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Taking over where Luca stopped...

The image of
Re: B(Mod,-1) — V(Typ,)

is the Stone dual of B3y, = (Ixpp | ¢ € FO,).

The construction B ~» Bg,, works for any
B — P(Mod,) dually given by f: g(Mod,) — X

then we build
Rfi B(Modn_l) — V(X)

And By, can be identified with a subalgebra of P(Mod,).



The Boolean algebra of formulas

Inductively,
= QF(x1,...,%n)
B,(fr')l = the image of B(") .+ Bg") + BI.(”) — P(Mod,,)
we build

UNER

n=1i=1

as a Boolean subalgebra of P(Mod,,).



Inductive constructions in domain theory

In DTLF operators +, x, Pp, Py, Ps, — on the space side dually
correspond to enrichments of logic.

E.g. function space construction [E — D] adds a layer of
implications to the logic.



Inductive constructions in domain theory

In DTLF operators +, x, Pp, Py, Ps, — on the space side dually
correspond to enrichments of logic.

E.g. function space construction [E — D] adds a layer of

implications to the logic.

The solution of a domain equation

computed as a bilimit, dually adds logical connectives, step by step.
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Vietoris as a space of measures

Closed subsets of a Stone space X

!

finitely additive measures on X — 2

(where 2 = ({0,1},A,V,0,1))

Via the correspondence

1 CNA#D

C+— puc such that pc(A) =
0 otherwise

This yields a homeomorphism V(X) = M(X, 2).
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Quantifiers «— measures?
e Existential quantifiers +— space of measures X — 2

e Semiring quantifiers «— space of measures X — S
(from Logic on Words, adaptable to arbitrary finite models)

e.g. for k€S, p(x) € FO,
AE=dexop iff 1+---41 =k in§S
E Jkx.p(x) i +- 4 in

for every acA s.t. A=p(a)

o “Probabilistic quantifiers” <— probabilistic measures X — [0, 1]
(from structural limits)

e more... ?
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For a formula ¢(x1,...,x,) and a finite structure A,

{acA"[AE @)}

<907A> = ’A’n

(Stone pairing)

Mapping A — (—, A) defines an embedding
Fin — M(Typ, [0,1])

Recall that Typ is dual to FO, i.e.
clopens are of the form [¢] for ¢ € FO.




Stone pairings [Ne3etfil, Ossona de Mendez, 2013]

For a formula ¢(x1,...,x,) and a finite structure A,

{acA"[AE @)}

<907A> = ’A’n

(Stone pairing)

Mapping A — (—, A) defines an embedding
Fin — M(Typ, [0,1])
which lifts uniquely to
A(Fin) — M(Typ, [0, 1])

Motivation:
The limit of (A;); is computed as lim (—, A) in M(Typ, [0, 1]).

1—00
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The dual space of the image?

What is the dual of X?

B(Fin) — X < M(Typ, [0,1])

~

M(Typ, [0,1]) has no non-trivial clopen! = Clp(X) = 2

Two possible solutions:

1. Describe X in terms of geometric logic, logic of proximity lattices

or de Vries algebras, ...

2. Replace [0, 1] to retain classical logic.

~> Our choice today!
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The Stone space I' (motivation)

Problem: We need to replace [0,1] by a similar space T s.t.

1. we can define measures X — T

2. the space M(X,T) is compact 0-dimensional

3. Stone pairing (—, —) : Fin — M(Typ, ') definable
and is “comparable” with the original Stone pairing

Observe: For ¢(vi, ..., vk), the Stone pairing (p, A) takes values
in a finite chain

1 2 1
I = (0<<<-~-<" <1>
n n n

where n = |AlX.

= Define ' as an inverse limit of those (discrete) posets!
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The Stone space I' (description)

Define
La/ m]

r= Iim{fn"m: Inm - In}n,meN where fnn (7) -

Elements of I are vectors
(xa)n € [
n

such that £, (xym) = Xp, for every n,m € N.

nm

Intuitively: coordinates represent approximations of numbers in
[0,1] from bottom. The larger the n the better the approximation.

o one representation of irrational numbers: r—
This gives
two representations of rational numbers: g, g°

0° 9 q° r- 1—1°
r = Iy 1 I




Properties of I

e The subspace topology I' C [],, I» is compact 0-dimensional
e Retraction-section maps I % [0, 1]
e Semicontinuous partial operations — and ~ on I
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Properties of I

e The subspace topology I' C [],, I» is compact 0-dimensional
e Retraction-section maps I % [0, 1]
e Semicontinuous partial operations — and ~ on I

— o~ TxlF—=T

allow to define measures X — I

monotone functions p: Clp(X) — [ s.t.
o p(0)=0° puX)=1°
o 1(A) ~ (AN B) < (AU B) — u(B)
* 1(A) = u(ANb) > (AU B) ~ u(B)
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Properties of I

The subspace topology I' C [, /» is compact O-dimensional

Retraction-section maps I % [0, 1]

Semicontinuous partial operations — and ~ on I’
— e~ xlF—=T

allow to define measures X — I

X — M(X,T) endofunctor on Stone spaces

We also have (—, —) : Fin — M(Typ, ') such that

M(Typ,T)

M(Typ, [0,1])
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Theorem [Gehrke, J., Reggio, 2019].
If X is dual to B then M(X,T) is dual to P(B), the free Boolean
algebra on the set of generators

Psqe (for o € D,q € 0,11 N Q)

and factored by the ¢ongruence = given below

Intuitively, A = P>q ¢ if
the probability of A = ¢(a) is >gq.
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Theorem [Gehrke, J., Reggio, 2019].
If X is dual to B then M(X,T) is dual to P(B), the free Boolean
algebra on the set of generators

P>q¢p  (foro € D,q€[0,1]NQ)

and factored by the congruence = given below

L1) p < g implies Psq = Py % If the probability of A = o(3)
12) ¢ < ¢ implies Psq ¢ | Psq ) is >q then it is also >p
)
)

L3) Pspf=ffor p >0, t =EP>of, and t = P54t
L4) 0< p+qg—r<1implies
Popigr(@VY) AP (0 AY) EPspo V P>g1p  and
Popo A Pxqt EPopig—r (V) V Pxr (0 AY)

(
(
(
(
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(
(
(

L1
L2
L3
L4

Theorem [Gehrke, J., Reggio, 2019].
If X is dual to B then M(X,T) is dual to P(B), the free Boolean
algebra on the set of generators

P>qp  (forpeD,qe[0,1]NQ)
and factored by the congruence = given below
p < qimplies P>q ¢ |=P>p 0
@ < 1 implies P>q p = P>q¢
Pspf=ffor p>0,t =P>of, and t = P54t
0<p+qg—r<1implies
Popigr(@VY) AP (0 AY) EPspo V P>g1p  and

Popo A Pogt) EPopig—r (0 VY) V Po (0 A1)

)
)
)
)

(Think of =P>, ¢ as P, ¢)
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Stone pairing logically

e Then M(Typ,I) is the space of complete consistent theories for
the logic of P(FO) (i.e. an extension of FO).

12



Stone pairing logically

e Then M(Typ,I) is the space of complete consistent theories for
the logic of P(FO) (i.e. an extension of FO).

e Stone pairing
Fin — M(Typ,I), A~ (—A)
maps A € Fin the theory containing

{Popo | (@, A) > ptU{P<pp | (¢, A) < p}

12



Stone pairing logically

e Then M(Typ,I) is the space of complete consistent theories for
the logic of P(FO) (i.e. an extension of FO).

e Stone pairing
Fin — M(Typ,I), A~ (—A)
maps A € Fin the theory containing

{Popo | (@, A) > ptU{P<pp | (¢, A) < p}

e The space X in B(Fin) = X — M(Typ,I) is dual to P(FO)/~.
where

Pspp ~ Poqtp iff VA€EFin (p,A) > p+ (1,A) > q
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Conclusion

Topological or duality theoretical techniques elsewhere:

o Duality-theoretical story in database theory (schema mappings)?
e Can duality theory say something interesting about Py, [Ej, M7
e Topological approach to 0-1 laws?

e Logical approach to probabilistic powerdomains? Or replace [0,1]
by I' as the valuation space?

e Is the slogan “quantifiers <— measures” justified? More
examples? Counterexamples?
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Thank you!

(see arXiv:1907.04036 for details about probabilistic quantifiers)
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