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Taking over where Luca stopped...

The image of

Rf : β(Modn−1)→ V(Typn)

is the Stone dual of B∃xn = 〈∃xnϕ | ϕ ∈ FOn〉.

The construction B  B∃xn works for any

B ↪→ P(Modn) dually given by f : β(Modn)� X

then we build

Rf : β(Modn−1)→ V(X ).

And B∃xn can be identified with a subalgebra of P(Modn).
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The Boolean algebra of formulas

Inductively,

B
(n)
0 = QF(x1, . . . , xn)

B
(n)
i+1 = the image of B

(n)
∃x1 + . . .+ B

(n)
∃xn + B

(n)
i → P(Modn)

we build

FO =
∞⋃
n=1

∞⋃
i=1

B
(n)
i

as a Boolean subalgebra of P(Modω).
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Inductive constructions in domain theory

In DTLF operators +, ×, PP , PH , PS , → on the space side dually

correspond to enrichments of logic.

E.g. function space construction [E → D] adds a layer of

implications to the logic.

The solution of a domain equation

D ∼= σ(D)

computed as a bilimit, dually adds logical connectives, step by step.
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Vietoris as a space of measures

Closed subsets of a Stone space X

←
→

finitely additive measures on X → 2

functions µ : Clp(X ) → 2 s.t.

• µ(∅) = 0

• A∩B = ∅ =⇒ µ(A∪B) = µ(A)∨µ(B)

(where 2 = ({0, 1},∧,∨, 0, 1))

Via the correspondence

C 7→ µC such that µC (A) =

1 C ∩ A 6= ∅

0 otherwise

This yields a homeomorphism V(X ) ∼=M(X , 2).
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Quantifiers ←→ measures?

• Existential quantifiers ←→ space of measures X → 2

• Semiring quantifiers ←→ space of measures X → S

(from Logic on Words, adaptable to arbitrary finite models)

e.g. for k ∈ S , ϕ(x) ∈ FO,

A |= ∃k x .ϕ(x) iff 1 + · · ·+ 1︸ ︷︷ ︸
for every a∈A s.t. A|=ϕ(a)

= k in S

• “Probabilistic quantifiers” ←→ probabilistic measures X → [0, 1]

(from structural limits)

• more... ?
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Stone pairings [Nešeťril, Ossona de Mendez, 2013]

For a formula ϕ(x1, . . . , xn) and a finite structure A,

〈ϕ,A〉 =
|{ a ∈ An | A |= ϕ(a) }|

|A|n
(Stone pairing)

Mapping A 7→ 〈−,A〉 defines an embedding

Fin ↪→M(Typ, [0, 1])

Recall that Typ is dual to FO, i.e.

clopens are of the form JϕK for ϕ ∈ FO.

which lifts uniquely to

β(Fin)→M(Typ, [0, 1])

Motivation:

The limit of (Ai )i is computed as lim
i→∞
〈−,A〉 in M(Typ, [0, 1]).
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Stone pairings [Nešeťril, Ossona de Mendez, 2013]

For a formula ϕ(x1, . . . , xn) and a finite structure A,

〈ϕ,A〉 =
|{ a ∈ An | A |= ϕ(a) }|

|A|n
(Stone pairing)

Mapping A 7→ 〈−,A〉 defines an embedding

Fin ↪→M(Typ, [0, 1])

Recall that Typ is dual to FO, i.e.

clopens are of the form JϕK for ϕ ∈ FO.

which lifts uniquely to

β(Fin)→M(Typ, [0, 1])

Motivation:

The limit of (Ai )i is computed as lim
i→∞
〈−,A〉 in M(Typ, [0, 1]).

6



The dual space of the image?

What is the dual of X?

β(Fin)� X ↪→M(Typ, [0, 1])

M(Typ, [0, 1]) has no non-trivial clopen! =⇒ Clp(X ) ∼= 2

Two possible solutions:

1. Describe X in terms of geometric logic, logic of proximity lattices

or de Vries algebras, ...

2. Replace [0, 1] to retain classical logic.

 Our choice today!
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The Stone space Γ (motivation)

Problem: We need to replace [0,1] by a similar space Γ s.t.

1. we can define measures X → Γ

2. the space M(X ,Γ) is compact 0-dimensional

3. Stone pairing 〈−,−〉 : Fin→M(Typ,Γ) definable

and is “comparable” with the original Stone pairing

Observe: For ϕ(v1, . . . , vk), the Stone pairing 〈ϕ,A〉 takes values

in a finite chain

In =

(
0 <

1

n
<

2

n
< · · · < n − 1

n
< 1

)
where n = |A|k .

=⇒ Define Γ as an inverse limit of those (discrete) posets!
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The Stone space Γ (description)

Define

Γ = lim{f nnm : Inm � In}n,m∈N where f nnm(
a

nm
) =
ba/mc

n
.

Elements of Γ are vectors

(xn)n ∈
∏
n

In

such that f nnm(xnm) = xn, for every n,m ∈ N.

Intuitively: coordinates represent approximations of numbers in

[0,1] from bottom. The larger the n the better the approximation.

This gives

one representation of irrational numbers: r−

two representations of rational numbers: q−, q◦

r−q◦q− 1◦1−0◦

Γ =
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Properties of Γ

• The subspace topology Γ ⊆
∏

n In is compact 0-dimensional

• Retraction-section maps Γ [0, 1]

• Semicontinuous partial operations − and ∼ on Γ

−,∼ : Γ× Γ ⇀ Γ

allow to define measures X → Γ

monotone functions µ : Clp(X ) → Γ s.t.

• µ(∅) = 0◦, µ(X ) = 1◦

• µ(A) ∼ µ(A ∩ B) ≤ µ(A ∪ B)− µ(B)

• µ(A)− µ(A ∩ b) ≥ µ(A ∪ B) ∼ µ(B)

• X 7→ M(X ,Γ) endofunctor on Stone spaces

• We also have 〈−,−〉 : Fin→M(Typ,Γ) such that

M(Typ,Γ)

Fin

M(Typ, [0, 1])

〈−,−〉

〈−,−〉
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Theorem [Gehrke, J., Reggio, 2019].

If X is dual to B then M(X ,Γ) is dual to P(B), the free Boolean

algebra on the set of generators

P≥q ϕ (for ϕ ∈ D, q ∈ [0, 1] ∩Q)

and factored by the congruence |= given below

Intuitively, A |= P≥q ϕ if

the probability of A |= ϕ(a) is ≥q.

(L1) p ≤ q implies P≥q ϕ |= P≥p ϕ If the probability of A |= ϕ(a)

is ≥q then it is also ≥p
(L2) ϕ ≤ ψ implies P≥q ϕ |= P≥q ψ
(L3) P≥p f |= f for p > 0, t |= P≥0 f, and t |= P≥q t

(L4) 0 ≤ p + q − r ≤ 1 implies

P≥p+q−r (ϕ ∨ ψ) ∧ P≥r (ϕ ∧ ψ) |= P≥p ϕ ∨ P≥q ψ and

P≥p ϕ ∧ P≥q ψ |= P≥p+q−r (ϕ ∨ ψ) ∨ P≥r (ϕ ∧ ψ)

(Think of ¬P≥p ϕ as P<p ϕ)
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Stone pairing logically

• Then M(Typ,Γ) is the space of complete consistent theories for

the logic of P(FO) (i.e. an extension of FO).

• Stone pairing

Fin→M(Typ,Γ), A 7→ 〈−,A〉

maps A ∈ Fin the theory containing

{P≥p ϕ | 〈ϕ,A〉 ≥ p} ∪ {P<p ϕ | 〈ϕ,A〉 < p}

• The space X in β(Fin)� X ↪→M(Typ,Γ) is dual to P(FO)/∼

where

P≥p ϕ ∼ P≥q ψ iff ∀A ∈ Fin 〈ϕ,A〉 ≥ p ↔ 〈ψ,A〉 ≥ q
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Conclusion

Topological or duality theoretical techniques elsewhere:

• Duality-theoretical story in database theory (schema mappings)?

• Can duality theory say something interesting about Pk ,Ek ,Mk?

• Topological approach to 0–1 laws?

• Logical approach to probabilistic powerdomains? Or replace [0,1]

by Γ as the valuation space?

• Is the slogan “quantifiers ←→ measures” justified? More

examples? Counterexamples?
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Thank you!

(see arXiv:1907.04036 for details about probabilistic quantifiers)
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