
Proposal #1: A JIT compiler for Sail

Context

For formal reasoning about low-level systems code, formal semantics for CPU instruction set
architectures (e.g. x86, ARMv8, RISC-V) are required. Sail[1] is a simple imperative language for
describing instruction set architectures in a way that can generate definitions usable for interactive
proof tools. Currently we have formal models for ARMv8, RISC-V and MIPS that are complete
enough to boot various operating systems - such complete formal models have not been
previously available for mainstream production architectures.

However, as instruction set architectures are large and complex (the
ARMv8 reference manual is 7900 pages long at the time of writing), it is desirable to validate their
specifications of by compiling the formal semantics into an emulator that is performant enough to
perform common tasks like booting operating systems and hypervisors, as well as run existing
architectural validation suites.

There is currently a large performance gap between existing tools for fast emulation/simulation of
processors, such as QEMU, GenSim[2] and gem5[3], and tools for specifying the semantics of
instruction set architectures.

Sail currently generates an emulator which is performant enough to boot Linux in several minutes
by compiling the high level Sail definitions into a small and simple intermediate language (IR),
which is then directly compiled to C functions. However, this up-front approach is limited when
compared to a JIT approach as it cannot use run-time information to optimise the code, which
because of the formal nature of the Sail, is forced to perform expensive tasks like e.g. executing
the entire definition of address translation on every memory access.

Project

This project would involve (1) Designing and writing a JIT compiler and runtime for the Sail IR,
likely using the LLVM compiler infrastructure project. (2) Identifying optimisations that can be
performed using runtime information that would be particularly beneficial for this particular use
case (ISA simulation) by profiling real world operating systems and instruction set test suites.

Requirements

The student should have a good grasp of the following topics:

- Compilers
- Programming in a systems programming language e.g. Rust, C, C++
- Computer architecture

Project supervisors

Alasdair Armstrong alasdair.armstrong@cl.cam.ac.uk
Peter Sewell Peter.Sewell@cl.cam.ac.uk

References

[1]: ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS
(https://alastairreid.github.io/papers/popl19-isasemantics.pdf)
[2]: https://gensim.org/home
[3]: http://gem5.org/Main_Page
[4]: https://llvm.org/

mailto:alasdair.armstrong@cl.cam.ac.uk
mailto:Peter.Sewell@cl.cam.ac.uk
https://alastairreid.github.io/papers/popl19-isasemantics.pdf
https://gensim.org/home
http://gem5.org/Main_Page
https://llvm.org/

Proposal 2: x86 semantics in Sail

Context

The x86 instruction set architecture is used by the majority non-mobile devices today. Therefore
having a formal semantics for x86 is of key importance for the verification of critical low-level
systems code.

There have been various attempts to create formal specifications of the x86 instruction set
architecture, such as [2], and [3], with the
ACL2 model in [3] being arguably one of the most complete. Sail[1] is a language for specifying
instruction set semantics, which supports several use cases such as integration with concurrency
semantics, emulator generation, automatic analysis via SMT solvers, and translation into multiple
interactive proof tools. We currently have formal models for ARMv8, RISC-V and MIPS which are
complete enough to boot various operating systems, including Linux and FreeBSD.

Project

This project would involve (1) Translating the ACL2 x86 model into Sail. We expect that this step
might involve some collaboration with the original authors of the ACL2 model. (2) Validating the
translated Sail by e.g. running Linux or another operating system on a generated emulator. (3)
Potentially applying the generated semantics to some interesting problem domain, such as binary
analysis, translation validation, or concurrency semantics.

Requirements

The student should have a good grasp of the following topics:

- Functional programming
- Computer architecture

Project supervisors

Alasdair Armstrong alasdair.armstrong@cl.cam.ac.uk
Peter Sewell Peter.Sewell@cl.cam.ac.uk

References

[1]: ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS
(https://alastairreid.github.io/papers/popl19-isasemantics.pdf)
[2]: x86-64 semantics in K -
https://github.com/kframework/X86-64-semantics

mailto:alasdair.armstrong@cl.cam.ac.uk
mailto:Peter.Sewell@cl.cam.ac.uk
https://alastairreid.github.io/papers/popl19-isasemantics.pdf
https://github.com/kframework/X86-64-semantics

