1 into K, extends by right Kan extension to an endofunctor we
denote by [C,C] on K. The functor [C,C] has a canonical monad structure,
and, given any monad T on K, to give a T -algebra structure on C is equiv-
alent to giving a map of monads from T to [C,C]. One can routinely adapt
this to deal with size and with pseudo-ness to allow K to be a 2-category, to
make [C,C] finitary, and so that to give a pseudo-T -algebra structure on C
is equivalent to giving a pseudo map of monads from T to [C,C].

A pseudo-T -structure on C is equivalent to a pseudo-map of 2-monads
from T to [C,C], thus, by adjointness, to a strict map from T ′ to [C,C]. By
semi-flexibility, composition with h gives a strict map from T to [C,C], thus
a strict T -structure on C. As h ∼= ηJT , this strict structure does the job.
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Extended Abstract

FLIF (Forward Logic of Information Flows) [1] is an algebraic language for
accessing atomic modules, and composing such modules into complex transition
systems. Here, the term “atomic module” can be interpreted liberally: it can be
a software library function, a Web service, a form on a website, or an information
source.

Abstractly, an atomic module may be viewed as an n-ary relation where
some of the arguments are designated as input arguments, with the remaining
arguments providing output. For a simple example, a telephone directory may
be viewed as a binary relation Dir(name; phone) with name as input argument
and phone as output argument. For another example, the public bus company
may provide its weekdays schedule as a relation Route(stop, interval; time, line,
next,duration) that, given a bus stop and a time interval, outputs bus lines that
stop there at a time within the interval, together with the duration to the next
stop. Note how we use a semicolon to separate the input arguments from the
output arguments.

In database research, such relations are known as information sources with
limited access patterns, and the querying of such sources has received consider-
able attention. We refer to the research monograph by Benedikt et al. for more
background [5]. An elegant syntactic fragment of first-order logic (FO) that
takes into account the limitations imposed by the access patterns, was proposed
by Nash and Ludäscher in the form of so-called “executable” FO formulas [8].
Executable FO queries can be evaluated by a form of relational algebra expres-
sions, called plans, in which database relations can only be accessed by joining
them on their input attributes with a relation that is either given as input or
has already been computed.

FLIF now offers an alternative language, which we think of as situated
halfway between executable FO and plans. In FLIF we take a novel graph-

1

16



based perspective to information sources with access patterns. The nodes of
the graph are variable bindings; edges indicate accesses to the sources. For ex-
ample, consider a source Friend(pname; fname) that outputs names of friends
when given the name of a person as input. Then there is an edge labeled Friend
from binding ν1 to binding ν2 if ν2(fname) is a friend of ν1(pname). More-
over, ν2 should not differ from ν1 in other variables (a principle of “inertia”).
FLIF then is a simple XPath-like navigational query language over such graphs
[9, 7, 4, 6, 10, 3].

For example, abbreviating Friend by F , the FLIF expression F (x; y);F (y; z);
F (z;u);(u = x) retrieves (in variable z) friends of friends of x who have x also as
a direct friend. Here, the operator ; denotes composition and the subexpression
(u = x) serves as a test. Composition is a crucial operator by which (bounded-
length) paths can be traced in the graph. FLIF also has union (to branch
off), intersection (to merge branches) and difference (to exclude branches), and
variable assignments.

Simple as FLIF may seem, it is at least as expressive as executable FO, as
we showed together with Bogaerts, Surinx and Ternovska at ICDT 2020 [1].
Actually, executable FO was shown to be already subsumed by a well-behaved
fragment of FLIF, formed by the expressions that are io-disjoint. IO-disjointness
is a syntactic restriction on the structure of the expressions which guarantees
that, during the transitions involved in evaluating the expression, the values
of input variables are never overwritten. IO-disjoint expressions can also be
evaluated by a very transparent translation to relational algebra plans, in which
all joins are natural joins, and attribute renaming is not needed. (The example
expression above is io-disjoint.)

Conversely, in our previous work we also gave a translation from io-disjoint
FLIF to executable FO. It has remained open, however, whether every FLIF
expression can actually be put in an equivalent form that is io-disjoint. In
the paper [2] we answered this question affirmatively. Of course, we needed
to make precise for what kind of “equivalence” this can work, and it was part
of our contribution to clarify this. Intuitively, we showed that it is always
possible to designate a fresh set of output variables disjoint from the set of input
variables, in such a way that intermediate variables (used in subexpressions) do
not interfere with either of the two sets. Proving this rigorously turned out to
be a quite intricate task. Our result showed that io-disjoint FLIF is equally
powerful as the full FLIF language. As a corollary, we obtain that full FLIF is
not more powerful than executable FO.
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Abstract
Structural properties of large random maps and λ-terms may be gleaned by studying the limit distributions of various

parameters of interest. In our work we focus on restricted classes of maps and their counterparts in the λ-calculus, building on
recent bijective connections between these two domains. In such cases, parameters in maps naturally correspond to parameters
in λ-terms and vice versa. By an interplay between λ-terms and maps, we obtain various combinatorial specifications which
allow us to access the distributions of pairs of related parameters such as: the number of bridges in rooted trivalent maps
and of subterms in closed linear λ-terms, the number of vertices of degree 1 in (1, 3)-valent maps and of free variables in open
linear λ-terms etc. To analyse asymptotically these distributions, we introduce appropriate tools: a moment-pumping schema
for differential equations and a composition schema inspired by Bender’s theorem.

1 Introduction
Building upon an ever-increasing body of work on the combinatorics of maps, the λ-calculus, and their interactions, we present
here a study of the asymptotic behaviour of some structural properties of large random objects drawn from restricted subclasses
of maps and λ-terms.

1.1 Motivation and main results
Maps, or graphs embedded on surfaces, are an important object of study in modern combinatorics and their presence in various
areas, ranging from algebra to physics, forms bridges between seemingly disparate subjects. In recent years it has become
apparent that such bridges extend to logic as well, stemming from bijections between various natural classes of rooted maps
and certain subsystems of λ-calculus. This includes a natural bijection between rooted trivalent maps and linear lambda
terms [1], as well as a somewhat more involved bijection between rooted planar maps of arbitrary vertex degrees and β-normal
ordered linear lambda terms [2], both of which have led to further study of the combinatorial interactions between lambda
terms and maps.

To make the above correspondence concrete, let us briefly recall here the bijection of [1] following the analysis of [3], which
is itself inspired by Tutte’s classical approach to map enumeration via repeated root edge decomposition [4]. Informally, a
rooted trivalent map may be defined as a graph equipped with an embedding into an oriented surface of arbitrary genus, all
of whose vertices have degree 3, and one of whose edges has been distinguished and oriented (see below for a more formal
definition). For reasons that will be quickly apparent, it is pertinent to slightly extend the class of rooted trivalent maps by
embedding it into the class of (1,3)-valent maps, that is, maps whose vertices all have degree 3 or 1. We will view 1-valent
vertices as labelled “external” vertices, and the root itself as a distinguished external vertex. By considering what happens
around the root, it is clear that such a map falls into one of three categories:

∗This is an extended abstract for a forthcoming paper. The coauthor presenting it would be Alexandros Singh.
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namely, it is (from left to right) either the trivial one-edge map with no trivalent vertices and a single 1-valent vertex besides
the root, a map in which the deletion of the root and its unique trivalent neighbour yields a pair of disconnected maps which
may be canonically rooted, or finally a map in which the same operation yields a connected map which may be again rooted
canonically and which in addition has a distinguished degree-1 vertex.

Quite remarkably, this decomposition à la Tutte exactly mirrors the standard inductive definition of linear lambda terms.
Informally, an arbitrary lambda term is either a variable x, an application (t u) of a term t to another term u, or an abstraction
λx.t of a term t in a variable x, with linearity imposing the condition that in an abstraction λx.t, the variable x has to occur
exactly once in t. All of the terminology will eventually be explained, but concretely, the differential equation resulting from
this analysis

T (z, u) = zu+ zT (z, u)2 + z
∂

∂u
T (z, u) (1)

can be seen as counting either (1,3)-valent maps or linear λ-terms, with the size variable z tracking edges or subterms and the
“catalytic” variable u tracking non-root 1-valent vertices or free variables. Setting u = 0 then allows us to recover the ordinary
generating function T (z, 0) counting rooted trivalent maps in the classical sense as well as closed linear lambda terms.

The bijection from λ-terms to maps is made even more evident by representing the terms as certain decorated syntactic
diagrams, in the manner of Figure 1. Such diagrams yield rooted trivalent maps with external 1-valent vertices simply
by forgetting the labels of trivalent nodes, while the above correspondence shows that this information can be uniquely
reconstructed from a given map by a recursive decomposition. A more comprehensive discussion of the correspondence
between rooted trivalent maps and linear λ-terms is given in [1] and [3], and we will review it further below.

x

@

λ

@

λ

@

λ

λ

@

@

@

y

Figure 1: The syntactic diagram of the open linear λ-term (λa.(λb.bx))(λc.λd.y(cd)).

By exploiting such bijective correspondences between families of maps and λ-terms, we identify and study pairs of cor-
responding parameters natural to both classes, focusing on their limit distributions. The parameters studied in this work,
together with their limit distributions, are listed in Table 1.

Parameter on maps (number of) Parameter on λ-terms (number of) Limit distribution

Loops in rooted trivalent maps Identity-subterms in closed linear λ-terms Poisson(1)

Bridges in rooted trivalent maps Closed subterms in closed linear λ-terms Poisson(1)

Vertices of degree 1 in rooted (1, 3)-maps Free variables in open linear λ-terms up to exchange N
(
(2n)1/3, (2n)1/3

)

Vertices of degree 2 in rooted (2, 3)-maps Unused abstractions in closed affine λ-terms N
(

(2n)2/3

2
,
(2n)2/3

2

)

Table 1: Pairs of corresponding parameters in families of maps and λ-terms and their limit distributions, where Poisson(λ)
signifies the Poisson law of rate λ and N (µ, σ2) is shorthand for the corresponding random variables Xn converging in law to
the standard normal distribution after being standardised as Xn−µ

σn
.

The first step of our approach is obtaining combinatorial specifications which allow us to capture the behaviour of our
parameters of interest. This is done via a number of new decompositions valid for restricted families of maps and λ-terms. We
are then faced with the task of asymptotically analysing these specifications, a task made difficult by the fact that number of
elements of a given size in these families exhibits rapid growth; this precludes a straightforward approach based on standard
tools of analytic combinatorics as the corresponding generating functions are purely formal power series and do not represent
functions analytic at 0. To facilitate our approach, we therefore develop two new schemas which serve to encompass the two
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general cases we have observed in our study: differential specifications giving rise to Poisson limit laws and composition-based
specifications giving rise to Gaussian limit laws.

Our purpose in this present work is therefore twofold. On the one hand, we want to demonstrate how interesting insights
on the typical structure of large random maps and λ-terms may be obtained by fruitfully making use of techniques drawn
from the study of maps and λ-terms in tandem. On the other hand, we present two new tools which aid in the asymptotic
analysis of parameters of fast-growing combinatorial classes; these tools are of independent interest, being applicable to the
study of a wide class of combinatorial classes whose generating function is purely formal and obeys certain types of differential
or functional equations.

1.2 Related work
The structure and enumeration, both exact and asymptotic, of maps by their genus has been the subject of much study; see,
for example, [5, 6, 7] for the planar case and [8, 9, 10] for the higher genus case. On the other hand, the investigation of
enumerative and statistical properties of rooted maps, counted without regard to their genus, has received much less attention.
One reason for this is the divergent nature of the generating functions involved in such studies: by results derived in [11]
one may show that the number of maps with n edges is asymptotically (2n − 1)!!. This poses a significant obstacle since, as
Odlyzko notes in [12]: “There are few methods for dealing with asymptotics of formal power series, at least when compared to
the wealth of techniques available for studying analytic generating functions”. As such, the structure of large random such maps
has only recently begun to be investigated, starting with the distribution of genus in bipartite random maps being derived
[13]. More recently, the authors of [14] investigated the asymptotic distributions for the number of vertices, root isthmic
parts, root edges, root degree, leaves, and loops in random maps. In particular, comparing their results to ours, we note that
for general maps the authors derived a Poisson(1) limit law for the number of leaves and a previously-unknown law for the
number of loops. Both of these results stand in stark contrast to the case of leaves in (1, 3)-valent maps, which we show is
normally distributed when standardised using µ = σ2 = n1/3, and to the case of loops in rooted trivalent maps which we show
is Poisson(1). In terms of techniques employed, the authors of [14] show that for most of the statistics considered in their
work the corresponding bivariate generating functions are formal solutions to Riccati equations, which may be linearised to
yield recurrences on the coefficients of said generating functions which are amenable to study. We note here that an instance
of a Riccati-type differential equation appears in our work too, but this time it is a differential equation with respect to the
variable coupled to the statistic we’re interested in, unlike the instances of [14] where the derivative was taken with regards to
the size-coupled variable.

As for the λ-calculus, while of central importance to logic and theoretical computer science, it is a relatively new subject of
study for combinatorialists. The combinatorial study of closed linear and affine λ-terms and their relaxations was introduced
in [1, 15]. A comprehensive presentation of the combinatorics of open and closed linear λ-terms and their counterparts in
maps is presented in [3]. We note here that there exists a number of combinatorial studies of λ-terms which use a size notion
different than ours and that of [1, 15, 3]. For example, there exists a number of works focusing on a unary de Bruijn notation
based model as in [16]. This choice of size notion has the effect of altering the qualitative properties of our objects of study:
in particular, the statistical results and the associated techniques of [17] are not applicable to our model.
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Bisimulation between hom sets and logics without counting:

Extended abstract

Nihil Shah

May 2021

Abstract

A classical result of Lovász [Lov67] states that two graphs G and H are isomorphic if and only if for every
finite graph F , the number of homomorphisms from F to G is equal to the number of homomorphisms
from F to H. Many results, of a similar form, hold by restricting the class of graphs to yield a weaker
equivalence than isomorphism. In particular, in [Dvo09], counting homomorphisms from graphs of treewidth
≤ k yields equivalence under k + 1-variable logic with counting quantifiers. Similarly, in [Gro20], counting
homomorphisms from graphs of tree-depth ≤ n yields equivalence under first order logic with counting
quantifiers and quantifier depth ≤ n. Recent work [AKW21] has shown that these logics, without counting
quantifiers, do not have a similar characterization. Inspired by the categorical formulation of Lovász-type
results in [DJR21], and its use of the game comonad framework of Abramsky et. al [ADW17, AS21],
we present ongoing work showing that a form of bisimulation between homomorphisms sets, rather than
bijection, yield Lovász-type theorems for logics without counting.

Background

Formally, a classical result of Lovász [Lov67], which holds for general relational structures, states that for
all σ-structures A,B in some relational vocabulary σ:

A ∼= B if and only if ∀ finite F, |Hom(F,A)| = |Hom(F,B)|
Weakenening the left-hand side of the above relation from isomorphism to equivalence in some resource-
indexed logic results in the following Lovász-type theorems:

A ≡Ck+1

B if and only if ∀F w/ treewidth(F ) ≤ k, |Hom(F,A)| = |Hom(F,B)|
A ≡Cn B if and only if ∀F w/ tree-depth(F ) ≤ k, |Hom(F,A)| = |Hom(F,B)|

where Ck and Cn are k-variable counting logic and counting logic with quantifier depth ≤ n (respectively).
Both of these results are recovered in [DJR21] for “free”, by proving (roughly) that for any comonad C over
the category of σ-structures satisfying some conditions:

A ∼=K(C) B if and only if ∀ finite coalgebras F → CF, |Hom(F,A)| = |Hom(F,B)|

where K(C) is the Kleisli category of C. To recover the Lovász-type theorems for logics with counting
quantifiers, the above theorem is specialized to the Spoiler-Duplicator game comonads Pk and En introduced
in [ADW17, AS18]. Namely, for the pebbling comonad Pk, inspired by the k-pebble game, we have that

isomorphism between structures A and B in K(Pk) is equivalent to A ≡Ck

B. Moreover, coalgebras F → PkF
correspond to tree decompositions of width < k for F , thereby demonstrating F has treewidth < k [ADW17].
Similarly, for the Ehrenfeucht-Fräıssè comonad, isomorphism in K(En) characterizes equivalence in first order
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logic with counting quantifiers up to depth n, and coalgebras F → EnF demonstate that F has tree-depth
≤ n [AS18].

By contrast to the Lovász-type theorems for logics with counting quantifiers, in [AKW21], it was shown
that there is no class of graphs F such that either of the following hold:

A ≡Lk+1

B if and only if ∀F ∈ F , |Hom(F,A)| = |Hom(F,B)|
A ≡Ln B if and only if ∀F ∈ F , |Hom(F,A)| = |Hom(F,B)|

where Lk and Ln are k-variable logic and logic with quantifier depth ≤ n (respectively). Our work is
motivated, in light of this result, to replace the relationship between sets of homomorphisms from bijection
to some weaker notion. In particular, we believe that replacing bijection with some notion of open map

bisimulation introduced in [JM94, JNW96] could yield a characterizations of ≡Lk

and ≡Ln in terms of sets
of homomorphisms.

Why Bisimulation?

We aim to prove such characterizations using the same methodology as used in [DJR21], i.e via a Spoiler-
Duplicator game comonads.

In addition to characterizing equivalence for Ck and Cn, as well as coalgebraic definitions for treewidth
and tree-depth, the Spoiler-Duplicator game comonads Pk and En also characterize equivalence for Lk and
Ln. Namely, in [AS21], it was shown that:

A ≡Lk

B if and only if ∃ span PkA← S → PkB

A ≡Ln B if and only if ∃ span EnA← S → EnB

where the legs of each span consists of open pathwise embeddings in the corresponding category of coalgebras.
These spans are a modified notion of open map bisimulation as introduced in [JNW96]. This notion of
bisimuation has been generalized from the cases of Pk and En, and can be carried out in any so called
arboreal category which has comonadic adjunction yielding a comonad C (called an arboreal cover) [AR21].
Therefore, following the example of [DJR21], we aim to prove for every arboreal cover C:

CA← S → CB if and only if ∀ finite coalgbras F → CF,∃ span Hom(F,A)← Ŝ → Hom(F,B) (1)

Specializing to Pk and En would yield characterizations of ≡Lk

and ≡Ln in terms of sets of homomorphisms.
Additional evidence for (1) comes from open maps between representable presheaves Hom(−, A) (in the

sense of [JM94]) inducing open maps between transition systems (in the sense of [JNW96]). Having an open
map between Hom(−, A) presheaves is much stronger than having an “open” map between Hom(X,A) sets.
However, we believe just as Lovasz’s classical result removes the naturality requirement from isomorphism
between representable presheaves over graphs, so too (1), if established, would remove the naturality require-
ment for the correspondence between open maps of representable presheaves and open maps of transition
systems (or in our case, general relational structures).

Conclusion

This talk will detail the ongoing work towards proving (1), both in the special cases of En and Pk, and for
any arboreal cover C.
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On the combinatorics of Girard’s exponential

Peter M. Hines – University of York

Summary

We present a direct and straightforward link between some high-level abstract logical models, and some well-known
combinatorics. Precisely, the representation of the exponential modality of J.-Y. Girard’s linear logic [6] given in
his first two Geometry of Interaction series of papers is shown to determine and be determined by the famous Ruler
Sequence first seen in [7]; a well-known infinite, square-free, Ballot sequence that appears in fields as diverse as Gray
Codes, the Towers of Hanoi problem, and cellular automata (see https://oeis.org/A001511 for the standard online
resource, and [13] for a wide range of applications, and a good introduction generally). The correspondence between
the two allows us to give an explicit form for the n-th term of this sequence, with applications such as describing
Hamiltonian paths in hypercube graphs.

Background

The starting point for many introductions to linear logic is undoubtedly, based on [5], its resource-sensitivity. Propo-
sitions are thought of as resources that are consumed in the process of deduction, making it a sub-structural logic.
However, the structural rules of weakening and contraction are not simply discarded; instead, they are controlled via
a typing system that distinguishes between propositions that may copied, and those that may not. A modality !( )
known as the exponential, bang, or of course operation is used to promote propositions to a type that may be freely
duplicated.

The conjunction and exponential in GoI

In the first two parts of Girard’s Geometry of Interaction system [3, 4], propositions are represented by partial injections
on the natural numbers1 – i.e. elements of the symmetric inverse monoid I(N).

The (multiplicative) conjunction is represented by an injective inverse monoid homomorphism ? : I(N)×I(N)→
I(N), and the exponential is again an injective inverse monoid homomorphism !( ) : I(N)→ I(N). These are given by,
for all f, g ∈ I(N)

• f ? g =

{
2f

(
n
2

)
n even

2g
(
n−1
2

)
+ 1 n odd.

• !(f) = Ψ(IdN × f)Ψ−1, where Ψ : N× N→ N is the (monotone) Cantor-style bijection Ψ(x, y) = 2x+1y + 2x − 1

Direct calculation establishes that these are indeed injective inverse monoid homomorphisms, and for all f ∈ I(N) we
have the required (right) fixed point property

f?!(f) =!(f) (The fixed-point condition)

that allows us to treat !(f) ∈ I(N) as “an infinite number of copies of f ∈ I(N)”.
It is common (e.g. [1, 2, 8]) to interpret the above conjunction and exponential categorically, based on the obser-

vation that ? is a semi-monoidal tensor in the sense of [12, 10], and !( ) is therefore a right fixed point functor for
this tensor. However, we also wish to formalise the intuition that !(f) = f ? (f ? (f ? (f ? . . .))) is a well-defined limit,
and use this to derive the bijection Ψ : N× N→ N.

Conjunction and the bang via shuffling cards

A convenient intuition for the conjunction is in terms of “shuffling infinite decks of cards”. Glossing over the treatment
of partiality, f ? g may be thought of in the following terms :

1Readers more familiar with his system will recall that it was based on partial isometries on seperable Hilbert space. However, these arise
from M. Barrs faithful functor l2 : pInj→ Hilb from the category of partial injections to the category of Hilbert spaces; as a consequence,
the significantly simpler setting of partial injections suffices.
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1. A single countably infinite deck of cards is dealt out in the usual way2 to Alice and Bob.

2. Alice applies the permutation f to her stack of cards. Bob similarly applies permutation g to his stack.

3. Alice and Bob’s hands of cards are then merged, using a perfect, interleaving, riffle shuffle.

In a similar way, the exponential may be thought of as being based around a shuffle of countably infinitely many
decks of (countably infinitely many) cards. This arises as follows :

“A pair of decks of cards is shuffled together, using a perfect riffle shuffle. However, the second of these
two decks of cards arose from a perfect riffle shuffle of two decks of cards. The second of these two decks
of cards also arose from a perfect riffle shuffle . . . ”

We formalise such descriptions by treating shuffles as (monotone) operations within the endomorphism operad of
the natural numbers within the strict (semi-)monoidal category (Bij,]) of bijections on Sets, with disjoint union.

In operadic terms, such a ‘right-associated’ shuffle of k decks of cards is given by a k-fold overproduct. The result
of this acts by conjugation on the endomorphism operad of I(N) in a suitable category of inverse monoids, to give a

“right-associated k-fold conjunction” ( ? ( ? ( ? . . . ( ? ) . . .))) : I(N)
k → I(N).

To give a meaning to infinitary (right-bracketed) conjunctions, including that required for the exponential, we
simply need to demonstrate the convergence of infinitary overproducts within a suitable operad. This follows as a
direct consequence of the monotonicity of the bijections used to model shuffles.

From bijections to sequences

The above considerations rely on the representation of shuffles as bijections. A shuffle of k decks of (countably infinite)
cards is modeled as a monotone bijection λ : N ] N ] . . . ] N→ N, or equivalently, λ : N× {0, . . . , k − 1} → N.

An alternative, entirely equivalent, way of describing shuffle is as sequences. The string l0l1l2 . . . has the inter-
pretation of “the card placed at step number x comes from deck lx”. This is an operational description that tells us,
practically, how to perform the shuffle in question.

The translation between these representations is straightforward. Given a monotone bijection λ : N×{0, . . . , k−1} →
N, the associated sequence Seq(λ) : N→ {0, . . . , k − 1} is given by the following composite

N λ−1
//

Seq(λ)

))

N× {0, . . . k − 1}
π2

��
{0, . . . , k − 1}

where π2 : N × {0, . . . k − 1} → {0, . . . , k − 1} is simply the projection onto the second component. Such sequences
are of course points of C{0,...,k−1}, the Cantor space over the set {0, . . . , k − 1}. The perfect interleaving riffle shuffle
corresponding to Girard’s conjunction determines / is determined by the alternating Cantor point a(n) = n (mod 2)
of the familiar binary Cantor space C{0,1}.

It is natural to ask, which point of CN, the Cantor space over the natural numbers, corresponds to the shuffle used
by the exponential?

The bang and the ruler sequence

Either from the description as an infinitary card shuffle, or by direct calculation, the sequence corresponding to Girard’s
bijection Ψ : N×N→ N is the well-known ruler sequence (sequence number A001511 in the Online Encyclopedia of
Integer Sequences) 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 . . . characterised by the property that r(n) is
the number of divisors of n+1 of the form 2k. Numerous other characterisations are given at https://oeis.org/A001511,
including :

1. The number of trailing zeros in the binary representation of n

2. The number of the disk to be moved in the optimal solution of the Towers of Hanoi problem [9]

3. The Hamming distance between binary representations of n and n+ 1 [11].

2i.e. cards are alternately given to Alice and Bob. There is the minor difference that cards are taken from the bottom of the dealer’s
stack; (N,≤) has a least element, but no top element.
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Characterisation 1. gives us a concrete description of how to perform the shuffle of infinitely many decks of infinite
cards : we simply count in binary, note at each step which column (labeled by 2j , for some j ∈ N) changes from 0 to
1, and play a card from the corresponding deck number j.

What is not given in OEIS is an explicit formula for r(n). This may be recovered from the description of Girard’s
exponential in terms of card shuffling, giving r = π2Ψ−1, where Ψ(x, y) = 2x+1y+ 2x− 1. The fact that r : N→ N is a
ballot sequence (i.e. for all x ∈ N, the number of occurrences of x+ 1 in any prefix is less than or equal to the number
of occurences of x) then follows directly from the fact that Ψ is monotone in both variables.

Another application of the Ruler sequence Figure 1: The bang on the hypercube
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We finish by giving a graphical interpretation of the ruler
sequence that is not explicitly listed at OEIS, but is im-
plicit in the well-known connection with Gray codes, and
is also well-known in the field of Network Topologies :
the ruler sequence (and hence, implicitly, Girard’s bang)
determines Hamiltonian circuits in hypercube graphs.

The first 2n terms of the ruler sequence deter-
mine a Hamiltonian circuit for the 1-skeleton of the n-
dimensional hypercube. Let us choose some labeling of
our axes (i.e. dimensions) by {0, . . . , k − 1}, and pick
some arbitrary vertex as the start. At step k, the next
vertex in the path is found by moving along the unique
edge that lies along axis r(k). The path determined in
this way then visits each vertex exactly once, and there is
a (untraversed) edge linking the initial and final vertices,
giving the desired Hamiltonian circuit. This is illustrated
for the 4-dimensional hypercube in Figure 1, but the pat-
tern is entirely general.
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Glued magic games self-test maximally entangled states

Thor Gabelgaard Nielsen

A major difference which sets quantum mechanics apart from classical theories is the exist-
ence of entangled states and with them the intrinsic randomness entailing that even though one
knows exactly which state a quantum system is in, it is not always possible to know precisely
which state subsystems are in. This is where all of quantum mechanic’s power derives from,
but the to harness it requires one to have a method of producing such states, and even if such
a method is available, that comes with its own set of problems.

For example, if one is presented with an apparatus supposedly capable of producing entangled
states, this cannot directly be verified as it is impossible to directly examine a state. Even if
one constructs a measurement device and tries to verify by measurement, it suffers from the
problem that it can only give a classical outcome, so the actual state cannot be determined with
certainty. Furthermore, it introduces another possibility of error, namely that the measurement
device could malfunction.

However, the fact that measuring some entangled states can give correlations stronger than
classically attainable can obviously be used as a practical test for entanglement, since the re-
quired information is just the correlation in measurements, which is classical. Furthermore, if
one observes a correlation stronger than attainable classically, it thus clearly stems from an
entangled state, and therefore it is not necessary to place any kinds of assumptions upon the
devices used for measurement. While this may not be immediately useful for testing for par-
ticular states, it turns out that certain correlations only arises from what is essentially a single
state and measurements. If this is the case, that correlation is said to self-test the state and
measurements, since by observing that correlation, one can be certain what the used state and
measurements are, up to equivalence.

Therefore it is possible to consider a black-box model of experiments, where only the obtained
correlations are used for concluding anything about the state of the system and the corresponding
measurements used.

A convenient way of modelling such an experimental scenario is by the way of nonlocal
games, which are played cooperatively between two players, which we denote by provers, and
a referee. It proceeds by the referee drawing two questions from two finite sets of questions at
random, sending one to each prover, and the provers, not allowed to communicate in any way
has to send back their responses. The referee then checks whether they win the game according
to some pre-defined condition.

For a given nonlocal game it is possible to analyse its maximal winning probability for some
particular type of strategies. For many games, it is the case that some quantum strategies have
a strictly higher winning probability than classical strategies, and such games can be used to
certify the presence of entanglement. However, in some cases it is possible to say more, namely
that all optimal quantum strategies are equivalent to a single ideal one, which we refer to as
self-testing of that strategy. In our experimental scenario, the interpretation of this is clear;
verifying that one is playing such a game optimally requires only classical information, and it
certifies that a particular quantum state is present, along with the ideal measurements.
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As an example of a nonlocal game, one can take the Mermin-Peres Magic Square game
[Mer90; Per90], which is defined using a 3× 3-board of integers. The goal is to fill this in such
that each row and column sums to an even number, except for a single column which should
have odd sum instead. This is cast as a nonlocal game by asking one prover to fill in a row or
column and the other to fill in a single field of this row or column; they win if the row or column
satisfies the appropriate constraint and they have assigned the same value to the field they both
received.

As there does not exist an assignment satisfying the required constraints, there is no perfect
classical strategy. Remarkably, there is a perfect quantum strategy [Ark12] using a state consist-
ing of two EPR pairs. Furthermore, the game is a robust self-test of this strategy [WBMS16],
in the sense that strategies winning with probability close to 1 also consists of a state and
measurements close to the self-tested ones.

However, not all games are self-tests, as exemplified in [Cui+20], where the authors con-
structed a “Glued” Magic Square game by taking two Magic Square game boards, and stitching
together the two odd constraints to form a single long column which should have odd sum, but
otherwise leaving everything else unchanged. They exhibit two perfect strategies with inequival-
ent measurements, thus showing that their game is not a self-test. However, the two strategies
still use equivalent states, and they pose the question of whether the game is a self-test for some
state.

We positively answer that question and furthermore show that not only does the natural
question of robustness also have a positive answer, but we also completely characterise all the
optimal strategies. However, to capture the different possible strategies we introduce the concept
of convex combinations of strategies, namely:

Definition. Suppose Sk = (
∣∣ψ(k)

〉
, {A(k)

i }i, {B
(k)
j }j) are all compatible quantum strategies, and

{αk}nk=1 ⊆ [0, 1] a set of scalars square-summing to 1. The corresponding convex combina-
tion is the strategy S =

∑n
k=1 αkSk formed by taking weighted direct sums of the states and

measurement operators:

|ψ〉 =

n⊕

k=1

αk

∣∣∣ψ(k)
〉
, Ai =

n⊕

k=1

A
(k)
i , Bj =

n⊕

k=1

B
(k)
j .

Depending on one’s viewpoint, this can be considered either as a decomposition of the state
and operators, but it can also serve as a way to compose different strategies into a larger one. By
taking the viewpoint of decomposing strategies, it is possible to naturally extend the definition
of self-testing to convex combinations by replacing the concept of a single ideal strategy with
a set of ideal strategies, where each optimal strategy decomposes to a number of substrategies,
each equivalent to one of the ideal ones. By using this, we obtain our main theorem concerning
convex self-testing of the Glued Magic Square.

Theorem (Informal). Suppose S = (|ψ〉 ∈ HA ⊗HB, {Ai}i, {Bj}j) is a perfect strategy for the
Glued Magic Square game. Then there exists a decomposition S = α1S1 + α2S2 with both S1
and S2 containing subsets of operators forming a perfect strategy for the Magic Square game.
Furthermore, the state of S1 and S2 are equivalent to the maximally entangled state of local
dimension 4, |ψ4〉, implying that there is a local isometry U : HA ⊗HB → C4 ⊗ C4 ⊗HA,aux ⊗
HB,aux and two quantum states |aux 1〉 , |aux 2〉 such that

U |ψ〉 = (α1 |ψ4〉 ⊗ |aux 1〉)⊕ (α2 |ψ4〉 ⊗ |aux 2〉) ,

and from this one can factor out |ψ4〉, which is thus self-tested.

Apart from this we also introduce a slightly more general notion of glued games and show
that our methods also holds for these games.
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Our main way of showing self-testing relies on reducing perfect strategies for the Glued
Magic Square game to two perfect strategies for each of the constituent Magic Square games.
The crucial point of this reduction is to note that if one has a perfect strategy for the Glued
Magic Square game, then it assigns values to the stitched column such that they have odd sum.
But splitting this column in two to get two Magic Square boards, one obtains an odd sum on
one board and an even sum of the other. In this way, one gets a perfect strategy for the board
with the odd sum. Thus, by subdividing the strategy into where it yields the odd sum, it is
possible in the general case to reduce it to two perfect strategies for the Magic Square game.

This line of arguments can be extended to other games glued together in a similar way, and
therefore we also obtain a similar result when one or both of the Magic Square parts are replaced
with the highly related Magic Pentagram game, which is played on a pentagram-shaped board
instead. However, a major obstacle to this reduction is to show that it is in fact well-defined,
and that requires that the measurements used to assign values to the odd column is compatible
with the other measurements used. We show that this is indeed the case both for the Magic
Square and the Magic Pentagram, but these arguments do not easily generalise to larger classes
of similar games.
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Big Ramsey degrees using Ramsey theorem for
trees with interesting levels
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Abstract—We discuss a new Ramsey theorem for trees with
interesting levels which was developed in order to characterise
the big Ramsey degrees of the homogeneous partial order. It
can be seen as a joint strenghtening of the Milliken theorem for
finitely branching trees and the Voigt lemma. This is a joint work
with Balko, Chodounský, Dobrinen, Konečný, Vena and Zucker.

I. INTRODUCTION

We use the standard notion of model-theoretic structures.
Given structures A and B, we denote by

(
B
A

)
the set of

all embeddings from A to B. We write C −→ (B)Ak,l to
denote the following statement: for every colouring χ of

(
C
A

)

with k colours, there exists an embedding f : B → C such
that χ does not take more than l values on

(
f(B)
A

)
. For a

countably infinite structure B and its finite substructure A, the
big Ramsey degree of A in B is the least number l ∈ N∪{∞}
such that B −→ (B)Ak,l for every k ∈ N.

A structure is homogeneous if every isomorphism between
two of its finite substructures extends to an automorphism.
The study of big Ramsey degrees of homogeneous structures
started by result of Devlin who, in 1979 refining earlier result
of Laver, characterised the big Ramsey degrees of linear orders
in the order of rationals by showing that the big Ramsey
degree of order of size n equals to the (2n − 1)st derivative
of the tangent function evaluated at 0 (see e.g. [1]). This
interesting closed-form formula in fact counts special subtrees
of the binary tree [2] (the Joyce trees).

Laflamme, Sauer and Vuksanović characterised big Ramsey
degrees of the Rado (or random) graph and related random
structures in binary languages [3]. Again the big Ramsey
degrees corresponds to the number of special subtrees of the
binary tree which were counted by Larson [2].

Trees used to characterise big Ramsey degrees follow
naturally from the tree of 1-types of enumerations of the
homogeneous structure in question. In both results above
a key ingredient is the Milliken tree theorem [1] which is
used to obtain the upper bound. Recently, new techniques
for characterising big Ramsey degrees of structures with
non-trivial forbidden substructures have been developed. In
particular, a characterisation of big Ramsey degrees of the
triangle-free Henson graph was obtained by Dobrinen [4]
and independently by Balko, Chodounský, Hubička, Konečný,

Vena and Zucker. It turns out that big Ramsey degrees provide
an interesting new measure of the complexity of homogeneous
structures (which are of interest in multiple areas including
the Constraint Satisfaction Problems). See [5] for connection
to topological dynamics.

II. BIG RAMSEY DEGREES OF THE GENERIC PARTIAL
ORDER

It is well known that up to isomorphism there is a unique
homogeneous partial order P = (P,≤P) such that every
countable partial order has an embedding to P. The order
P is called the generic partial order.

Using parameter spaces the author [6] proved that the big
Ramsey degree of any finite poset in P is finite. Here, we
discuss a precise characterisation subsequently obtained by
Balko, Chodounský, Dobrinen, Konečný, Vena and Zucker [7].

Our construction makes use of the following partial order
introduced in [6]. Let Σ = {L,X,R} be an alphabet ordered
by <lex as L<lexX<lexR. We denote by Σ∗ the set of all
finite words in the alphabet Σ, by ≤lex their lexicographic
order, and by |w| the length of the word w (whose characters
are indexed by natural numbers starting at 0). For w,w′ ∈ Σ∗,
we set w ≺ w′ if and only if there exists i such that 0 ≤ i <
min(|w|, |w′|), (wi, w

′
i) = (L,R), and wj ≤lex w

′
j for every

0 ≤ j < i. It is not difficult to check that (Σ∗,�) is a partial
order and that (Σ∗,≤lex) is one of its linear extensions [6].

We write w ⊥ w′ if wi<lexw
′
i and w′j<lexwj for some

0 ≤ i, j < min (|w|, |w′|). (Note that it is not necessarily true
that (w 6� w′ ∧ w′ 6� w) ⇐⇒ w ⊥ w′. However, we will
construct subsets of Σ∗ where this is satisfied.) We call words
w and w′ related if one of expressions w � w′, w′ � w or
w ⊥ w′ holds, otherwise they are unrelated.

Given a word w and an integer i ≥ 0, we denote by w|i
the initial segment of w of length i. For S ⊆ Σ∗, we let S be
the set {w|i : w ∈ S, 0 ≤ i ≤ |w|}. The set Σ∗ can be seen
as a rooted ternary tree and sets S = S ⊆ Σ∗ as its subtrees.
Given i ≥ 0, we let Si = {w ∈ S : |w| = i} and call it the
level i of S. A word w ∈ S is called a leaf of S if there is
no word w′ ∈ S extending w. Let L(S) be the set of all leafs
of S. Given a word w and a character c ∈ Σ, we denote by
w_c the word created from w by adding c to the end of w.
We also set S_c = {w_c : w ∈ S}.
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Big Ramsey degrees in P are characterised by the following
subsets of Σ∗:

Definition II.1 ([7]). A set S ⊆ Σ∗ is called a poset-type if
S = S and precisely one of the following four conditions is
satisfied for every i with 0 ≤ i < maxw∈S |w|:

1) Leaf: There is w ∈ Si related to every u ∈ Si \ {w} and

Si+1 = (Si \ {w})_X.

2) Branching: There is w ∈ Si such that

Si+1 = {z ∈ Si : z<lexw}_X ∪ {w_X, w_R}
∪{z ∈ Si : w<lexz}_R.

3) New ⊥: There are unrelated words v<lexw ∈ Si s.t.

Si+1 = {z ∈ Si : z<lexv}_X ∪ {v_R}
∪{z ∈ Si : v<lexz<lexw and z ⊥ v}_X

∪{z ∈ Si : v<lexz<lexw and z 6⊥ v}_R

∪{w_X} ∪ {z ∈ Si : w<lexz}_R.

Moreover, the following assumption is satisfied:
(A) For every u ∈ Si, v<lexu<lexw implies that at least

one of u ⊥ v or u ⊥ w holds.
4) New �: There are unrelated words v<lexw ∈ Si s.t.

Si+1 = {z ∈ Si : z<lexv and z ⊥ v}_X

∪{z ∈ Si : z<lexv and z 6⊥ v}_L

∪{v_L} ∪ {z ∈ Si : v<lexz<lexw}_X

∪{w_R}
∪{z ∈ Si : w<lexz and w ⊥ z}_X

∪{z ∈ Si : w<lexz and w 6⊥ z}_R.

Moreover, the following assumptions are satisfied:
(B1) For every u ∈ Si such that u<lexv, at least one of

u � w or u ⊥ v holds.
(B2) For every u ∈ Si such that w<lexu, at least one of

v � u or w ⊥ u holds.

Given a finite partial order Q, we let T (Q) be the set of
all poset-types S such that (L(S),�) is isomorphic to Q. As
our main result, we determine the big Ramsey degrees of P.

Theorem II.2 (Balko, Chodounský, Dobrinen, Konečný, Vena
and Zucker [7]). For every finite partial order Q, the big
Ramsey degree of Q in the generic partial order P equals
|T (Q)| · |Aut(Q)|.

One can view a poset-type S as a binary branching tree and
each level Si as a structure Si = (Si,≤lex,�,⊥). One can
verify that if a level Si is a leaf level, then Si+1 is isomorphic
to Si with one vertex removed. If a level Si is a branching
level, then Si+1 is isomorphic to Si with one vertex w ∈ Si

duplicated to w_X, w_R ∈ Si+1. If a level Si has new �
(or ⊥), then Si+1 is isomorphic to Si extended by one pair in
the relation � (or ⊥).

III. INTERESTING LEVELS AND THE LOWER BOUNDS

Words u≤lexv are compatible if there is no i < min(|u|, |v|)
such that (ui, vi) = (R,L), and if there exists j <
min(|u|, |v|) such that (uj , vj) = (L,R) then u ≺ v and
u 6⊥ v. It can be checked that poset-types contains only
mutually compatible words.

The following is a key definition for obtaining both lower
and upper bounds on big Ramsey degrees. Given S ⊆ Σ∗, we
call a level Si interesting if the structure Si = (Si,≤lex,�,⊥)
is not isomorphic to Si+1 = (Si+1,≤lex,�,⊥) or there exist
incompatible u, v ∈ Si+1 such that u|i and v|i are compatible.
Let I(S) be the set of all interesting levels in S. Let τS : S →
Σ∗ be a mapping assigning every w ∈ S the word created
from w by deleting all characters with indices not in I(S).
Define τ(S) = τS [S] and call it the embedding type of S.

Observation III.1. For a poset-type S and S′ ⊆ L(S),
τ(S′) = τ(S′) is a poset-type.

Theorem III.2 ([7]). There exists an embedding ψ : P →
(Σ∗,�) such that SP = ψ[ω] is a poset-type and ψ(i) is a
leaf of SP for every i ∈ P .

Given a finite partial order A, we construct, using Theo-
rem III.2, a function (colouring) χA :

(
P
A

)
→ T (A) by setting

χA(f) = τ(ψ[f [A]]) for every f ∈
(
P
A

)
. It follows that χA is

an unavoidable colouring in the following sense:

Theorem III.3 ([7]). For every finite partial order A and
every f ∈

(
P
P

)
, we have

{
χA[f ◦ g] : g ∈

(
P
A

)}
= T (A).

IV. THE UPPER BOUNDS AND RAMSEY THEOREM FOR
TREES WITH INTERESTING LEVELS

Historically, big Ramsey degrees have always been charac-
terized after first obtaining very geneours upper bounds. After
determining a lower bound believed to be tight, the proof for
upper bounds was refined to give the precise characterisation.
Quite surprisingly, the method in [6] does not seem to offer
such a natural refinement and we had to develop a new Ramsey
tree theorem we describe now.

Given S ⊆ Σ∗ we call function f : S → Σ∗ shape-
preserving if τS(w) = τf [S](f(w)) and |f(w)| ∈ I(f [S]) for
every w ∈ S.

We will generally consider shape-preserving functions only
for those sets S such that S = τ(S) (that is for embedding
types). The following follows directly from the definition:

Observation IV.1. Let f : S → Σ∗ be shape-preserving.

(i) For every shape-preserving h : f [S] → Σ∗ it holds that
h ◦ f is shape-preserving.

(ii) For every u, v ∈ S, |u| ≤ |v| it holds that |f(u)| ≤ |f(v)|.
(iii) For every u, v ∈ S where u is an initial segment of v it

holds that f(u) is an initial segment of f(v).
(iv) Function f is an embedding f : (S,≤lex,�,⊥) → (Σ∗,
≤lex,�,⊥) and images of compatible words are also
compatible.

33



Given S ⊆ Σ∗ and ` > 0 we denote by S|≤` = ∪i≤`Si

the set of all words in S of length at most `. We also put
S|<` = S|≤`−1.
Remark. It is also possible to observe that for S = Σ∗` for
some ` > 0 it holds that shape-preserving functions corre-
sponds to special strong subtrees as used by the Milliken’s
tree theorem.

Given S, S′ ⊆ Σ∗ we denote by Shape(S, S′) the set of all
shape-preserving functions f such that f [S] ⊆ S′.

Let S ⊆ Σ∗. For shape-preserving function g : S → Σ∗

we denote by g̃ a function {|w| : w ∈ S} → ω defined
by g̃(i) = |g(w)| for some w ∈ S, |w| = i. (Note that by
Observation IV.1 (ii) this is uniquely defined.)

Theorem IV.2. For every finite S = S = τ(S) ⊆ Σ∗ and
every finite colouring χ of Shape(Σ∗, S) there exists f ∈
Shape(Σ∗,Σ∗) such that χ � Shape(S, f [Σ∗]) is constant.

From Theorem IV.2 the upper bounds on big Ramsey
degrees in P follow naturally:

Theorem IV.3. For every finite partial order Q and every
finite colouring χ of

(
P
Q

)
there exists f ∈

(
P
P

)
such that∣∣∣χ

[(
f [P]
Q

)]∣∣∣ ≤ |T (Q)|.
Proof. Fix a partial order Q and a colouring χ. Because P
is generic there exists embedding e : (Σ∗;�) → P. Define
colouring χ′ of

(
(Σ∗;�)

Q

)
by putting χ′(g) = χ(g ◦ e). Now by

a repeated application of Theorem IV.2 (see, for example [6])
it is possible to find a copy f ′ ∈

(
(Σ∗;�)
(Σ∗;�)

)
where a colour of

g′ ∈
(
f ′[(Σ∗;�)]

(Σ∗;�)

)
depends only on τ(g′ ◦ e). Now e−1[f ′[SP]]

gives the desired copy of P.

V. OUTLINE OF PROOF OF THEOREM IV.2
Given ` > 1 and S ⊆ Σ∗` we call function e : Σ∗` → Σ∗`+1 an

extension of S if for every w ∈ Σ∗` it holds that e(w) extends
w. Extension is boring if level ` of e[S] is not interesting.
We denote by Π` the set of all boring extensions of Σ∗` . If
S is finite we denote by `(S) the “last” level Sk where k =
maxw∈S |w|.

The key to proving the Ramsey property is the following
correspondence between one level extensions and words in
alphabet Π`.

Observation V.1. Let S = S = τ(S) be a finite subset of Σ∗,
`(S) = {u0<lexu

1<lex · · ·<lexu
n} and k = maxw∈S |w|.

There is one-to-one correspondence between Shape(S,Σ∗)
and pairs (g0, w) where g0 ∈ Shape(S<k,Σ

∗) and w ∈
Π∗`(S):

1) For every g ∈ Shape(S,Σ∗) there exists w ∈ Π∗`(S)

such that for every 0 ≤ i < n it holds that g(ui) =

g(ui|k−1)_uik−1
_
w0

i
_ · · ·_ w

|w|−1
i .

2) Conversely, for every g0 ∈ Shape(S<k,Σ
∗) and ev-

ery word w ∈ Π∗`(S), the function g′ : S → Σ∗

defined by g′(w) = g0(w) for |w| < k and
g′(ui) = g0(ui|k−1)_uik−1

_
w0

i
_ · · ·_ w

|w|−1
i is shape-

preserving.

Given a finite alphabet Σ and k ∈ ω ∪ {ω}, a k-parameter
word is a (possibly infinite) string W in the alphabet Σ ∪
{λi : 0 ≤ i < k} containing all symbols λi : 0 ≤ i < k such
that, for every 1 ≤ j < k, the first occurrence of λj appears
after the first occurrence of λj−1. The symbols λi are called
parameters. Let W be an n-parameter word and let U be a
parameter word of length k ≤ n, where k, n ∈ ω ∪ {ω}.
Then W (U) is the parameter word created by substituting U
to W . More precisely, W (U) is created from W by replacing
each occurrence of λi, 0 ≤ i < k, by Ui and truncating it just
before the first occurrence of λk in W . We apply the following
Ramsey theorem for words, known as Voigh lemma, which an
consequence of the Carlson–Simpson theorem [8], see also [6]:

Theorem V.2. Let Σ be a finite alphabet. If Σ∗ is coloured
with finitely many colours, then there exists an infinite-
parameter word W such that W [Σ∗] = {W (s) : s ∈ Σ∗}
is monochromatic.

From Theorem V.2 the following lemma follows.

Lemma V.3 (Pigeonhole). Let S = S = τ(S) be a finite
subset of Σ∗ containing at least one non-empty word. Put k =
maxw∈S |w|. Let g0 ∈ Shape(S|<k,Σ

∗). Denote by G the set
of all g ∈ Shape(S,Σ∗) extending g0 and put K = g̃0(k−1).
Then for every finite colouring χ of G there exists f ∈ Shape
(Σ∗,Σ∗) such that f � Σ∗≤K is identity and χ � Shape(S,
f [Σ∗]) is constant.

Using the pigeonhole lemma the proof of Theorem IV.2
follows by the fusion argument. See i.e. [9].
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[6] J. Hubička, “Big Ramsey degrees using parameter spaces,”
arXiv:2009.00967, 2020.
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COMPLEXITY OF UNTYPED NORMALIZATION FOR

SUBSYSTEMS OF LINEAR LAMBDA CALCULUS

ANUPAM DAS, DAMIANO MAZZA, LÊ THÀNH DŨNG NGUYỄN, AND NOAM ZEILBERGER

Abstract. We describe ongoing work on characterizing the complexity of the untyped β-equality and
β-normalization problems for subsystems of linear lambda calculus de�ned by di�erent syntactic restric-
tions with natural algebraic and graph-theoretic equivalents, including the non-symmetric/planar and non-
unital/bridgeless fragments as well as their intersection.

1. Introduction

Pure lambda calculus is an exceedingly elegant computational artifact, with all of its power seemingly
derived from a single rule, β-reduction (λx.t)(u)→ t[u/x]. Determining whether a general lambda term has
β-normal form is undecidable, and in fact historically this was the �rst published example of an undecidable
problem [Chu36]. If one restricts to simply-typed terms then strong normalization holds, but deciding
whether two terms are equal modulo β-conversion still has non-elementary complexity [Sta79].

We are interested in the untyped normalization problem for di�erent subsystems of linear lambda calculus,
that is, subsystems of pure lambda calculus de�ned by (at least) the restriction that every variable is used
exactly once. It is known that deciding β-equality of linear terms is complete for polynomial time, a result due
to Mairson [Mai04]. Indeed, since the size of a term decreases with every β-reduction (one application, one
abstraction, and one variable are removed) it is easy to see that normalization can be performed in polynomial
time, but conversely, Mairson established P-hardness by reduction from the circuit value problem, building
up linear terms to simulate the evaluation of boolean circuits. (See also Terui's closely related and near
simultaneous proof of P-completeness for normalization of MLL proof nets [Ter04].) We focus on the lattice
of subsystems de�ned by selectively imposing one or more of the following additional restrictions on linear
lambda terms:

(O) variables must be used in order, in other words the exchange rule is disallowed (for example, the
term λx.λy.λz.x(yz) satis�es O but λx.λy.λz.(xz)y does not);

(V) every subterm must have a free variable, in other words closed subterms are disallowed (for example,
the term λy.λz.(xz)y satis�es V but λy.x(λz.z)y does not).

These restrictions have both algebraic and topological motivations. Algebraically, as is well known, linear
lambda terms may be interpreted as morphisms in any symmetric monoidal closed category [BS11], or
even in a (non-monoidal) symmetric closed category. Linear terms satisfying condition O may then be
interpreted in the wider class of non-symmetric closed categories, while terms satisfying V may be interpreted
in non-unital symmetric closed categories. Topologically, it is folklore that linear lambda terms may be
faithfully represented by a certain kind of proof-net [Mai02], and more recently it has been observed that
this correspondence can be strengthened to a size-preserving bijection between linear lambda terms and
rooted 3-valent graphs embedded on oriented surfaces of arbitrary genus (or �rooted 3-valent maps� for short
[BGJ13, Zei16]). Then, restricting the bijection to O-terms yields exactly the planar rooted 3-valent maps,
while restricting to V-terms yields exactly the bridgeless rooted 3-valent maps.

Conditions O and V de�ne proper subsystems of linear lambda calculus in the sense that both properties
are preserved under β-reduction. However, as far as we know, nothing is known about the complexity
of deciding β-equality or normalization for these fragments, nor for their intersection, beyond the trivial
polynomial time upper bound sketched above that applies for general linear terms.
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The O fragment was brie�y discussed by Abramsky [Abr08] under the heading of �planar lambda calculus�,
and to avoid confusion we will adopt the topological terminology (which is hopefully pretty evocative) in
the sequel, referring to O-terms as planar terms and V-terms as bridgeless terms. Extensions of planar
lambda calculus have also been studied within the broader setting of non-commutative/ordered linear logic
(cf. [Pol01]), and it is worth mentioning that such a calculus was used recently by Nguyễn and Pradic to
obtain a characterization of star-free languages within the framework of implicit complexity, relying on the
O constraint in an essential way [NP20]. Bridgeless lambda calculus has been studied less, although it is also
worth mentioning that Lambek's original syntactic calculus [Lam58] included versions of both restrictions
O and V, in the sense that not only did his sequent calculus not have an exchange rule, but also it was
restricted to sequents with a non-empty left-hand side.

2. Formal problem statements

We consider the complexity of two kinds of problems related to untyped normalization:

(1) Given a term t, what is the β-normal form of t? (β-normalization)
(2) Given two terms t1 and t2, is t1 =β t2? (β-equality)

The second problem of course may be reduced to the �rst by computing the normal forms of t1 and t2 and
checking that they are equal, but in the converse direction there isn't an obvious reduction. As formulated,
(1) is a function problem rather than a decision problem � however, it can be turned into a decision problem
while retaining the property that (2) can be reduced to it by reformulating (1) as a question of verifying
whether a given �term with holes� is an approximation of the β-normal form of t. Thus formulated, we
can view both β-normalization and β-equality as decision problems and try to characterize their complexity
using standard decision-theoretic complexity classes like P and L.

In order to make formal statements about complexity, we need to add some precision about the repre-
sentation of lambda terms as strings. The exact details are not so important, but we can distinguish two
broad categories of representation: ones based on a serialization of the term tree (e.g., standard λ-calculus
notation, or post�x notation), which we refer to as �tree-based� representations, and ones based on a la-
belled encoding of the term graph (e.g., proof-nets), which we refer to as �graph-based�. The distinction is
important when talking about the complexity class L or below, since the conversion from graph-based to
tree-based representations typically requires at least logarithmic space.

The di�erence between typed and untyped normalization is subtle in the linear setting, since every linear
term is simply typable, and its β-normal form is uniquely determined by its principal type [Hir93]. By typed

normalization is meant that a typing derivation is provided in some suitable format as part of the input and
output, whereas in untyped normalization no such typing derivation is provided, only the term itself. We
emphasize that we are considering untyped normalization, although we are also interested in typability.

3. Results

As already mentioned, Mairson proved that deciding β-equality of linear lambda terms is P-hard and
hence P-complete, by reduction from the circuit value problem (CVP). His encoding relied on a violation
of the O-condition in an essential way, with the booleans True and False encoded as λx.λy.λk.kxy and
λx.λy.λk.kyx respectively, and we were thus quite surprised to �nd out that:

Result 1. The untyped β-equality problem for planar lambda terms is P-complete.

Proof sketch. The high-level structure of the proof is the same as Mairson's, giving a reduction of CVP to
deciding β-equality, but with some key variations. First and most important is the encoding of booleans, and
in fact we found two di�erent possible encodings, both a simple-minded one where False and True are λx.x
and λx.x(λy.y), respectively, and a more conceptual one where they are λk.λf.kf(λx.x) and λk.λf.k(λx.x)f ,
respectively. A bene�t of the latter encoding is that the booleans may be assigned a simple type, and it
turns out they are closely related to the type of booleans introduced by Matsuoka in an alternative proof
of Mairson's theorem [Mat15]. With either encoding of the booleans, we can �nd closed planar terms
And,Not, . . . , representing the basic logic gates satisfying equations like

And True True=β True And True False=β False . . .
2
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as well as a closed planar term Copy representing a �fan-out� gate and which satis�es the equation Copy B=β
λf.f B B for B ∈ {True,False} and then go on to build up circuits in a manner similar to Mairson. Still,
there is another twist that with this set of gates, the O-condition means that we can only build planar circuits.
However, it is well known that CVP may be reduced to planar CVP, and indeed we can explicitly construct
a Swap gate as a planar term satisfying the equation Swap B1 B2=β λf.f B2 B1 for B1, B2 ∈ {True,False}.
With this additional gate in our toolkit we can then directly encode any boolean circuit C as a planar term
tC and reduce CVP to deciding tC =β True. �

Both Mairson's original linear encoding and our planar encoding of CVP include bad violations of the
V-condition, and at �rst sight it appears di�cult to do any serious computations with bridgeless terms.
Nevertheless we have the following:

Result 2. The untyped β-normalization problem for bridgeless lambda terms is P-complete.

The proof relies on a translation of general linear terms t to bridgeless terms tV , which wraps variables of the
original term with �handlers� that intercept any eventual applications. If we normalize tV then we obtain a
term with remnants of handlers interspersed throughout, but these can be easily removed in a postprocessing
phase to obtain the β-normal form of t. Since β-normalization of linear terms is P-hard and all of these
transformations can be done in polynomial time, this establishes the claim. Something that leaves us uneasy,
though, is that we do not see how to adapt this approach to prove the stronger claim that β-equality of
bridgeless terms is P-complete.

Finally, we are left with the intersection of the two conditions O and V, and here the situation is even
more unresolved. It seems very di�cult to program with bridgeless planar terms, and for now we have only
been able to establish the following hardness reductions (note the dependence on the representation):

Result 3. The untyped β-equality problem for bridgeless planar lambda terms is L-hard on the graph repre-

sentation, and TC0-hard on the tree representation.

On the other hand, despite our attempts, we have not been able to conceive of an algorithm to decide
β-equality in any class below P, using either representation.
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Abstract 

In the presence of arithmetic, order-invariant definability in first-order logic captures constant 

parallel time, uniform AC⁰ [I].  The ordering is necessary to replicate the presentation of a structure 

on the input tape of a machine.  What if that ordering was in fact a traversal of the structure?  We 

show that an analogous notion of traversal-invariant definability characterizes deterministic 

logarithmic space (L) and that breadth-first traversals characterize nondeterministic logarithmic 

space (NL).  The surprising feature of these characterizations is that we can work entirely within the 

framework of first-order logic without any extensions, other than the traversals themselves.  

Keywords: first-order logic; logarithmic space computation; order invariant definability; graph 

traversals 

Introduction 

In the descriptive approach to complexity, formulas in extensions of first-order logic used to express 

the solution to a problem replace algorithms running on resource-bounded models of machine computation.  

Those extensions have relied on variations of classically developed inductive definability, known as fixed-

point logic [M].  For example, a query on finite ordered graphs is expressible in fixed-point logic if and 

only if it is computable in polynomial-time [I].  Similarly, various transitive-closure logics capture 

logarithmic-space computability on ordered structures [I].  

Order Invariant definability 

Central to the connection between logic and complexity is understanding the precise role of order, since 

whenever a structure is given to a machine, it must be presented in some order on the input tape.  A machine 

that purports to compute an isomorphism invariant graph query must output an answer which is independent 

of that order.  Order-invariant first-order logic attempts to capture this notion with an arbitrary order of the 

input.  While this paper does not address the role of that order in general, it does address the specific role 

that special traversal orderings play in invariant first-order definability. 

Definition: A sentence σ (more generally a formula) is order-invariant over finite ordered graphs if for 

every finite graph G and any two linear orderings <₁ and <₂ of it, (G, <₁) satisfies σ iff (G, <₂) satisfies σ. 

 

Note: A sentence over ordered graphs is order-invariant in the finite just in case it is invariant under adjacent 

transpositions because every finite permutation can be written as the product of adjacent transpositions. 

 

Yuri Gurevich has shown order invariant logic is a nontrivial extension of first-order logic, though 

connectivity still cannot be defined in this setting because it is still local [L].  But what if instead of assuming 

our structures are presented in an arbitrary order, we assume they are presented in a particularly natural 

order?  One such notion is that of a traversal order, classically defined for connected graphs [D], easily 

extended to arbitrary simple graphs, and even arbitrary structures via their Gaifman graph.  

Definition: A traversal of a connected graph is a linear ordering of its vertices in which every initial 

segment is connected.  An arbitrary graph traversal is an arbitrary ordering of its individual component 

traversals.  A traversal of a relational structure S is simply a traversal of its Gaifman graph, the simple graph 

which connects two distinct elements of S whenever they occur together in some tuple of a relation from S.  

 

Breadth-first search yields standard examples of graph traversals.  
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Figure: a graph (left) and one of its traversal presentations (right) 

A traversal of a connected graph is characterized by the property that every node has a preceding neighbor.  

This fact can be used to show that the property of being a traversal is itself elementary [CK].  

 

Traversal invariant definability 

Suppose we take first-order formulas on ordered graphs which are invariant of the order, whenever that 

order is a valid traversal of the graph.  In other words, the formula determines a query on graphs given any 

traversal of the graph. 

 

Definition: A sentence σ (more generally a formula) is traversal-invariant over finite ordered graphs if for 

every finite graph G and any two traversals <₁ and <₂ of it, (G, <₁) satisfies σ iff (G, <₂) satisfies σ.  

 

Examples: A traversed graph is connected iff every element except the first has a preceding neighbor.  A 

traversed graph is acyclic if and only if it does not have a node with two preceding neighbors.  Undirected 

reachability is traversal invariant because a smaller node x can reach a larger node y just in case every node 

in the interval (x, y] has a preceding neighbor.  

 

Closing the idea of traversal invariance under first-order interpretations leads us to define traversal 

invariant queries as compositions of a first-order translation π, a traversal < of the resulting structure, and 

finally a traversal invariant sentence σ.  Since the traversal of an arbitrary structure is just a traversal of its 

Gaifman graph, and since the map from an arbitrary structure to its Gaifman graph is first-order definable, 

we can without loss of generality assume that π produces that simple graph and assume that σ is a formula 

over ordered simple graphs.  In pictures (the traversal is the key middle step):  

 

S → π(S) = G → (G, <) → σ(G, <) 

Definition: A (Boolean) query is traversal invariant if it can be defined by σ(π(S), <) where π is a first-

order interpretation, and σ is a first-order sentence over ordered simple graphs with the property that for 

any traversal < of π(S), whether (π(S), <) satisfies σ is independent of the traversal < chosen.  In other words, 

σ determines a well-defined query using any traversal < of π(S) satisfying τ.  There is an obvious 

generalization to non-Boolean queries when σ is a formula which we omit here.  

The naturalness of a traversal presentation cannot be overemphasized: it captures the notion that whenever 

possible, a new piece of input data is related to some previous piece.  One of the most familiar examples of 

a traversal is breadth-first search.  However, it is almost always described procedurally, whereby a method 

is explained to number and thereby order the vertices according to the BFS algorithm.   But a logical 

presentation helps to reveal its fundamental properties.  

Definition: A breadth-first traversal is one in which the earliest neighbor function (the parent in the 

breadth-first tree) is monotone (let the parent of the first element in a component be itself).  It is easy to see 

that this captures the queue property of the breadth-first algorithm, since if the vertices are laid out in a line 

 

 

< 
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corresponding to their breath-first order, none of the edges in the breadth-first tree will nest, one properly 

inside the other.  Clearly, this property is elementary (first-order definable). 

Results 

As mentioned earlier, for order invariant first-order logic to capture uniform-AC⁰, we need to assume 

that our logic also has access to arithmetic over that order, which is equivalent to FO(<, bit) [I].  Since the 

bit predicate is nothing more than the set membership relation over hereditarily finite sets in reverse, we 

define the notion of situated structures analogous to that of ordered structures.  

Definition: Call a structure S situated if its signature includes an accompanying bit predicate.  

These structures are without loss of generality already ordered, since < is elementarily definable from bit 

[DDLW].  We can now state our first result, which characterizes logarithmic-space computation (L).  

Theorem: A query on situated structures is computable in L iff it is traversal invariant.  

Our second result characterizes non-deterministic log-space computability (NL) in terms of breadth-first 

search.  NL is the class of breadth-first traversal-invariant queries, defined like traversal invariance before 

except that we are guaranteed the given ordering of the graph is in fact a breadth-first traversal. 

Theorem: A query on situated structures is computable in NL iff it is breadth-first invariant.  

One might think that including the bit predicate in the initial input is important.  But by using the 

equivalence between logarithmic-space machines and multi-head finite automaton, we can improve both 

above results in that we can capture queries on structures that come only with a successor relation and do 

not require the bit relation.  The details of this are quite technically involved and omitted from this abstract. 

Extension: A query on structures with successor is in (N)L iff it is (breadth-first) traversal invariant.  

Conclusion 

We have characterized logarithmic-space computability in terms of traversal invariant first-order 

definability in logic.  Other ordered presentations might allow for analogous elementary characterizations 

of NC¹ or even P.  In general, presentation invariant definability stays inside of NP ∩ co-NP [GLL].  We 

conclude with the following tantalizing question regarding traversal invariant definability.  

Conjecture: Is polynomial-time computability characterized by depth-first invariant definability? 
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A CATEGORICAL APPROACH TO CONSTRAINT
SATISFACTION PROBLEM

JAKUB OPRŠAL

What distinguished problems that are NP-hard from those that allow a
polynomial time algorithm? Arguably resolving this question would entail a
proof that P is not NP. Several fields of theoretical computer science have (or
had) an approach to answering it, but again and again it showed to be incred-
ibly hard. I work in a field that approaches this question through studying
complexity of a well-structured class of problems in NP—non-uniform con-
straint satisfaction problems. The structure involved in these problems allow
us to formally connect attributes of the problems with their complexity.

The constraint satisfaction problem (CSP) is a prototypical NP-complete
problem. Loosely speaking, the goal is given an instance consisting of vari-
ables, that attain values over some (usually finite) domain, and constraints,
each involving a finite number of variables and given by the set of permissible
tuples, decide whether there is an assignment of values to the variables that
satisfies all the constraints. A focus of research in the past years has been
to classify the complexity of this problem depending on the shape of the
constraints allowed. This is better explained when the CSP is expressed as
a homomorphism problem: Given two finite structures A and B in the same
relational language, decide whether there is a homomorphism from A to B.
Fixing the structure B, we obtain the problem CSP(B) whose complexity
depends on properties of the structure B, e.g., if B is the 3-clique, the prob-
lem is NP-hard, while if relations of B are defined by affine equations, the
problem is in P.

Algebraic approach was the go to theory for approaching complexity clas-
sification of these problems, and it played a key role in Bulatov’s and Zhuk’s
celebrated results [Bul17, Zhu20] that showed that, for any finite B, CSP(B)
is NP-hard or in P. The core result of this theory is a classification of when
one such CSP can be reduced to another using simple gadget reductions.
This characterisation uses the notion of polymorphism. One of advantages
of polymorphisms in the realm of finite template CSPs is that they cor-
rectly identify the NP-hard templates—a finite template CSP is NP-hard if
and only if the polymorphisms of its template do not satisfy any non-trivial
algebraic (height 1) identity.

Recently, a generalisation of the CSP, so-called promise constraint satis-
faction problem (PCSP) gained a lot of attention for a few good reasons:
It still retains the structure of the CSP, it is more general, and includes
problems of interest to wide audience. A template of a promise constraint
satisfaction problem consists of two structures A and B such that A maps
homomorphically to B (e.g., A = K3 and B = K5). This problem then asks,
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given a third structure C that is promised to map homomorphically to A,
find a homomorphism from C to B (e.g., given a graph that is promised to
be 3-colourable, find a 5-colouring of this graph).

The algebraic theory of CSPs can adapted to promise constraint satisfac-
tion problems [BBKO19]. The notion of a polymorphism easily generalises.
Nevertheless, it has a few shortcomings: Polymorphisms do not satisfy the
same strong closure properties making many algebraic results unusable in
this settings. Further, unlike for CSPs, the theory does not correctly identify
the NP-hard problems. This means that in order to progress in classifica-
tion of complexity of PCSPs, we need to refine our old tools, and discover
new tools. Several recent papers [AGH17, DRS05, BG18, KO19, WŽ20]
show that many various tools can be useful. Let me highlight two papers
[KO19, WŽ20] (and their joined journal version [KOWŽ20]) that make sur-
prising use abstracts methods from algebraic topology and ideas of category
theory. In the talk, I will outline the basics of the algebraic theory from a
new perspective that was brought by these papers.

Contributions. The essence of the algebraic approach to (P)CSP is clas-
sification when one CSP can be reduced to another using a simple gadget
reduction by the means of some higher symmetries of the template, called
polymorphisms. The shortcoming of this theory is that these reductions are
simply not enough in the world of promises—we need new, more general
reductions.

The new insight is that reductions in the CSP setting are given by (a
weaker version of) adjunctions. For example, a simple gadget reduction has
an associated pp-power construction Γ such that

Λ(A)→ B if and only if A→ Γ(B).

(Here, we denote by A → B that a homomorphism from A to B exists.)
If the above is true for some Λ and Γ, we will say that Λ and Γ are thinly
adjoint. This property is actually enough to show that Λ is a reduction from
CSP(Γ(B)) to CSP(B). In other words, if some functors Λ and Γ are thinly
adjoint, and Λ is efficiently computable, then there is an efficient reduction
from CSP(Γ(B)) to CSP(B).

Reductions comming from such thin adjoints can be also used in the PCSP
setting: as one can easily check, if Λ and Γ are thinly adjoint, then Λ
gives a reduction from PCSP(A1,B1) to PCSP(A2,B2) if Λ(A1) → A2

and Γ(B2)→ B1. A new reduction of this form has been used by Wrochna
and Živný [WŽ20] to provide new results on approximate graph colouring—
they showed that for any k ≥ 4, it is NP-hard to colour a k-colourable graph
with

(
k

bk/2c
)
− 1 colours.

The core of the algebraic approach can be compressed to the following
theorem.

Theorem 1. The following are equivalent for finite relational structures A,
and B.

(1) There is a simple gadget reduction (and therefore a log-space reduc-
tion) from CSP(A) to CSP(B).42
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(2) A is homomorphically equivalent to a pp-power of B (i.e., there is a
pp-power Γ(B) of B s.t. Γ(B)→ A and A→ Γ(B)).

(3) There is a ‘minion homomorphism’ from pol(B) to pol(A).

In the previous paragraph, we have already argued that (1) and (2) are
equivalent—and indeed that is the easier part of the above theorem. The
strength of this theorem lies in equivalence of these items with (3), and the
hard part of the proof is to show that (3) implies either (1) or (2). I will
present a new proof of this fact that takes advantage of the above observation
about adjoints, and adjunction of three constructions: the polymorphism
minion (as a functor from relational structures to minions), the indicator
instance, and minor conditions constructed from a CSP instance. Examples
of these constructions appeared many times in various proofs, but with the
exception of polymorphisms they were rarely systematically studied.

Acknowledgements. This is a joint work with Andrei Krokhin, Marcin
Wrochna, and Stanislav Živný.
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GRAPH TRAVERSALS AS UNIVERSAL CONSTRUCTIONS

(EXTENDED ABSTRACT)

SIDDHARTH BHASKAR∗

Problem statement. Graph searches are algorithms for visiting the vertices in a connected graph
from a prescribed source. Both graph searches and their resulting vertex orders, or traversals, are
absolutely fundamental in the theory of graph algorithms, and have important applications in other areas
of theoretical computer science such as computational complexity theory.

a

b

c

d

We start from the premise that a concept as natural as a traversal
should be canonical in the original graph. For example, let us consider
the graph to the left, and fix a as a source. Of the six vertex orderings
starting with a, (a, d, b, c) and (a, d, c, b) are not traversals: each vertex
added during a search must be in the boundary of previously visited
vertices, but d is not in the boundary of {a}.

Of the four remaining vertex orders, two are breadth-first traversals
((a, b, c, d) and (a, c, b, d)) and two are depth-first traversals ((a, b, d, c)
and (a, c, d, b)). This can easily be checked by hand: in a breadth-first
search, we go level-by-level, and must visit both b and c before we visit
d. In a depth-first search, we prioritize the neighbor of the most recently

visited vertex, so we visit d before the latter of {b, c}.
However, notice that there is no way of canonically distinguishing between the two breadth-first or the

two depth-first traversals. Concretely, once we visit a, there is no canonical way to choose between b
and c. A natural fix is to linearly order each neighborhood and visit lesser neighbors first. We call the
resulting traversals lexicographic. For example, if we say that b < c, then the lexicographic breadth-first
traversal is (a, b, c, d) and the lexicographic depth-first traversal is (a, b, d, c). If we say that c < b, we
get (a, c, b, d) and (a, c, d, b) respectively. We call a graph whose neighborhoods are linearly ordered an
edge-ordered graph.

Our contribution. We show that both the lexicographic breadth-first traversal and lexicographic depth-
first traversal are canonically obtainable from a given finite, edge-ordered graph with a distinguished source.
Specifically, we equip edge-ordered graphs with two different kinds of monotone graph homomorphisms,
one preserving lexicographically least paths and the other lexicographically least shortest paths, to obtain
two categories: FinGraphl

? and FinGraphs
?.

We obtain the lexicographic depth-first traversal via a functor out each category and we furthermore
factor each functor as sequence of universal (free and cofree) constructions on edge-ordered graphs, plus
a single forgetful functor that takes an edge ordered graph and simply extracts the ordered neighborhood
of the distinguished source.

At a first approximation, each lexicographic traversal can be expressed as the composition of a
least-path tree functor plus some sort of transitive closure into a category of transitive ordered graphs, as
indicated below. (The category FinArb<

? is the category of finite edge-ordered arborescences. See also

∗This work is joint with Robin Kaarsgaard.
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Figure 1. The construction of the lexicographic depth-first traversal starting from a on
a given edge-ordered graph. First we extract the least-path tree, transitively close it,
then isolate the ordered neighborhood of a. Numerals indicate the edge ordering. Each
transformation is universal, except for a “silent” (forgetful) transformation fixing the
transitive graph but forgetting some structure on morphisms.

Figure 1 for an example on a concrete graph.) This decomposition was first observed in [3]—not in the
context of category theory— and used to derive efficient parallel algorithms; see also [2, 4].

FinGraphl
? FinArb<

? TLexGrapha a
FinGraphs

? FinArb<
? TArba a

The main technical problem we solve is identifying precisely the right notions of edge-ordered graphs
and homomorphisms that allow us to formulate least-path trees and transitive closures as universal
constructions. For example, there is a well-known adjunction between graphs and categories, essentially
by transitively closing the edge relation, but it is not clear how to lift this into the edge-ordered setting
so that the resulting operation is functorial, let alone universal.

Structure meets power. A basic question in computer science is that of the relationship between an
algorithm and its implementations [9]. We view this problem as one aspect of the “structure vs. power”
dichotomy of Abramsky [1]. At the risk of oversimplification, one understands algorithms structurally:
a standard taxonomy of algorithms arises from closing a core set of basic paradigms (iteration, divide-
and-conquer, a greedy strategy, etc.) under basic compositional operations (sequential composition,
subroutines, etc.). On the other hand, one typically measures expressive power with respect to a concrete
implementation.

Building a robust network of links between algorithms and their implementations is one realizations of
Abramsky’s vision. We can imagine a world, for example, where formally describing the structure of some
algorithm might immediately yield some information about its possible machine implementations, its
parallel complexity, its sequential complexity, and even lower bounds. We view our work as a small first
step along this road for some very fundamental algorithms, viz. breadth- and depth-first graph traversals.

To the best of our knowledge, equipping algorithmic problems with a categorical structure is a relatively
recent idea. While graphs have been studied extensively from a categorical point of view, the focus has
been on topics such as graph rewriting and string diagrams [5, 7] and relationships with properads [6]
rather than graph algorithms. The only other papers that we know of in the algorithmic vein are that of
Master on the open algebraic path problem [8] and the compositional algorithm by Rathke, Sobociński
and Stephens [10] for reachability in Petri nets. These papers suggest that there might be a categorical
setting for reachability problems on graphs, generally understood.
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In the medium-to-long term, we envision developing a theory of compositional graph algorithms through
universal properties as a step along this way. A goal of such a project would be “reverse implementation,”
namely, canonically recovering implementations from algorithms, if the latter are suitably formulated.
Concretely, can we use our categorical decompositions of breadth- and depth-first traversals to canonically
arrive at their sequential implementations using queues and stacks?
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On games on algebras

Glynn Winskel

There are several reasons to integrate finite model theory (FMT) within a
general theory of games. Historically two-party games (with Player versus Op-
ponent, or Duplicator versus Spoiler) have provided central techniques of FMT.
The operational nature of games brings them close to resources whose control
and use are the concerns of FMT. However to go beyond the games traditionally
used in FMT requires games and strategies which both support structure and
resource. In the semantic world, concurrent games and strategies based on event
structures have been demonstrated to do both: concurrent games and strategies
can be composed and support quantitative extensions, e.g. to probabilistic and
quantum computation. In short, concurrent games and strategies deserve study
as a potentially rich arena in which structure meets power.

In this talk I will present concurrent games and strategies over algebras
with many-sorted signature Σ. (The use of many sorts allows individual games
and strategies to involve several algebras.) Through their foundation in event-
structures, concurrent games and strategies represent closely the operational
nature of games, their interactivity, the dependence, independence and conflict
of moves.

A Σ-game will be represented by an event structure in which each event
(standing for a move occurrence) both carries

• a polarity to signify whether it represents a move of Player (Duplicator)
or Opponent (Spoiler);

• and a variable drawn from a set V ar of Σ-sorted variables, in such a way
that no two concurrent events are assigned the same variable.

Positions of the game are represented by configurations of the event structure.
The condition on the assignment of variables ensures that events with the same
variable are totally ordered within a configuration; so it makes sense to talk of
the “latest” move associated with a variable appearing within a finite configu-
ration. Winning configurations of the game are specified by an assertion in the
free logic over Σ w.r.t. the latest instantiations of the variables. (By using a free
logic we avoid clumsy indexing by the configurations to which assertions apply.)

With respect to a Σ-algebra A, an A-strategy for Player is a concurrent
strategy which roughly makes choices of values in A for Player variables (those
associated with Player moves) in response to choices of values for Opponent
variables. It is winning if it results in a winning configuration of the game
no matter what the strategy of Opponent. Traditional pebbling games such

1
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as homomorphism games and the isomorphism games of Ehrenfeucht-Fraissé
provide examples of such games and strategies.

However, one advantage of concurrent games and strategies is that they
support composition to form a bicategory, and a category in the case of de-
terministic strategies. The bicategory is constructed by following the ideas of
Conway and Joyal: a strategy from a game G to a game H is a strategy in the
compound game G⊥||H, formed as the dual game of G, in which the roles of
Player and Opponent are reversed, in parallel with H. Then the composition
of a strategy from G to H and a strategy from H to K is obtained by playing
the strategies against each other over the common game H. Another advantage
of concurrent games is that they also support imperfect information, essentially
by restricting strategies to those causal dependencies allowed by an accessibility
preorder. Assumptions of imperfect information often play a role in reasoning
about the power of additional resources, for example in games to show quantum
advantage.

Making use of these advantages, we can provide full and faithful embeddings
into the category of deterministic strategies of the categories of Σ-algebras with
homomorphisms as well as coKleisli maps with respect to pebbling comonads.
(The results are subject to minor restrictions on the algebras.) This reconciles
the composition of strategies as coKleisli maps, prevalent in recent algebraici-
sation of FMT, with the more usual composition of strategies, following the
paradigm of Conway and Joyal.
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