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Talk based on a series of papers (2022-23)

@ On Strict Extensional Reflexivity in Compact Closed Categories
(in Samson Abramsky on Logic & Structure in C.S. and beyond )

Outstanding Contributions to Logic (published, May 2023)
https://link.springer.com/book/9783031241161

@ On the Combinatorics of Interaction, (submitted 2023)

@ The Inverse Semigroup Theory of Elementary Arithmetic (submitted 2022)
www.arxiv.org/abs/2206.07412

@ Congruential Functions as Categorical Coherence (submitted 2022)

@ From a Conjecture of Collatz to Thompson’s Group F,
via a Conjunction of Girard www.arxiv.org/abs/2202.04443

@ The Algebra and Category Theory of Elementary Arithmetic,
(Looking for a home(!) 2023)

@ A Simple Game — card shuffles, from conjectures of Collatz to modern
mathematics & theoretical computer science (Draft Book-in-Progress)
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FRACTRAN - syntax and semantics

An low-level programming language introduced by John H. Conway (1987)
Syntax Programs are (finite?) lists of positive rationals :

Po P P P
Q @ Q@& Q& &

Execution Input is a positive natural number ne N*

The iterated step :

® Trytomultiply nby each 22, &, &, &

y QB0 Oy ...inturn,

. P; .
until a whole number n x 5’_ e N is found.
J

. P;
@ replace n by this number n < n x &
7

Conditional looping The above step is repeated,
until the end of the list is reached.
Output The final value of n, at the end of the list.
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Registers and conditionals from prime factorisations

(The F.T.A.) Every n > 1 admits a unique prime decomposition :

n=2%x3%x5% x 77 x 11" x ...
where a finite number of these exponents {x;}jcorines are non-zero.
Think of these as registers, indexed by primes.

Each fraction becomes a conditional, an increment and a branch

COND (X3 = 3AND Xx7 > 1)

15125 5% x 112 {Xs — x5 +3;
189 33 x 71 X1 > X1+ 2;
BRANCH; }

FRACTRAN is resource-sensitive

Conditionals Consume Resources : A (successful) conditional (x; > M)
decrements the register by the test value x; — x; — M.

There is a duality between conditionals and assignments;
this is enough to give computational universality.
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A computationally universal FRACTRAN program

The ‘Eval’ program :

583 620 437 82 615 371 1 53 43 23 341 41
559 551 527 517 329 129 115 86 53 47 46 43
47 29 37 299 47 161 527 159 1 1 1
41 37 31 29 23 15 19 7 17 13 3

For every partial recursive function f : N — N, there exists some natural number

Namey € N such that
Name; x 22" — 2wt p2'™

when f(n) is defined, and fails to terminate otherwise.

Corollary It is undecidable whether Eval halts on a given input.

“What is the simplest Collatz-style game that we can expect to be
undecidable? | think | have an answer!”

— Unsettleable Arithmetic Problems, (John Conway 2012)
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Why “Collatz-style games” ?7?

Conway’s classic Unpredictable lterations (1971) paper' exhibited

undecidability of iterative problems on congruential functions.

These are defined “piece-wise linearly on modulo classes”

Step 1. Dissect the natural numbers into the union of Modulo Classes
N = AN+By u AN+B; U AbN+ B> U ...

(An ‘exact covering system’ in the sense of P. Erdds).
Step 2. Apply a distinct (rational) linear map to each modulo class,

f(n) = Pn+ Q where n=B; mod A

such that f(n) € N.

See also Sergei Maslov, On E. L. Post’s Tag Problem (1964)
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What is this “simplest undecidable game”?

X
% X even,

3x+1 X odd.
(Conjecture: every iterated sequence eventually arrives at 1).

The Notorious Collatz Conjecture : x — {

The Original Collatz Conjecture (L. C., unpublished notebooks, 1 July, 1932).

J. Conway’s ‘Amusical Permutation’

%” n=0 mod 3,
The congruential bijection v(n) = ant n=1 mod 3,
Gl n=2 mod 3,

(Conijecture: This function has infinite orbits — the orbit of 8 is o0).

The Original Collatz Conjecture was Conway’s candidate for
“The simplest undecidable (& therefore ‘true’) arithmetic statement.”
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Melodic Conjectures?

A “probvious” conjecture!

“The proportion of fallacies in published proofs is far greater than the small
positive probability that [this conjecture is false]”
—J.C., Unsettleable Algebraic Problems (2012)

Aplotof n : log (7" (k)), for k = 8,14,40, 64,80, 82

4

200000 _-100,000 0 100,000 200000,

,)/200000 (8) ~ 105000
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It goes like this, the fourth, the fifth ...

“There are twelve notes per octave, which represents a doubling
of frequency, just as twelve steps [of v or v~ '] approximately
doubles a number, on average.” — J.C. (2012)

This average-case doubling is not exact :

@  [The amusical permutation] doubles by a factor of 31—2 ~ 2

o [Its inverse] doubles by a factor of g% ~ 2

« . 312 .
A frequency ratio of 35 is called the Pythagorean comma
and is the difference between enharmonically equivalent
notes (e.g. A* and B’). So there really is a connection with
music.”

Exact doubling / the octave is given by their geometric mean 31—25% 2.

The amusing musical permutation

“Since the series always ascends by a fifth, modulo octaves, it does not sound very
musical. It has always amused me to call it amusical.”
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Conjectures as code??

The O.C.C. is undecided — possibly undecidable?.

Nevertheless, what does it look like, as a FRACTRAN program?

The problem :

Every FRACTRAN program implements a purely multiplicative congruential function

f(n) = én+0 n=B mod A
i

..rather neatly ruling out his motivating example!

A question: Can we instead interpret these conjectures in other areas of theoretical
computer science : logic / A-calculus / category theory ??7?

2Although we could never prove undecidability(!)
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Our claim : We should understand these conjectures in terms
of categorical logic & coherence.

Today’s Talk : The ‘amusical permutation’ is a
canonical coherence isomorphism
very closely related to associativity in models of linear logic.
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The starting point for coherence for associativity

The Fourth Associahedron 4 The Fifth Associahedron Ks

&

albdde

&

abe(de)

=1

(abyde.

0l

albed)e

ab(cde)

(Diagrams “borrowed” from Tai-Danae Bradley’s www.math3ma . com blog.)

We will label every facet (vertex, edge, face, ...) of K, by a distinct functor [["C — C. J

peterhines@york.ac.uk
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Categories & functors

The (small) category in question

We work with the symmetric group S(N) of bijections on natural numbersz.

aThis is a subgroup of the symmetric inverse monoid Z(N) of partial injections on the
natural numbers, which is the correct setting, logically, algebraically, computationally,
categorically, & group- and number- theoretically!

We equip S(N) with an N*-indexed family of injective group homomorphisms,
x SINF > S(N)  Vk=1,2,3,...

These “unbiased conjunctions” are defined by :

Notation We write *k(fo, Ceey fk71) as (fo * f1./*. LK fk71).
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A graphical formalism & explicit formulae

The Identity

x1: S(N) = S(N) H (F)(n) = f(n)

Girard’s conjunction

. . 2.f(3) n even,
*2: S(N) x S(N) - S(N) \/ (f*g)(n) =
y 2.9 (%) +1 n odd.
Ternary conjunction
3.f(g) n=0 mod 3

x5 S(N)*® - S(N) \H/ (frgeh)(n =1 3g(5)+1 n=1 mod 3

3h(%Z2)+2 n=2 mod 3

4-ary conjunction
4.1 (%) n=0 mod 4

4_g("T’1)+1 n=1 mod 4

x4 S(N)** = S(N) N 7 (frgrhek)(n) =
) \%/ 4h(%2)+2  n=2 mod 4

4k(22)+3 n=3 mod 4
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Why ‘conjunctions’??

The binary case (_x_) : S(N) x S(N) — S(N) is a categorical tensor that models
conjunction of MELL in J.-Y. Girard’s ‘Geometry of Interaction’ (parts I, II).

2n n=0 mod 2,
It is associative up to canonical isomorphism o(n) = { n+1 n=1 mod 4,
% n=3 mod 4,

that satisfies

@ (Naturality) a(f « (g~ h)) = ((fx9) » h)«
@ (MacLane’s Pentagon) in the symmetric group S(N)

a

N N
axld a
a?® = (a* ld)a(ld  a) COMMUTES

N N
N
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Why ‘conjunctions’??

The binary case (_x_) : S(N) x S(N) — S(N) is a categorical tensor that models
conjunction of MELL in J.-Y. Girard’s ‘Geometry of Interaction’ (parts I, II).

2n n=0 mod 2,
It is associative up to canonical isomorphism «o(n) = { n+1 n=1 mod 4,
o n=3 mod 4,

that satisfies
@ (Naturality) o(f « (g » h))

((f*g) * h)a
@ (MacLane’s Pentagon) in the functor category Grp(S(N)**, S(N))

«

Natural iso.s between group hom.s COMMUTES
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The general setting

By ‘plugging together’ unbiased conjunctions (substitution / operadic composition), we
interpret k-leaf rooted planar trees as “generalised conjunctions” S(N)** < S(N).

The tree The homomorphism
A\l
N\ /A ((cx (cx_x))*2) = S(N)*® — S(N)
\ /

Claim : Distinct trees determine distinct homomorphisms!

Formally : the unbiased conjunctions freely generate a non-symmetric sub-operad of
the endomorphism operad of S(N) € Ob(Grp, x ), isomorphic to the operad RPT of
rooted planar trees.

We can uniquely label arbitrary facets of associahedra by group homomorphisms :)
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Mapping between generalised conjunctions

In order to turn associahedra into commuting diagrams we need
(unique) natural isomorphisms between facets. J

Consider gen. conjunctions T, U : S(N)*® — S(N) (edges of Ks)

N >/ N/ N/
.\./. \U/

We need some 77y € S(N) such that

nru((cx (Cxox )+ )

We find this by ‘unfolding’ generalised conjunctions into shuffles and deals of an
infinite pack of cards.

((cx)x-x (x))nru
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Conjunctions as games of cards

Unfolding the conjunction ( +_) « _x (_% _)) : S(N)*®> < S(N).

into (operadic) composites of shuffles and deals

Fair Deals ‘ /\ /\\ //\\
Riffle shuffles | \/ N N\
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Games in Hilbert’s Casino

Multiple decks of (countably infinitely many) cards are modelled by disjoint union

k
N = Nx {0} U Nx {1} u... U Nx{k—1}

(also a categorical tensor).

The k-player fair deal The k-deck riffle shuffle
ne— ( %,I’ (n, i) — kn+i

where n=i mod k

These live within the endomorphism operad of the natural numbers,
in the groupoid of bijections on sets, with (strict) disjoint union.

) = = — Ty
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Linear maps from trees

Deriving the map (n,3) — 12n+ 10, from the leaf-to-root path :

Branch number 2 of 3
(n,4) Branch number 1 of 2

Branch number 0 of 2

Multiplicative coefficient: 12 =3 x 2 x 2
(Decimal) Base3 Base2 Base?2

Additive coefficient :

Positional mixed-radix number systems

First formal study by G. Cantor, Uber einfache Zahlensysteme (1869)
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Constructing natural isomorphisms

To find the natural isomorphism 77 ¢y € S(N) from

T = ((x(xx))x) 10 U= (Cx)nox(x)

we simply unfold them both
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Concrete formulee for congruential natural isomorphisms

Given explicit descriptions of generalised conjunctions :
()] T(fo,f1,...fk,1)(A,-n+ B,) = A,f,(n) + B,
(] U(fo,f1,...fk,1)(C/n+D,')

Cifi(n) + Dj,
where i =0,1,... k—1,
the natural isomorphism nr y : T = U has the unique component

1 A B
/)

) where n=B; mod A

This is a congruential element of S(N).
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A posetal groupoid, with unbiased tensors

Simple properties :

Q@ nrr = Id.
® nry=nur

@ nu.vnT,U = NT,V

We derive a posetal groupoid A (over which ‘all diagrams commute’).

Objects Generalised conjunctions S(N)*¥ < S(N)
(in 1:1 correspondence with Rooted Planar Trees)

Arrows A unique natural iso. between any two conjunctions of the same arity
(i.e. any two facets of the same associahedron)

Unbiased tensors We have one of each arity ... [ A — A.

Ty Tk U Uz . Uk

T
\/ TITy Uy 1T, Up * X T1T U \/

We may translate associahedra into commuting diagrams of congruential functions
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A worked example : 3

The (unjustly neglected) third associahedron :

(C*)*0) ) (x (%)
N D AN
\_<. \,< / \<‘
N AN /N YON
NN
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A worked example : K3

The (unjustly neglected) third associahedron :

(5%

((c*)*-) (Cx(x2)
N4 Id N O
AN Id yON Identities!
DNV N
O ./<\/. 7 \\\/ Id

@york.ac.uk www.peterhines.info



A worked example : 3

The (unjustly neglected) third associahedron :

(cxx2)
((c*)*0) (c* (%)
N Id » / \\» o The atssom:.itor fpr
. N Girard’s conjunction
o < Id \,\
RN N% b o e
X ) a(n) = {N+1 n=1 mod 4,
NS a”! /‘\ Id A n=23 mod 4,
/ p4
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A worked example : 3

The (unjustly neglected) third associahedron :

(xx0)
((*)*) (c+ (%)
A AN N Conway’s
N amusical permutation
\</ ld \//’ @ (from the OCC)
o 7 »
\‘/ /\ ld v % n=0 mod 3
\‘/ (n):{% n=1 mod3
NS a~ v Id it n=2 mod 3
v
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A worked example : 3

The (unjustly neglected) third associahedron :

(**)
(% )*)

A I\ /N

\< / Id Vb a
N 1 -1

\‘ / Y, Id y
NS a™’ v Id

/

The flattened permutation

n n=0 mod 3,
w(n) = nte n=1 mod 3,
% n=2 mod 3.

Satisfying
T+w(n) = ~y(n+1)

As a nat. transformation,
SuccAM = M Succ

peter.hine:
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Simple Corollaries (1)

These can all be verified by elementary modular arithmetic J

Every associahedron Cy=3 contains paths labelled by :
@ The associator a

(“Right-to-Left rebracketing”)

@ The amusical permutation ~
(“Inserting brackets on the RHS”)

@ The flattened permutation ~,
(“Inserting brackets on the LHS”)
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Simple Corollaries (II)

These can all be verified by elementary modular arithmetic J

The associativity isomorphism for the multiplicative conjunction of Linear Logic
(from the Geometry of Interaction program)
may be written in terms of Conway'’s / Collatz’'s amusical permutation

“Right-to-Left rebracketing” = “Delete brackets on RHS”
then
“Insert brackets on LHS”
This gives o = 7,7 ".
a(n) =~y(y(n) +1) -1
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A Corollary of a Corollary

These can all be verified by elementary modular arithmetic J

Richard Thompson’s group F, known® to be generated by the bijections
{a, Idxa} < S(N)
can be described in terms of the Original Collatz Conjecture.

It is generated by
QN — fy(’y*1(n) +1)—1

n n even,
@ nNn—

2y (v (2F) +1) -1 n odd.

3from PMH 2023, based on Fiore & Leinster 2010, M.V. Lawson 2004, P. Dehornoy 1996, &
long-established folklore ...
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Vertices & edges of K4
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